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c CMAT, Centro de Matemática da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
d Institute of Complex Systems II, Forschungszentrum Jülich, 52428 Jülich, Germany
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Abstract

We consider the symmetric simple exclusion processes with a slow site in the discrete torus with n sites.
In this model, particles perform nearest-neighbor symmetric random walks with jump rates everywhere
equal to one, except at one particular site, the slow site, where the jump rate of entering that site is equal
to one, but the jump rate of leaving that site is given by a parameter g(n). Two cases are treated, namely
g(n) = 1 + o(1), and g(n) = αn−β with β > 1, α > 0. In the former, both the hydrodynamic behavior
and equilibrium fluctuations are driven by the heat equation (with periodic boundary conditions when in
finite volume). In the latter, they are driven by the heat equation with Neumann boundary conditions. We
therefore establish the existence of a dynamical phase transition. The critical behavior remains open.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In the seventies, Dobrushin and Spitzer, see [22] and references therein, initiated the idea
of obtaining a mathematically precise understanding of the emergence of macroscopic behavior
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in gases or fluids from the microscopic interaction of a large number of identical particles with
stochastic dynamics. This approach has turned out to be extremely fruitful both in probability the-
ory and statistical physics (e.g. see the books [24,13]) and it still raises attention nowadays. In this
context, recent studies have been made in hydrodynamic limit/fluctuations of interacting particle
systems in random/non homogeneous medium, see for instance [9,6,8,12] and references therein.

So far, most of the work done in this field concerns the bulk hydrodynamics, i.e., the derivation
of macroscopic partial differential equations arising from the bulk interactions of the underlying
particle system. To this end, one usually considers an infinite system or a finite torus with
periodic boundary conditions and then takes the thermodynamic limit. However, in applications
to physical systems one is usually confronted with finite systems, which requires the study of a
partial differential equation on a finite interval with prescribed boundary conditions. This raises
the question from which microscopic boundary interactions a given type of boundary condition
emerges at the macroscopic scale.

This is an important issue both for boundary-driven open systems, where boundary interac-
tions can induce long-range correlations [23] and bulk phase transitions due to the absence of
particle conservation at the boundaries [3], and for bulk-driven conservative systems on the torus
where even a single defect bond between two neighboring sites can change bulk relaxation be-
havior or lead to macroscopic discontinuities in the hydrostatic density profiles.1 Given such rich
behavior due to boundary effects in non-conservative or bulk-driven systems it is natural to ex-
plore the macroscopic role of a microscopic defect on a torus in a conservative system in the
absence of bulk-driving and to ask whether such a defect can be described on macroscopic scale
in terms of a boundary condition for the PDE describing the bulk hydrodynamics.

In this work we address this problem for the symmetric simple exclusion process (SSEP) on
the discrete torus in the presence of a defect site. The model can be described as follows. Each
site of the discrete torus with n sites, that we denote by Tn = Z/nZ, is allowed to have at most
one particle. To each site is associated a Poisson clock, all of them being independent. If there
is a particle in the associated site, this particle chooses one of its nearest neighbors with equal
probability when the clock rings. If the chosen site is empty, the particle jumps to it. Otherwise
nothing happens. All sites have a Poisson clock of parameter two, except the origin, which has a
Poisson clock of parameter 2g(n). If g(n) < 1, the origin behaves as a trap, and (in average) it
keeps a particle there for a longer time than the other sites do. We call this site a slow site. The
main results of the present work are the hydrodynamic limit and the equilibrium fluctuations for
the exclusion process with such a slow site.

Specifically, for g(n) = 1 + o(1) it is shown here that the limit for the time trajectory of the
spatial density of particles is given by the solution of the heat equation with periodic boundary
conditions, namely:

∂tρ(t, u) = ∂2
uρ(t, u), t ≥ 0, u ∈ T,

ρ(0, u) = ρ0(u), u ∈ T,
(1.1)

where T is the one-dimensional continuous torus.
Moreover, considering the same particle system evolving on Z, we prove that the equilibrium

fluctuations of the system are driven by a generalized Ornstein–Uhlenbeck process Yt which is

1 See [11,20,1,4,2,17] for numerical, exact and rigorous results for the asymmetric simple exclusion process and
[21,19] for a review, including experimental applications of interacting particle systems with boundary interactions in
physical and biological systems.
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the solution of

d Yt = 1Yt dt +


2χ(p)∇d Wt

where Wt is a Brownian motion on the space S ′(R) of tempered distributions and χ(p) is the
compressibility, which is a coefficient related to the invariant measure of the system. Both results
are true irrespective of whether o(1) is positive or negative, i.e., of whether the origin is a fast
site or a slow site.

On the other hand, if g(n) = αn−β , α > 0, β > 1, the limit for the time trajectory of the
spatial density of particles is given by the solution of the heat equation with Neumann boundary
conditions, namely:∂tρ(t, u) = ∂2

uρ(t, u), t ≥ 0, u ∈ (0, 1),

∂uρ(t, 0+) = ∂uρ(t, 0−) = 0, t ≥ 0,

ρ(0, u) = ρ0(u), u ∈ (0, 1),

(1.2)

where 0+ and 0− denotes right and left side limits, respectively. This represents no passage of
particles in the continuum limit.

Again considering the same particle system evolving on Z, we prove that the equilibrium
fluctuations of the system when g(n) = αn−β , α > 0, β > 1 are driven by the solution of

d Yt = ∆Neu Yt dt +


2χ(p)∇Neud Wt ,

which is essentially a version of the previous generalized Ornstein–Uhlenbeck process associated
to the PDE (1.2), in the same setting of [8]. These Ornstein–Uhlenbeck processes are precisely
stated in Section 2.

We point out that a similar model with conservative dynamics on the torus has been considered
in [6,8,9], which consists in the SSEP with a slow bond of intensity g(n) = αn−β , α > 0,
β ≥ 0. In that model particles perform nearest-neighbor symmetric random walks, whose jump
rate is equal to one at all bonds, except at a particular bond, where it is equal to g(n). From
[6,8,9] it is known that hydrodynamic limit/fluctuations for exclusion processes with a slow bond
have three different behaviors depending on the regime of β.

For the SSEP with a slow site that we treat here the methods used for the slow bond problem
cannot be adapted in any straightforward fashion as the asymmetry at the slow site gives rise
to novel difficulties in the study of its hydrodynamic behavior and fluctuations. The model is
reversible, as is the SSEP with a slow bond, but it is not self-dual, in contrast to the SSEP
with a slow bond. Moreover, the invariant measures for the SSEP with a slow site are not
translation invariant, as happens for the SSEP with a slow bond. As a consequence, the proof
of the hydrodynamic limit for the SSEP with a slow site requires different approaches from the
ones of [6,8,9] and one cannot naively extend the results obtained for the slow bond to the case
of the slow site.

As described above, in this paper we are able to characterize the hydrodynamic limit and the
equilibrium fluctuations for g(n) = αn−β when α > 0, β > 1. The case 0 ≤ β ≤ 1 remains
open. However, we present and motivate a conjecture on the behavior of the system in that case.
Moreover, since we present also the hydrodynamic limit and the equilibrium fluctuations for
g(n) close to one, namely g(n) = 1 + o(1), the existence of a dynamical phase transition in the
behavior of the system from periodic boundary conditions to Neumann boundary conditions at a
critical value of β in the range 0 ≤ β ≤ 1 is established.
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In order to put our results into a broader perspective conservative particle systems with defects
we point out that for a single slow bond the SSEP treated [6,8,9] exhibits the same hydrodynamic
behavior as non-interacting random walks with a single slow bond. On the other hand, with a
single slow site both hydrodynamic limit and fluctuations of non-interacting particles would be
driven by a disconnect behavior for any β > 0, leading to Dirichlet boundary conditions with
boundary densities 0. Thus the similarity between the SSEP and non-interacting particles that
one finds for a slow bond breaks down for a slow site, adding further motivation for a detailed
investigation of the SSEP with a slow site.

It is also worthwhile to compare our result with a result derived in [12] for a related problem.
The model considered there is called the Bouchaud trap model. In that model, particles perform
independent random walks in a random environment with traps given by i.i.d. alpha-stable
random variables. In [12] it was proved that the hydrodynamic limit for such model is given
by a generalized partial differential equation depending on an alpha-stable subordinator. The
present paper suggests that a trap model of exclusion type should not have the same limit as
obtained in [12] for a trap model of independent random walks. For the SSEP the asymmetry at
the slow site yields a limit that has some properties in common with a slow bond and therefore a
behavior completely different from the one observed in [12].

Here follows the outline of this paper. In Section 2 we give notations, precise definitions
and statements of the results. In Section 3 we present the hydrodynamic limit of the model. In
Section 4 we present the equilibrium fluctuations (in infinite volume). In Section 5 we state a
conjecture on what should be the complete scenario for exclusion processes with a slow site.
In Section 6 we present an extra result on the hydrodynamic behavior of the SSEP with k
neighboring slow bonds, which we use as an argument to sustain our conjecture in Section 5.

2. Statement of results

2.1. The model

A particle system can be constructed through its generator or via Poisson processes. In this
work we will make use of both.

Let Tn = Z/nZ = {0, 1, . . . , n − 1} be the one-dimensional discrete torus with n points. The
simple symmetric exclusion process (SSEP) with a slow site is the Markov process with state
space {0, 1}

Tn and with generator Ln acting on functions f : {0, 1}
Tn → R as

Ln f (η) =


x,y∈Tn
|x−y|≤1

ξn
x η(x)(1 − η(y)) [ f (ηx,y) − f (η)], (2.1)

where the jump rates ξn
x are given by

ξn
x =


g(n), if x = 0,

1, if x ∈ Tn \ {0},

where g(n) > 0 and ηx,x+1 is the configuration obtained from η by exchanging the occupation
variables η(x) and η(x + 1). Formally,

(ηx,x+1)(y) =

η(x + 1), if y = x,

η(x), if y = x + 1,

η(y), otherwise.
(2.2)



804 T. Franco et al. / Stochastic Processes and their Applications 126 (2016) 800–831

Fig. 1. Exclusion process with a slow site.

Its dynamics can be described as follows. To each site we attach two Poisson processes, one
corresponding to jumps from x to x + 1 and the other corresponding to jumps from x to x − 1. If
the site x is occupied and the site x + 1 is empty, the particle moves from site x to site x + 1 at a
time arrival of the Poisson process associated to {x, x + 1}, and analogously for sites {x, x − 1}.
The jump rates corresponding to those transitions are shown in Fig. 1.

For fixed n, let {ητ : τ ≥ 0} be the Markov process with generator Ln . Notice that ητ depends
on g(n), but we do not display this dependence in the notation. We denote by {ηt : t ≥ 0} the
Markov process with generator n2Ln . This time factor n2 is the so-called diffusive time scaling.
We observe that this is equivalent to define ηt := ηn2τ .

Next we establish a family of invariant measures (in fact, reversible) for the dynamics
introduced above.

Proposition 2.1. For any p ∈ [0, 1], the Bernoulli product measure νp on the space {0, 1}
Tn

with marginals given by

νp{η ; η(x) = 1} = m p(x) =


p

g(n)

(1 − p) +
p

g(n)

, if x = 0,

p, if x ∈ Tn \ {0},

(2.3)

is reversible for the Markov process {ητ : τ ≥ 0}.

The proof of this proposition consists only in checking the detailed balance equation, which
is straightforward and for that reason it will be omitted.

Above and in what follows, a sub-index in a function means a variable, not a derivative.
Denote by T the one-dimensional continuous torus R/Z = [0, 1) and by ⟨·, ·⟩ the inner product
in L2

[0, 1].

2.2. Hydrodynamics

Definition 1. Let ρ0 : T → [0, 1] be a measurable function. We say that ρ is a weak solution of
the heat equation with periodic boundary conditions given by

∂tρ(t, u) = ∂2
uρ(t, u), t ≥ 0, u ∈ T,

ρ(0, u) = ρ0(u), u ∈ T,
(2.4)

if, for all t ∈ [0, T ] and for all H ∈ C2(T),

⟨ρt , Ht ⟩ − ⟨ρ0, H0⟩ −

 t

0


ρs, ∂2

u Hs

ds = 0. (2.5)
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Next, we define what we mean by weak solutions of the heat equation with Neumann
boundary conditions, as given in (1.2). We introduce first some technical background on Sobolev
spaces.

Definition 2. Let H1 be the set of all L1 functions ζ : [0, 1] → R such that there exists a
function ∂uζ ∈ L2

[0, 1] satisfying

⟨∂uG, ζ ⟩ = −⟨G, ∂uζ ⟩,

for all G ∈ C∞
[0, 1] with compact support contained in (0, 1). For ζ ∈ H1, we define the norm

∥ζ∥H1 :=


∥ζ∥

2
L2[0,1]

+ ∥∂uζ∥
2
L2[0,1]

1/2
.

Let L2(0, T ; H1) be the space of all measurable functions ξ : [0, T ] → H1 such that

∥ξ∥
2
L2(0,T ;H1)

:=

 T

0
∥ξt∥

2
H1 dt < ∞.

Abusing notation slightly, we denote by C2
[0, 1] the set of functions H : T → R that are

continuously twice differentiable in T \ {0} and have a C2-extension to the closed interval [0, 1].

Definition 3. Let ρ0 : T → [0, 1] be a measurable function. We say that ρ is a weak solution of
the heat equation with Neumann boundary conditions∂tρ(t, u) = ∂2

uρ(t, u), t ≥ 0, u ∈ (0, 1),

∂uρ(t, 0+) = ∂uρ(t, 0−) = 0, t ≥ 0,

ρ(0, u) = ρ0(u), u ∈ (0, 1),

(2.6)

if ρ belongs to L2(0, T ; H1) and for all t ∈ [0, T ] and for all H ∈ C2
[0, 1],

⟨ρt , H⟩ − ⟨ρ0, H⟩ −

 t

0


ρs, ∂2

u H

ds

−

 t

0


ρs(0+) ∂u H(0+) − ρs(0−) ∂u H(0−)


ds = 0.

Let D(R+, {0, 1}
Tn ) be the path space of càdlàg2 trajectories with values in {0, 1}

Tn . For a
measure µn on {0, 1}

Tn , denote by Pµn the probability measure on D(R+, {0, 1}
Tn ) induced by

the initial state µn and the Markov process {ηt : t ≥ 0}. Notice that in fact Pµn = Pg(n),n
µn but we

will not carry the dependence on n nor g in order to not overload notation. By Eµn we mean the
expectation with respect to Pµn .

The notation η· is reserved to represent elements of the Skorohod space D(R+, {0, 1}
Tn ),

i.e., time trajectories of the exclusion process with a slow site. This notation η· should not be
confused with the notation η for elements of {0, 1}

Tn .
From now on we fix a profile γ : T → [0, 1], representing the initial density of particles. To

avoid uninteresting technical complications, we assume that γ is continuous at all x ∈ T \ {0}

and bounded from below by a positive constant:

ζ := inf
x∈T

γ (x) > 0. (2.7)

2 From the French, “continuous from the right with limits from the left”.



806 T. Franco et al. / Stochastic Processes and their Applications 126 (2016) 800–831

Theorem 2.2. For each n ∈ N, let µn be a Bernoulli product measure on {0, 1}
Tn with marginal

distributions given by

µn{η ; η(x) = 1} = γ
 x

n


. (2.8)

Then, for any t > 0, for every δ > 0 and every H ∈ C(T), it holds that

lim
n→∞

Pµn


η· :

1
n


x∈Tn

H
 x

n


ηt (x) −


T

H(u) ρ(t, u)du
 > δ


= 0, (2.9)

where

• for g(n) = 1 + o(1), ρ is the unique weak solution of (2.4);
• for g(n) = αn−β , α > 0, β > 1, ρ is the unique weak solution of (2.6);

and where, in both cases, the initial condition of the corresponding partial differential equation
is given by ρ0 = γ .

Remark 2.3. About the constants: To avoid repetitions along the paper, we fix, once and for all,
the assumptions α > 0 and β > 1.

Remark 2.4. About the statement of the Theorem: If at the initial time the density of particles
converges to the profile γ (·), then, in the future time t , the density of particles converges to a
profile ρ(t, ·) which is the weak solution of the heat equation with the corresponding boundary
conditions and with initial condition ρ0 = γ .

Remark 2.5. About the scaling: In the claim of Theorem 2.2 one can see that the space is
rescaled by n−1 (space between sites) and time is rescaled by n2, since the “future time” is
indeed tn2. This is the diffusive time scaling.

Remark 2.6. About the initial measure: We can weaken the hypothesis on µn by dropping the
condition of being a product measure, and assuming that {µn}n∈N is associated to γ (·), see [13].
In that case the statement of Theorem 2.2 remains in force. However, this hypothesis would
complicate the attractiveness tools at Section 3.5 and for this reason we assume (2.8).

Remark 2.7. About the weak solution: The weak solution of (2.6) is a function defined on the
interval [0, 1], not on the torus. But, as already explained, Lebesgue almost sure, it is the same.
Thus it makes sense to integrate ρ in the torus T, as it appears in Eq. (2.9).

2.3. Equilibrium density fluctuations

In this section we consider ηt evolving on the one-dimensional lattice Z and starting from the
invariant state νp, with p ∈ (0, 1). Therefore, the generator of the process is given by (2.1) with
Tn replaced by Z, namely

Ln f (η) =


x,y∈Z

|x−y|≤1

ξn
x η(x)(1 − η(y)) [ f (ηx,y) − f (η)],

for local functions f : {0, 1}
Z

→ R.
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From now on we fix p ∈ (0, 1). In order to establish the central limit theorem (C.L.T.) for
the density under the invariant state νp, we need to introduce the fluctuation field as the linear
functional acting on test functions H as

Y n
t (H) =

1
√

n


x∈Z

H
 x

n


(ηt (x) − m p(x)), (2.10)

where m p(x) is the mean of ηt (x) with respect to νp introduced in (2.3). We emphasize that
{ηt : t ≥ 0} is the Markov process with generator n2Ln . Denote by Pp the probability measure on
the Skorohod path space D(R+, {0, 1}

Z) induced by the initial state νp and the Markov process
{ηt : t ≥ 0} and we denote by Ep the expectation with respect to Pp.

Now we introduce the space of test functions. Since the hydrodynamics is governed by
different partial differential equations, the state space for H depends on the jump rate g(n) that
we defined at the slow site.

Definition 4. Let S(R) be the usual Schwartz space of functions H : R → R such that H ∈

C∞(R) and

∥H∥k,ℓ := sup
x∈R

(1 + |x |
ℓ)

dk H

dxk (x)

 < ∞,

for all integers k, ℓ ≥ 0. We define SNeu(R) as the space composed of functions H : R → R
such that

(1) Except possibly at x = 0, the function H is continuous and infinitely differentiable,
(2) The function H is continuous from the right at zero,
(3) For all integers k, ℓ ≥ 0,

∥H∥k,ℓ,+ := sup
x>0

(1 + |x |
ℓ)

dk

dxk H(x)

 < ∞,

and

∥H∥k,ℓ,− := sup
x<0

(1 + |x |
ℓ)

dk H

dxk (x)

 < ∞.

(4) For any integer k ≥ 0,

lim
x→0+

d2k+1 H

dx2k+1 (x) = lim
x→0−

d2k+1 H

dx2k+1 (x) = 0.

Notice that it is not required that H is continuous at x = 0. Intuitively, this space SNeu(R)

corresponds to two independent Schwartz spaces in each half line. The chosen notation comes
from the expression Neumann boundary conditions.

Both spaces S(R) and SNeu(R) are Fréchet spaces. The proof that S(R) is Fréchet can be
found in [18], for instance. The proof that SNeu(R) is Fréchet is quite similar and will be omitted.

The set of continuous linear functions f : S(R) → R and f : SNeu(R) → R with respect to
the topology generated by the corresponding semi-norms will be denoted by S ′(R) and S ′

Neu(R),
respectively.

The notation ∇ and ∆ mean the first and second space derivatives. In the case of SNeu(R), we
will make use of the following definition:
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Definition 5. We define the operators ∇Neu : SNeu(R) → SNeu(R) and ∆Neu : SNeu(R) →

SNeu(R) by

∇Neu H(u) =


d H

du
(u), if u ≠ 0,

lim
u→0+

d H

du
(u), if u = 0,

∆Neu H(u) =


d2 H

du2 (u), if u ≠ 0,

lim
u→0+

d2 H

du2 (u), if u = 0.

Notice that these operators are essentially the first and second space derivatives, but defined in
specific domains, which changes the meaning of the operator. Roughly speaking, the operator
∆Neu is the operator associated to a system blocked at the origin.

2.4. Ornstein–Uhlenbeck process

Denote by χ(p) = p(1 − p) the so-called static compressibility of the system. Based on
[10,13], we have a characterization of the generalized Ornstein–Uhlenbeck process, which is a
solution of

d Yt = 1Yt dt +


2χ(p)∇d Wt , (2.11)

where d Wt is a space–time white noise of unit variance, in terms of a martingale problem. We
will see later that this process, which take values on S ′(R), governs the equilibrium fluctuations
of the density of particles when the strength of the slow site is given by g(n) = 1 + o(1).

On the other hand, when the strength is given by g(n) = αn−β , the corresponding Ornstein–
Uhlenbeck process will be the solution of

d Yt = ∆Neu Yt dt +


2χ(p)∇Neud Wt , (2.12)

and taking values on S ′

Neu(R).
In what follows D([0, T ], S ′(R)) (resp. C([0, T ], S ′(R))) is the space of càdlàg (resp.

continuous) S ′(R) valued functions endowed with the Skorohod topology. Analogous definitions
hold for D([0, T ], S ′

Neu(R)) and C([0, T ], S ′

Neu(R)).
The rigorous meaning of Eqs. (2.11) and (2.12) is given in terms of the two next propositions.

Denote by Tt : S(R) → S(R) the semi-group of the heat equation in the line (see [7] for
instance). It is well known that

Proposition 2.8. There exists an unique random element Y· taking values in the space C([0, T ],

S ′(R)) such that:

(i) For every function H ∈ S(R), Mt (H) and Nt (H), given by

Mt (H) = Yt (H) − Y0(H) −

 t

0
Ys(1H)ds,

Nt (H) =


Mt (H)
2

− 2χ(p) t ∥∇ H∥
2
L2(R)

,

(2.13)

are Ft -martingales, where for each t ∈ [0, T ], Ft := σ(Ys(H); s ≤ t, H ∈ S(R)).
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(ii) Y0 is a Gaussian field of mean zero and covariance given on G, H ∈ S(R) by

Ep


Y0(G)Y0(H)


= χ(p)


R

G(u)H(u)du. (2.14)

Moreover, for each H ∈ S(R), the stochastic process {Yt (H) : t ≥ 0} is Gaussian, being the
distribution of Yt (H) conditionally to Fs , for s < t , normal of mean Ys(Tt−s H) and variance t−s

0 ∥∇Tr H∥
2
L2(R)

dr.

We call the random element Y· the generalized Ornstein–Uhlenbeck process of characteristics
∇ and ∆. From the second equation in (2.13) and Lévy’s Theorem on the martingale
characterization of Brownian motion, the process

2χ(p)∥∇ H∥
2
L2(R)

−1/2 Mt (H) (2.15)

is a standard Brownian motion. Therefore, in view of Proposition 2.8, it makes sense to say that
Y· is the formal solution of (2.11).

Now, let T Neu
t : SNeu(R) → SNeu(R) be the semi-group associated to the following partial

differential equation with Neumann boundary conditions:∂t u(t, x) = ∂2
x u(t, x), t ≥ 0, x ∈ R \ {0}

∂x u(t, 0+) = ∂x u(t, 0−) = 0 t ≥ 0
u(0, x) = H(x), x ∈ R.

(2.16)

See [7] for an explicit expression of T Neu
t . In a similar way, we have

Proposition 2.9 (See [7]). There exists an unique random element Y· taking values in the space
C([0, T ], S ′

Neu(R)) such that:

(i) For every function H ∈ SNeu(R), Mt (H) and Nt (H) given by

Mt (H) = Yt (H) − Y0(H) −

 t

0
Ys(∆Neu H)ds,

Nt (H) =


Mt (H)
2

− 2χ(p) t ∥∇Neu H∥
2
L2(R)

(2.17)

are Ft -martingales, where for each t ∈ [0, T ], Ft := σ(Ys(H); s ≤ t, H ∈ SNeu(R)).
(ii) Y0 is a Gaussian field of mean zero and covariance given on G, H ∈ SNeu(R) by (2.14).

Moreover, for each H ∈ SNeu(R), the stochastic process {Yt (H) ; t ≥ 0} is Gaussian, being the
distribution of Yt (H) conditionally to Fs , for s < t , normal of mean Ys(T Neu

t−s H) and variance t−s
0 ∥∇T Neu

r H∥
2
L2(R)

dr.

We call the random element Y· the generalized Ornstein–Uhlenbeck process of characteristics
∇Neu and ∆Neu. We are in position to state our result for the fluctuations of the density of
particles.

Theorem 2.10 (C.L.T. for the Density of Particles). Consider the Markov process {ηt : t ≥ 0}

starting from the invariant state νp under the assumption g(n) = 1+o(1). Then, the sequence of
processes {Y n

t }n∈N converges in distribution, as n → +∞, with respect to the Skorohod topology
of D([0, T ], S ′(R)) to Yt in C([0, T ], S ′(R)), the generalized Ornstein–Uhlenbeck process of
characteristics ∆, ∇ which is the formal solution of the Eq. (2.11).
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On the other hand, if we consider g(n) = αn−β , α > 0 and β > 1, then {Y n
t }n∈N converges in

distribution, as n → +∞, with respect to the Skorohod topology of D([0, T ], S ′

Neu(R)) to Yt in
C([0, T ], S ′

Neu(R)), the generalized Ornstein–Uhlenbeck process of characteristics ∆Neu, ∇Neu
which is the formal solution of Eq. (2.12).

3. Hydrodynamics

We proceed to define the spatial density of particles of the exclusion process, where we embed
the discrete torus Tn in the continuous torus T.

Let M be the space of positive measures on T with total mass bounded by one, endowed with
the weak topology. Let πn

t ∈ M be the measure on T obtained by rescaling time by n2, rescaling
space by n−1, and assigning mass n−1 to each particle, i.e.,

πn
t (η, du) =

1
n


x∈Tn

ηt (x) δx/n(du), (3.1)

where δu is the Dirac measure concentrated on u. The usual name for πn
t (η, du) is empirical

measure. For an integrable function H : T → R, the expression ⟨πn
t , H⟩ stands for the integral

of H with respect to πn
t :

⟨πn
t , H⟩ =

1
n


x∈Tn

H
 x

n


ηt (x).

This notation is not to be mistaken with the inner product in L2(T). Also, when πt has a density
ρ, namely when π(t, du) = ρ(t, u)du, we sometimes write ⟨ρt , H⟩ for ⟨πt , H⟩.

To avoid unwanted topological issues, in the entire paper a time horizon T > 0 is fixed. Let
D([0, T ], M) be the space of M-valued càdlàg trajectories π : [0, T ] → M endowed with the
Skorohod topology. For each probability measure µn on {0, 1}

Tn , denote by Qn
µn

the measure on
the path space D([0, T ], M) induced by the measure µn and the process πn

t introduced in (3.1).
Recall the profile γ : T → [0, 1] and the sequence {µn}n∈N of measures on {0, 1}

Tn defined
through (2.8). Let Q be the probability measure on the space D([0, T ], M) concentrated on the
deterministic path π(t, du) = ρ(t, u)du, where

• if g(n) = 1 + o(1), the function ρ is the unique weak solution of (2.4);
• if g(n) =

α
nβ , the function ρ is the unique weak solution of (2.6).

Proposition 3.1. Considering the two possibilities above for the function g, the sequence of
probability measures {Qn

µn
}n∈N converges weakly to Q as n → ∞.

Since Theorem 2.2 is an immediate corollary of the previous proposition, our goal is to prove
Proposition 3.1.

The proof is divided in several parts. In Section 3.1, we show that the sequence {Qn
µn

}n∈N is
tight. In Sections 3.4 and 3.6, we show that, for each case of g, Q is the only possible limit along
subsequences of {Qn

µn
}n∈N. This assures that the sequence {Qn

µn
}n∈N converges weakly to Q, as

n → ∞.

3.1. Tightness

In order to prove tightness of {πn
t : 0 ≤ t ≤ T }n∈N it is enough to show tightness of the

real-valued processes {⟨πn
t , H⟩ : 0 ≤ t ≤ T }n∈N for a set of functions H ∈ C(T), provided
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this set of functions is dense in C(T) with respect to the uniform topology (see [13, page 54,
Proposition 1.7]). For that purpose, let H ∈ C2(T). By Dynkin’s formula,

Mn
t (H) := ⟨πn

t , H⟩ − ⟨πn
0 , H⟩ −

 t

0
n2Ln⟨πn

s , H⟩ ds (3.2)

is a martingale with respect to the natural filtration Ft := σ(ηs : s ≤ t). Moreover,
Mn

t (H)
2

−

 t

0


n2Ln[⟨πn

s , H⟩]
2
− 2⟨πn

s , H⟩ n2Ln⟨πn
s , H⟩


ds (3.3)

is also a martingale with respect to the same filtration, see [13]. In order to prove tightness of
{πn

t (H) : 0 ≤ t ≤ T }n∈N, we shall prove tightness of each term in the formula above and then
we invoke the fact that a sequence of a finite sum of tight processes is again tight.

Since (3.3) is a martingale, doing elementary calculations we obtain the quadratic variation of
Mn

t (H) at time T as

⟨Mn(H)⟩T =

 T

0


x∈Tn\{0}


(ηs(x) − ηs(x + 1))


H


x + 1

n


− H

 x

n

2

ds

+

 T

0


ηs(1)(1 − ηs(0)) + g(n)ηs(0)(1 − ηs(1))


×


H


1
n


− H


0
n

2

ds

+

 T

0


ηs(−1)(1 − ηs(0)) + g(n)ηs(0)(1 − ηs(−1))


×


H


−1
n


− H


0
n

2

ds. (3.4)

The smoothness of H implies that limn→∞ Eµn


⟨Mn(H)⟩T


= 0. Hence Mn

T (H) converges to
zero in L2(Pµn ) as n → ∞ and, by Doob’s inequality, for every δ > 0,

lim
n→∞

Pµn


η· : sup

0≤t≤T
|Mn

t (H)| > δ


= 0. (3.5)

In particular, this yields tightness of the sequence of martingales {Mn
t (H) : 0 ≤ t ≤ T }n∈N.

A long computation, albeit completely elementary, shows us that the term n2Ln⟨πn
s , H⟩

appearing inside the time integral in (3.2) can be rewritten as

n


x∈Tn\{0}


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


ηs(x)

+ ng(n)


H


1
n


+ H


−1
n


− 2H


0
n


ηs(0)

+ n(1 − g(n))


H


−1
n


− H


0
n


ηs(0) ηs(−1)

+


H


1
n


− H


0
n


ηs(0) ηs(1)


. (3.6)
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We note that the first term above corresponds to the discrete Laplacian leading to the heat
equation, while the other two terms arise from the boundary conditions.

By the smoothness of H again, there exists a constant cH > 0 such that |n2Ln⟨πn
s , H⟩| ≤ cH ,

which in turn gives t

r
n2Ln⟨πn

s , H⟩ds

 ≤ cH |t − r |.

By the Arzelà–Ascoli Theorem the sequence of these integral terms is a relatively compact set,
with respect to the uniform topology, therefore it is tight. The term ⟨πn

0 , H⟩ is constant in time
and bounded, thus is tight as well. This concludes the proof that the set of measures {Qn

µn
}n∈N is

tight.

3.2. Entropy

Denote by H(µ|νp) the entropy of a probability measure µ with respect to the invariant state
νp. For a precise definition and properties of the entropy, we refer the reader to [13].

Proposition 3.2. There exists a finite constant K0 := K0(p), such that

H(µ|νp) ≤ K0 n,

for any probability measure µ on {0, 1}
Tn .

Proof. Recall the definition of νp and notice that

H(µ|νp) =


η∈{0,1}Tn

µ(η) log
 µ(η)

νp(η)


≤


η∈{0,1}Tn

µ(η) log
 1
νp(η)


.

Recall (2.3). By the assumption 0 < p < 1 and the inequality

νp(η) ≥ (p ∧ (1 − p))n−1 (m p(0) ∧ (1 − m p(0)))

we conclude that H(µ|νp) ≤ K0 n for some K0 > 0 depending only on p. �

A remark: In particular, the estimate H(µn|νp) ≤ K0 n holds for the measures µn defined in
(2.8).

3.3. Dirichlet form

Let f be any density with respect to the invariant measure νp. In others words, f is a non
negative function f : {0, 1}

Tn → R satisfying


f (η)νp(dη) = 1. The Dirichlet form Dn is the
convex and lower semicontinuous functional defined through

Dn(


f ) = −

 
f (η) Ln


f (η) νp(dη).

Invoking a general result [13, Appendix 1, Prop. 10.1] we can write Dn as

Dn(


f ) =
g(n)

2


η(0)(1 − η(1))


f (η0,1) −


f (η)

2
νp(dη)

+
1
2


η(1)(1 − η(0))


f (η0,1) −


f (η)

2
νp(dη)
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+
1
2


η(−1)(1 − η(0))


f (η0,−1) −


f (η)

2
νp(dη)

+
g(n)

2


η(0)(1 − η(−1))


f (η0,−1) −


f (η)

2
νp(dη)

+
1
2


x∈Tn

x≠0,−1

 
f (ηx,x+1) −


f (η)

2
νp(dη), (3.7)

where ηx,x+1 has been defined in (2.2).

Proposition 3.3. Let Q∗ be a limit of a subsequence of the sequence of probabilities measures
{Qn

µn
}n∈N. Then Q∗ is concentrated on trajectories π(t, du) with a density with respect to the

Lebesgue measure, i.e., of the form π(t, du) = ρ(t, u)du. Moreover, the density ρ(t, u) belongs
to the space L2(0, T ; H1), see Definition 2.

The proof of the proposition above can be adapted from [6, Proposition 5.6] and for this reason
it will be omitted. For the interested reader, we briefly indicate some steps of this adaptation.

We begin by observing that [6, Proposition 5.6] is in fact a consequence of [6, Lemma 5.8].
Thus we just describe how to prove, in our case, the statement in [6, Lemma 5.8].

There are two basic ingredients in the proof of [6, Lemma 5.8]. The first one is that the
entropy (with respect to the invariant measure) of any probability measure on the state space of
the process, namely, {0, 1}

Tn does not grow more than linearly. In our case, this result is proved
in Proposition 3.2.

The second ingredient in the proof of [6, Lemma 5.8] is the fact that, except at the defect, the
Dirichlet form of the considered process coincides with the Dirichlet form of the homogeneous
exclusion process. This fact indeed holds for the exclusion process with a slow site and therefore
the same proof of [6, Lemma 5.8] applies here.

3.4. Hydrodynamic limit for g(n) = 1 + o(1)

Proof of Proposition 3.1 for g(n) = 1 + o(1). Let Q∗ be the weak limit of some convergent
subsequence {Qn j

µn j
} j∈N of the sequence {Qn

µn
}n∈N. In order not to overburden the notation,

denote this subsequence just by {Qn
µn

}n∈N. By Proposition 3.3, the probability measure Q∗ is
concentrated on trajectories π(t, du) = ρ(t, u)du such that ρ(t, u) ∈ L2(0, T ; H1). Our goal is
to conclude that ρ is a weak solution of the partial differential equation (2.4).

Let H ∈ C2(T). We claim that

Q∗


π : ⟨πt , H⟩ − ⟨π0, H⟩ −

 t

0
⟨πs, ∂

2
u H⟩ ds = 0, ∀t ∈ [0, T ]


= 1. (3.8)

To prove this, it suffices to show that

Q∗


π : sup

0≤t≤T

⟨πt , H⟩ − ⟨π0, H⟩ −

 t

0
⟨πs, ∂

2
u H⟩ ds

 > δ


= 0,

for every δ > 0. Since the supremum is a continuous function in the Skorohod metric, by
Portmanteau’s Theorem, the probability above is smaller or equal than

lim inf
n→∞

Qn
µn


π : sup

0≤t≤T

⟨πt , H⟩ − ⟨π0, H⟩ −

 t

0
⟨πs, ∂

2
u H⟩ ds

 > δ

.
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Since Qn
µn

is the measure on the space D([0, T ], M) induced by Pn
µn

via the empirical measure,
we can rewrite the expression above as

lim inf
n→∞

Pµn


η· : sup

0≤t≤T

⟨πn
t , H⟩ − ⟨πn

0 , H⟩ −

 t

0
⟨πn

s , ∂2
u H⟩ ds

 > δ

.

Adding and subtracting n2 Ln⟨πn
s , H⟩ to the integral term above, we can see that the previous

expression is bounded from above by the sum of

lim sup
n→∞

Pµn


sup

0≤t≤T

⟨πn
t , H⟩ − ⟨πn

0 , H⟩ −

 t

0
n2 Ln⟨πn

s , H⟩ ds
 > δ/2


(3.9)

and

lim sup
n→∞

Pµn


sup

0≤t≤T

 t

0


n2 Ln⟨πn

s , H⟩ − ⟨πn
s , ∂2

u H⟩


ds
 > δ/2


. (3.10)

As already verified in Section 3.1, the quadratic variation of the martingale Mn
t (H) given in (3.2)

goes to zero, as n → ∞. Therefore, by Doob’s inequality, expression (3.9) is null.
It remains to show that (3.10) also vanishes. Recall (3.6) for n2 Ln⟨πn

s , H⟩. Let us examine
its terms.

The first term in the sum (3.6) is

n


x∈Tn\{0}


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


ηs(x),

from which one can subtract

⟨πn
s , ∂2

u H⟩ =
1
n


x∈Tn

∂2
u H

 x

n


ηs(x),

this difference being bounded (in modulus) by cH /n, again because H ∈ C2(T), where cH > 0
is a constant depending only on H .

The second term in (3.6) is

n


1 + o(1)


H


1
n


+ H


−1
n


− 2H


0
n


ηs(0),

which converges to zero as n → ∞, because H ∈ C2(T).
The last term in (3.6) is

n(1 − g(n))


H


−1
n


− H


0
n


ηs(0) ηs(−1)

+


H


1
n


− H


0
n


ηs(0) ηs(1)


,

which goes to zero, as n goes to infinity, because H is smooth and g(n) = 1 + o(1). By the facts
above we conclude that (3.10) is zero, proving the claim.

Now, let {Hi }i≥1 be a countable dense set of functions in C2(T), with respect to the norm
∥H∥∞ + ∥∂u H∥∞ + ∥∂2

u H∥∞. Intersecting a countable number of sets of probability one, (3.8)
can be extended for all functions H ∈ C2(T) simultaneously, proving that Q∗ is concentrated
on weak solutions of (2.4). Since there exists only one weak solution of (2.4), it means that Q∗
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is equal to the aforementioned probability measure Q. Invoking tightness proved in Section 3.1,
we conclude that the entire sequence {Qn

µn
}n∈N converges to Q as n → ∞. �

3.5. Law of large numbers for the occupation at the origin

Recall the definition of µn given in (2.8).

Proposition 3.4. Consider g(n) = αn−β . Let γ : T → [0, 1] be a continuous profile, except
possibly at x = 0 and satisfying (2.7). Then, for all t > 0 and ε > 0,

lim
n→∞

Pµn


η· :

n

t

 t

0
(1 − ηs(0)) ds > ε


= 0. (3.11)

This statement says that the site x = 0 remains empty a fraction of time smaller than 1/n.
A simple heuristics for this statement is the following. The time a particles takes to escape the
slow site is, at least, an exponential random variable of parameter g(n). If a random variable has
exponential distribution of parameter λ, its expectation is 1/λ. Hence, the time average that a
trapped particle takes to escape from the slow site is at least nβ/α (if its neighboring sites are
occupied, the trapped particle can spend even more time there). As time goes by, the slow site
will remain empty a fraction of time at most g(n) = αn−β . Since β > 1, this would lead to
(3.11).

Despite the simplicity of the heuristics above, it is not straightforward to transform it into
a rigorous argument. In order to prove Proposition 3.4, we will make use of attractiveness and
the knowledge on the invariant measures. For that purpose, in {0, 1}

Tn we introduce the natural
order between configurations: η ≤ ζ if and only if η(x) ≤ ζ(x) for all x ∈ Tn . A function
f : {0, 1}

Tn → R is said to be monotone if f (η) ≤ f (ζ ) whenever η ≤ ζ . This partial order is
naturally extended to the space of measures.

We write µ1 ≤st µ2 if, and only if,
f dµ1 ≤


f dµ2

for all monotone functions f . In this case, we say that µ1 is stochastically dominated from above
by µ2. The next result is well known and can found in [15] for instance.

Theorem 3.5. Let µ1 and µ2 be two probability measures on {0, 1}
Tn . The statements below are

equivalent:

(1) µ1 ≤st µ2;
(2) There exists a probability measure µ̄ on {0, 1}

Tn × {0, 1}
Tn such that its first and second

marginals are µ1 and µ2, respectively, and µ̄ is “concentrated above the diagonal”, which
means

µ̄

(η, ζ ) : η ≤ ζ


= 1.

Next, we construct such a measure µ̄, with the aforementioned property, by means of the
so-called graphical construction.

Fix n ∈ N. For each site x of Tn , we associate two Poisson point processes N n,−
x and N n,+

x ,
all of them being independent. The parameters of those Poisson process agree with the Fig. 1. In
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other words, the parameter of N n,−
x and of N n,+

x is one for all x ∈ Tn , except for x = 0, for
which the parameter of N n,−

0 and N n,+
0 is equal to g(n).

Given an initial configuration of particles η ∈ {0, 1}
Tn and the “toss” of those Poisson

processes, the dynamics will be the following. At a time arrival of some Poisson process, let
us say, a time arrival of N n,−

x , if there is a particle at the site x , and there is no particle at the site
x − 1, the particle at x moves to x − 1. The analogous happens with respect to a Poisson process
of type N n,+

x , in which the movement (if possible) is from x to x + 1. This construction yields
the same Markov process previously defined via the generator given in (2.1).

Consider now two probability measures µ1 and µ2 in {0, 1}
Tn such that µ1 ≤st µ2. By

Theorem 3.5, there exists a measure µ̄ on {0, 1}
Tn × {0, 1}

Tn concentrated above the diagonal,
as it is stated there. Evolving a configuration (η1, η2), chosen by µ̄, by the same set of Poisson
point processes described above, we are lead to η1

t ≤ η2
t , for any future time t > 0. A stochastic

process enjoying this property of preserving the partial order is said to be attractive. See Liggett’s
book [15] for more details on the subject.

Notice that the specific value of g(n) does not play any role in the argument above. In resume,
we can say that the defect does not destroy attractiveness.

Having established attractiveness of the exclusion process with a slow site we make the
following observation. Once Theorem 2.2 is true for initial measures µn conditioned to have a
particle at the origin, the statement will remain in force for initial measures µn . This is explained
as follows.

By attractiveness, we can construct both processes (the one starting from µn and the one
starting from µn conditioned to have a particle at the origin) in such a way that these processes
will differ at most at one site, for any later time t . Therefore, the empirical measures (3.1) for
each process will have the same limit in distribution.

Without loss of generality, we assume henceforth that there is a particle at the origin at the
initial time.

Proof of Proposition 3.4. Since we have assumed γ (x) ≥ ζ > 0, for all x ∈ T, since there is a
particle at the origin and since µn is a product measure, we can find p > 0 small enough such
that µn ≥st νp, for any n ∈ N.

Fix ε > 0. By attractiveness,

Pµn


η· :

n

t

 t

0
ηs(0) ds > ε


≥ Pp


η· :

n

t

 t

0
ηs(0) ds > ε


,

which in turn implies

Pµn


η· :

n

t

 t

0
(1 − ηs(0)) ds > ε


≤ Pp


η· :

n

t

 t

0
(1 − ηs(0)) ds > ε


.

By Chebyshev’s inequality and Fubini’s Theorem,

Pp


η· :

n

t

 t

0
(1 − ηs(0)) ds > ε


≤

n

ε
Ep

1
t

 t

0
(1 − ηs(0)) ds


=

n

ε


1 −

1
t

 t

0
Ep[ηs(0)] ds


.

Since

νp{η ; η(0) = 1} =

p
g(n)

(1 − p) +
p

g(n)

,
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we obtain that

Pµn


η· :

n

t

 t

0
(1 − ηs(0)) ds > ε


≤

n

ε


1 −

p
g(n)

(1 − p) +
p

g(n)


,

finishing the proof since g(n) = αn−β , β > 1. �

3.6. Hydrodynamic limit for g(n) = αn−β

Recall that we have denoted ⌊εn⌋, the integer part of εn, simply by εn. Define the right average
at 1 ∈ Tn , and the left average at −1 ∈ Tn by

ηεn,R(1) :=
1
εn

εn
y=1

η(y) and ηεn,L(−1) :=
1
εn

n−1
y=n−εn

η(y), (3.12)

respectively. Notice that none of these sums involve the occupation at the slow site 0 ∈ Tn .

Proposition 3.6. For any t > 0,

lim sup
ε↓0

lim sup
n→∞

Eµn

 t

0


ηs(1) − ηεn, R

s (1)


ds
  = 0

and

lim sup
ε↓0

lim sup
n→∞

Eµn

 t

0


ηs(−1) − ηεn, L

s (−1)


ds
  = 0.

The last result says that we can replace the occupation at the neighboring sites of the slow site
by their averages in closed boxes, provided that these boxes do not cross the slow site. This kind
of argument appears often in the literature and can be found, for example, in [14].

Proof. We treat the case x = +1, the case x = −1 being analogous. From Jensen’s inequality
and the definition of the entropy, for any N > 0, the expectation appearing in the statement of
this proposition is bounded from above by

H(µn|νp)

Nn
+

1
Nn

log Ep


exp


N n

 t

0
{ηs(1) − ηεn, R

s (1)} ds


. (3.13)

By Proposition 3.2, H(µn|νp) ≤ K0 n, hence the term on the left hand side of last expression is
bounded from above by K0/N . Now, we bound the remaining term. Since e|x |

≤ ex
+ e−x and

lim sup
n

1
n

log(an + bn) = max


lim sup
n

1
n

log(an), lim sup
n

1
n

log(bn)


, (3.14)

we can remove the modulus inside the exponential. Moreover, by the Feynman–Kac formula3

the term on the right hand side of (3.13) is less than or equal to

t sup
f density


{η(1) − ηεn, R

s (1)} f (η)νp(dη) − n Dn(


f )


ds.

3 See, for example, Lemma A1.7.2 of [13].
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Notice that the expression above does not depend on N . We claim now that, for any density f ,
{η(1) − ηεn, R

s (1)} f (η)νp(dη) ≤ 2ε + n Dn(


f ).

Since N is arbitrary large, once we prove this claim the proof will be finished. By the definition
in (3.12),

{η(1) − ηεn, R
s (1)} f (η)νp(dη) =

 
1
εn

εn
y=1

(η(1) − η(y))


f (η) νp(dη).

Writing η(x) − η(y) as a telescopic sum, the right hand side of above can be rewritten as 
1
εn

εn
y=1

y−1
z=1

(η(z) − η(z + 1))


f (η) νp(dη).

Rewriting the expression above as twice the half and making the transformation η → ηz,z+1 (for
which the probability νp is invariant) it becomes

1
2εn

εn
y=1

y−1
z=1


{η(z) − η(z + 1)}( f (η) − f (ηz,z+1)) νp(dη).

By (a − b) = (
√

a −
√

b)(
√

a +
√

b) and Cauchy–Schwarz’s inequality, we bound the previous
expression from above by

1
2εn

εn
y=1

y−1
z=1

A


{η(z) − η(z + 1)}2


f (η) +


f (ηz,z+1)

2
νp(dη)

+
1

2εn

εn
y=1

y−1
z=1

1
A

 
f (η) −


f (ηz,z+1)

2
νp(dη),

for any A > 0. Since f is a density and recalling (3.7), the expression above is bounded by
A−1Dn( f ) + 2Aεn. Choosing A = 1/n we achieve the claim, concluding the proof. �

Proof of Proposition 3.1 for g(n) = αn−β , α > 0, β > 1. Again, let Q∗ be the weak limit of
some convergent subsequence {Qn j

µn j
} j∈N of the sequence {Qn

µn
}n∈N and to keep notation simple,

denote this subsequence by {Qn
µn

}n∈N. Recall that by Proposition 3.3, the probability measure Q∗

is concentrated on trajectories π(t, du) = ρ(t, u)du such that ρ(t, u) ∈ L2(0, T ; H1). By the
notion of trace in Sobolev spaces, the integrals t

0
ρ(s, 0) ds and

 t

0
ρ(s, 1) ds (3.15)

are well defined and are finite. See [5] for the properties of Sobolev spaces. More than that, since
the Sobolev space in one dimension is composed of functions which are absolutely continuous,
ρ has indeed left and right limits at zero.

Our goal here is to conclude that ρ is a weak solution of the partial differential equation (2.6).
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For this purpose, let H ∈ C2
[0, 1]. Notice that, if H is seen as a function in the torus, H is

possibly discontinuous at zero. We impose that H(0) = 0. We claim that

Q∗


π : ⟨ρt , H⟩ − ⟨ρ0, H⟩ −

 t

0
⟨ρs, ∂

2
u H⟩ ds

−

 t

0


ρs(0) ∂u H(0) − ρs(1) ∂u H(1)


ds = 0, ∀ t ∈ [0, T ]


= 1. (3.16)

To prove this, it suffices to show that

Q∗


π : sup

0≤t≤T

⟨ρt , H⟩ − ⟨ρ0, H⟩ −

 t

0
⟨ρs, ∂

2
u H⟩ ds

−

 t

0


ρs(0) ∂u H(0) − ρs(1) ∂u H(1)


ds

 > δ


= 0,

for any δ > 0. Since the integrals in (3.15) are not defined in the whole Skorohod space
D([0, T ], M), we cannot apply Portmanteau’s Theorem yet.

For that purpose, let ιε(u) = ε−11(0,ε](u). Adding and subtracting the convolution of ρ(t, u)

with ιε at the boundaries, we bound the previous probability by the sum of

Q∗


π : sup

0≤t≤T

⟨ρt , H⟩ − ⟨ρ0, H⟩ −

 t

0
⟨ρs, ∂

2
u H⟩ ds

−

 t

0
(ρs ∗ ιε)(0) ∂u H(0) ds +

 t

0
(ρs ∗ ιε)(1 − ε) ∂u H(1) ds

 > δ/2


(3.17)

and

Q∗


π : sup

0≤t≤T

 t

0
(ρs ∗ ιε)(0) ∂u H(0) ds −

 t

0
(ρs ∗ ιε)(1 − ε) ∂u H(1) ds

−

 t

0


ρs(0) ∂u H(0) ds +

 t

0
ρs(1) ∂u H(1)


ds

 > δ/2

.

Since ρ has left and right side limits, taking ε small, the previous probability goes to zero, as
n → ∞. It remains to bound (3.17). By Portmanteau’s Theorem and since there is at most one
particle per site, (3.17) is bounded from above by

lim sup
n→∞

Qn
µn


π : sup

0≤t≤T

⟨πn
t , H⟩ − ⟨πn

0 , H⟩ −

 t

0
⟨πn

s , ∂2
u H⟩ ds

−

 t

0
⟨πn

t , ε−11(0,ε]⟩ ∂u H(0) ds +

 t

0
⟨πn

t , ε−11(1−ε,1]⟩ ∂u H(1) ds
 > δ/2


. (3.18)

Noticing the identities

ηεn,R
s (1) = ⟨πn

s , ε−11(0,ε]⟩ and ηεn,L
s (−1) = ⟨πn

s , ε−11(1−ε,1]⟩,

we can rewrite (3.18) as

lim sup
n→∞

Pµn


η : sup

0≤t≤T

⟨πn
t , H⟩ − ⟨πn

0 , H⟩ −

 t

0
⟨πn

s , ∂2
u H⟩ ds

−

 t

0
ηεn,R

s (1) ∂u H(0) ds +

 t

0
ηεn,L

s (−1) ∂u H(1) ds
 > δ/2


.
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Recalling Proposition 3.6, in order to prove that the limit above is equal to zero, it is enough to
show that the limit below is null:

lim sup
n→∞

Pµn


η : sup

0≤t≤T

⟨πn
t , H⟩ − ⟨πn

0 , H⟩ −

 t

0
⟨πn

s , ∂2
u H⟩ ds

−

 t

0
ηs(1) ∂u H(0) ds +

 t

0
ηs(−1) ∂u H(1) ds

 > δ/2

.

Adding and subtracting n2 Ln⟨πn
s , H⟩, the previous expression is bounded from above by the

sum of

lim sup
n→∞

Pµn


sup

0≤t≤T

⟨πn
t , H⟩ − ⟨πn

0 , H⟩ −

 t

0
n2 Ln⟨πn

s , H⟩ ds
 > δ/4


(3.19)

and

lim sup
n→∞

Pµn


sup

0≤t≤T

 t

0
n2 Ln⟨πn

s , H⟩ ds −

 t

0
⟨πn

s , ∂2
u H⟩ ds

−

 t

0
ηs(1) ∂u H(0) ds +

 t

0
ηs(−1) ∂u H(1) ds

 > δ/4

. (3.20)

As can be easily verified, by the imposed conditions on the test function H , the quadratic
variation of the martingale Mn

t (H) given in (3.2) goes to zero, as n → ∞. Therefore, by Doob’s
inequality, (3.19) is null.

It remains to show that (3.20) also vanishes. Recall (3.6) for n2 Ln⟨πn
s , H⟩. Let us examine

its terms. The first term in the sum (3.6) is

n


x∈Tn\{0}


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


ηs(x),

which we split into the sum of

n


x∈Tn\{−1,0,1}


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


ηs(x) (3.21)

and

n


H


2
n


− 2H


1
n


ηs(1) + n


H


−1
n


− 2H


−2
n


ηs(−1). (3.22)

The difference between (3.21) and

⟨πn
s , ∂2

u H⟩ =
1
n


x∈Tn

∂2
u H

 x

n


ηs(x)

in bounded (in modulus) by cH /n, because H ∈ C2
[0, 1], where cH > 0 is a constant depending

only on H . The second term in the sum (3.6) is

n1−β


H


1
n


+ H


−1
n


− 2H


0
n


ηs(0)
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which converges to zero as n → ∞, because β > 1. The last term in (3.6) is

n(1 − g(n))


H


−1
n


− H


0
n


ηs(0) ηs(−1)

+


H


1
n


− H


0
n


ηs(0) ηs(1)


,

which can be rewritten as the sum of

n(1 − g(n))


H


−1
n


− H


0
n


ηs(−1) +


H


1
n


− H


0
n


ηs(1)


(3.23)

and

n(ηs(0) − 1)(1 − g(n))


H


−1
n


− H


0
n


ηs(−1)

+


H


1
n


− H


0
n


ηs(1)


.

By Proposition 3.4, the time integral of the last term in the previous expression converges to

zero in probability, as n → ∞. Since H


0
n


= 0 and β > 1, the expression (3.22) plus the

expression (3.23) is equal to

n


H


2
n


− H


1
n


ηs(1) + n


H


−1
n


− H


−2
n


ηs(−1),

plus an error of order n1−β . The expression above is, asymptotically in n, the same as

ηs(1) ∂u H(0) − ηs(−1) ∂u H(1),

whose time integral cancels with the remaining time integrals of (3.20) and therefore proves that
(3.20) vanishes. This concludes the claim (3.16).

Now, let {Hi }i≥1 be a countable dense set of functions on C2
[0, 1], with respect to the norm

∥H∥∞ + ∥∂u H∥∞ + ∥∂2
u H∥∞. Since (3.16) is true for each one of these functions Hi , we can

extend (3.16) for all functions H ∈ C2
[0, 1] simultaneously by intersecting a countable number

of sets of probability one. This proves that Q∗ is concentrated on weak solutions of (2.6). Since
there exists only one weak solution of (2.6), it means that Q∗ is equal to the aforementioned
probability measure Q. Invoking the tightness that we have proved in Section 3.1, we conclude
that the entire sequence {Qn

µn
}n∈N converges to Q, as n → ∞. �

4. Equilibrium density fluctuations

In this section we prove Theorem 2.10. Recall that here we take the process evolving on Z
and recall also (2.10). By Dynkin’s formula,

Mn
t (H) := Y n

t (H) − Y n
0 (H) −

 t

0
n2Ln Y n

s (H) ds, (4.1)

is a martingale with respect to the natural filtration Ft := σ(ηs : s ≤ t). Besides that,
Mn

t (H)
2

−

 t

0


n2Ln


Y n

t (H)
2

− 2 Y n
s (H) n2Ln Y n

s (H)


ds, (4.2)
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is also a martingale with respect to the same filtration. By

I n
t (H) =

 t

0
n2Ln Y n

s (H) ds

we denote the integral part in (4.1). First we observe that the expression
x∈Z


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


p

is well defined since H decays fast and is equal to zero. Analogously to (3.6), some direct
calculations then yield

n2Ln Y n
s (H) = n3/2


x≠−1,0,1


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


η̄s(x)

+ n3/2


H


2
n


+ H


0
n


− 2H


1
n


η̄s(1)

+ n3/2


H


−2
n


+ H


0
n


− 2H


−1
n


η̄s(−1)

+ n3/2(1 − g(n))


H


1
n


− H


0
n


ηs(0)ηs(1)

+


H


−1
n


− H


0
n


ηs(0)ηs(−1)


+ n3/2g(n)


H


1
n


+ H


−1
n


− 2H


0
n


ηs(0) + Θ(n, p, H), (4.3)

where η̄s(x) = η(x) − m p(x) is the centered occupation variable, as in (2.10) and

Θ(n, p, H) = −n3/2


H


1
n


+ H


−1
n


− 2H


0
n


p.

The next two propositions are direct calculations very similar to [8], and for this reason their
proofs are omitted.

Proposition 4.1. Consider g(n) = 1 + o(1) and H ∈ S(R). In this case,

lim
n→∞

Ep


Mn

t (H)
2


= 2 t χ(p)∥∇ H∥

2
L2(R)

and

lim sup
n→∞

Ep


I n

t (H)
2


≤ 80 t χ(p)∥∇ H∥

2
L2(R)

.

Proposition 4.2. Consider g(n) = αn−β , α > 0, β > 1, and H ∈ SNeu(R). In this case,

lim
n→∞

Ep


Mn

t (H)
2

= 2 t χ(p)∥∇Neu H∥
2
L2(R)

and

lim sup
n→∞

Ep


I n

t (H)
2


≤ 80 t χ(p)∥∇Neu H∥

2
L2(R)

.
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The next result is concerned with convergence at initial time, for either case of the function
g(n).

Proposition 4.3. {Y n
0 }n∈N converges in distribution to Y0, as n → ∞, where Y0 is a Gaussian

field with mean zero and covariance given by (2.14).

Mutatis mutandis, the same proof of [8, Prop. 3.2] applies and is suppressed here.

4.1. Tightness

Here we prove tightness of the process {Y n
t ; t ∈ [0, T ]}n∈N in both cases of g(n). First we

notice that by Mitoma’s criterion [16] and the fact that S(R) and SNeu(R) are Fréchet spaces, it
is enough to prove tightness of the sequence of real-valued processes {Y n

t (H); t ∈ [0, T ]}n∈N,
where H ∈ S(R) if we consider g(n) = 1+o(1), and H ∈ SNeu(R) if we consider g(n) = αn−β ,
α > 0, β > 1.

In order to prove tightness of {Y n
t (H) : 0 ≤ t ≤ T }n∈N, we shall prove tightness of each term

in the formula (4.1).
Fix a test function H belonging to the respective space for each case of g(n). By (4.1), it is

enough to prove tightness of the stochastic processes {Y n
0 (H)}n∈N, {I n

t (H); t ∈ [0, T ]}n∈N, and
{Mn

t (H); t ∈ [0, T ]}n∈N.
By Proposition 4.3 we have convergence at initial time, hence {Y n

0 (H)}n∈N is obviously tight.
To show tightness of the remaining real-valued processes we use the Aldous criterion:

Proposition 4.4 (Aldous’ Criterion). A sequence {xn
t ; t ∈ [0, T ]}n∈N of real-valued processes

is tight with respect to the Skorohod topology of D([0, T ], R) if:

(i) limA→+∞ lim supn→+∞ P


sup0≤t≤T |xn
t | > A


= 0,

(ii) for any ε > 0, limδ→0 lim supn→+∞ supλ≤δ supτ∈TT
P(|xn

τ+λ − xn
τ | > ε) = 0,

where TT is the set of stopping times bounded by T .

For the martingale term, the claim (i) of Aldous’ criterion is achieved by an application of
Doob’s inequality together with Proposition 4.1 or Proposition 4.2 (depending on the chosen g).

By Proposition 4.1 or Proposition 4.2, the claim (i) of Aldous’ criterion can be easily checked
for the integral term. It remains to check (ii). Fix a stopping time τ ∈ TT and suppose that
g(n) = 1 + o(1). By Chebyshev’s inequality,

Pp
Mn

τ+λ(H) − Mn
τ (H)

 > ε


≤
1

ε2 Ep


Mn
τ+λ(H) − Mn

τ (H)
2

.

Thus, by Proposition 4.1,

lim sup
n→∞

Pp
Mn

τ+λ(H) − Mn
τ (H)

 > ε


≤
1

ε2 2χ(p) λ∥∇ H∥
2
L2(R)

≤
1

ε2 2χ(p) δ∥∇ H∥
2
L2(R)

,

which vanishes as δ → 0. Similarly,

Pp
I n

τ+λ(H) − I n
τ (H)

 > ε


≤
1

ε2 Ep


I n
τ+λ(H) − I n

τ (H)
2

.
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Again by Proposition 4.1, we obtain

lim sup
n→∞

Pp
I n

τ+λ(H) − I n
τ (H)

 > ε


≤
80t

ε2 δ χ(p)∥∇ H∥
2
L2(R)

,

which vanishes as δ → 0.
The proof in the case g(n) = αn−β is analogous (invoking is this case Proposition 4.2) and

for this reason will be omitted. This finishes the proof of tightness.

4.2. Characterization of limit points for g(n) = 1 + o(1)

We shall prove that any limit of {Y n
t (H)}n∈N is concentrated on solutions of the martingale

problem described in Proposition 2.8, with H ∈ S(R). Suppose that {Y n
t }n∈N converges along

a subsequence to Yt . In slight abuse of notation, we denote this convergent subsequence also by
{Y n

t }n∈N.
In this case H ∈ S(R) is smooth, hence we haven2


H


x + 1

n


+ H


x − 1

n


− 2H

 x

n


− 1H(x)

 ≤
cH

n
.

A similar analysis to the one presented in (4.3) for the hydrodynamic limit implies that

Mn
t (H) := Y n

t (H) − Y n
0 (H) −

 t

0
Y n

s (1H) ds + e(n),

where the error function e(n) is bounded, in modulus, by cn−1/2. Since we are supposing that
{Y n

t }n∈N converges, we conclude that {Mn
t (H)}n∈N converges.

By similar arguments to those presented in [8], we know that the sequence of martingales
{Mn

t (H)}n∈N is uniformly integrable. This implies that the limit of {Mn
t (H)}n∈N, which

we denote by Mt (H), is again a martingale. By Proposition 4.1, its quadratic variation is
2χ(p) t ∥∇ H∥

2
L2(R)

. Now, Proposition 2.8 finishes the characterization of limit points in this
case.

4.3. Characterization of limit points for g(n) = αn−β

We shall prove in this case that any limit of {Y n
t (H)}n∈N with H ∈ SNeu(R) is a solution of

the martingale problem described in Proposition 2.9.
In this situation, there is no analogous result of Proposition 3.4. The key ingredient here will

be the following tricky lemma:

Lemma 4.5. Let g(n) = αn−β and x = ±1. For some constant C > 0 not depending on n the
estimates

Ep

 t

0


n3/2ηs(x)(1 − ηs(0)) − αn

3
2 −βηs(0)(1 − ηs(x))


ds

2


≤ Cn1−β ,

hold.

Proof. We prove only the inequality for x = 1, the case x = −1 is completely analogous. By
the Kipnis–Varadhan inequality (see [13, Proposition A1.6.1]), the expectation

Ep

 t

0


n3/2ηs(1)(1 − ηs(0)) − αn

3
2 −βηs(0)(1 − ηs(1))


ds

2
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is less or equal than

t sup
f ∈L2(νp)


n3/2η(1)(1 − η(0)) f (η)νp(dη)

− αn
3
2 −β


η(0)(1 − η(1)) f (η)νp(dη) − n2Dn( f )


where Dn is the Dirichlet form4 given in (3.7). In the first integral inside the supremum above
we perform the change of variables η → η1,0. Thus, the expression above can be rewritten as

t sup
f ∈L2(νp)


n3/2η(0)(1 − η(1)) f (η0,1)νp(dη0,1)

− αn
3
2 −β


η(0)(1 − η(1)) f (η)νp(dη) − n2Dn( f )


. (4.4)

Now, from (2.3) we have that

νp({η
0,1

})

νp({η})
=


m p(0)

p

η(1) p

m p(0)

η(0) 1 − p

1 − m p(0)

1−η(0)1 − m p(0)

1 − p

1−η(1)

from where we get
n3/2η(0)(1 − η(1)) f (η0,1)νp(dη0,1) =


αn

3
2 −βη(0)(1 − η(1)) f (η1,0)νp(dη),

and therefore (4.4) is the same as

t sup
f ∈L2(νp)


αn

3
2 −β


η(0)(1 − η(1))


f (η1,0) − f (η)


νp(dη) − n2Dn( f )


.

By the inequality xy ≤
Ax2

2 +
y2

2A , ∀A > 0, the expression above is smaller than

t sup
f ∈L2(νp)

 Aαn
3
2 −β

2


η(0)(1 − η(1))


f (η1,0) − f (η)

2
νp(dη)

+
αn

3
2 −β

2A


η(0)(1 − η(1))νp(dη) − n2Dn( f )


for any A > 0. Picking A =

√
n the last expression becomes equal to

t sup
f ∈L2(νp)

αn2−β

2


η(0)(1 − η(1))


f (η1,0) − f (η)

2
νp(dη)

+
αn1−β

2


η(0)(1 − η(1))νp(dη) − n2Dn( f )


.

4 Notice that here the Dirichlet form is evaluated at f instead of
√

f as in Section 3.3.
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Since the Dirichlet form (3.7) is a sum of positive terms, and since the first term above is exactly
the first term in n2Dn( f ), we conclude that the expression above is less or equal than

tαn1−β

2


η(0)(1 − η(1))νp(dη) = Cn1−β ,

for C > 0 not depending on n. This concludes the proof. �

Let us proceed to the characterization of limit points in this case. We begin with an observation
that will strongly simplify the analysis.

First of all, we notice that Mn
t (H) defined in (4.1) is a martingale where H ∈ SNeu(R) does

not play any special role, except the decay at infinity to make the sum well defined. In fact, we
can take H = Hn depending on n. We will do that in the following way. For each n ∈ N, we
impose Hn

 x
n


= H

 x
n


for all x ≠ 0 while for x = 0 we impose

Hn


0
n


=

1
2


H


1
n


+ H


−1
n


. (4.5)

In this way, we obtain

Hn


1
n


+ Hn


−1
n


− 2Hn


0
n


= 0, ∀n ∈ N (4.6)

which cancels two parcels in (4.3). To simplify notation we will write H instead of Hn , keeping
in mind (4.6).

We examine carefully all the terms in (4.3). By the discussion above, both Θ(n, p, H) and

n3/2g(n)


H


1
n


+ H


−1
n


− 2H


0
n


η(0) (4.7)

vanish. Let us see the remaining terms. The first sum on the right hand side of (4.3) is equal to

1
√

n


x≠−1,0,1

∆Neu H
 x

n


η̄s(x)

plus an error of order O(n−1/2). Since the side derivatives of H ∈ SNeu(R) at zero vanish, we
also have that the second and third terms in (4.3) are equal to

n3/2


H


0
n


− H


1
n


η̄s(1) + n3/2


H


0
n


− H


−1
n


η̄s(−1)

plus another error of order O(n−1/2). By (4.5), the expression above can be rewritten as

n3/2

2


H


−1
n


− H


1
n


η(1) +

n3/2

2


H


1
n


− H


−1
n


η(−1).

Last expression together with the remaining two parcels in (4.3) gives us the sum of

n3/2

2


H


−1
n


− H


1
n


η(1) +

n3/2

2
(1 − g(n))

×


H


1
n


− H


−1
n


ηs(0)ηs(1) (4.8)
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and

n3/2

2


H


1
n


− H


−1
n


η(−1) +

n3/2

2
(1 − g(n))

×


H


−1
n


− H


1
n


ηs(0)ηs(−1). (4.9)

At this point, we will use (4.7). Regardless of the fact that (4.7) is null, we can split it in two

parts, namely n3/2g(n)


H


1
n


− H


0
n


η(0) and n3/2g(n)


H


−1
n


− H


0
n


η(0). The first

one we add to (4.8) and the second one to (4.9). Recalling (4.5), it gives us the sum of

n3/2

2


H


−1
n


− H


1
n


ηs(1)(1 − ηs(0)) − g(n)ηs(0)(1 − ηs(1))


(4.10)

and

n3/2

2


H


1
n


− H


−1
n


ηs(−1)(1 − ηs(0)) − g(n)ηs(0)(1 − ηs(−1))


. (4.11)

Lemma 4.5 asserts that the time integrals of expressions (4.10) and (4.11) are asymptotically
negligible in L2.

For H ∈ SNeu(R), the sequence of martingales {Mn
t (H)}n∈N presented in (4.1) is uniformly

integrable. This implies that the L2-limit of {Mn
t (H)}n∈N, denoted by Mt (H), is again a

martingale which quadratic variation given 2χ(p) t ∥∇Neu H∥
2
L2(R)

, assured by Proposition 4.1.

The entire previous discussion on the integral part of Mn
t (H) lead us to conclude that Mt (H)

satisfies

Mt (H) := Yt (H) − Y0(H) −

 t

0
Ys(∆Neu H) ds,

which concludes the characterization of limit points by Proposition 2.9.

5. Open questions and conjectures

As presented in this paper, the critical defect strength and behavior at the critical point remains
open in sense that it is not clear what should be the limit for 0 ≤ β ≤ 1 when g(n) = αn−β ,
α > 0. One conceivable scenario is that for any β > 0, both hydrodynamic limit and fluctuations
would be driven by a disconnect behavior corresponding to Neumann boundary conditions,
meaning that the critical point would be βc = 0.

Our guess instead is that the correct critical point should be achieved at β = 1, much more
close to the scenario of [6] where a slow bond is considered instead of a slow site. The physical
intuition behind the dynamical phase transition taking place at β = 1 is the fact that, in a large but
finite system and at large but finite times, the particle current, which is of diffusive origin, will be
of order 1/n everywhere (with some space-dependent amplitude that depends on the initial state)
before equilibrium is reached. However, a weak site with β > 1 cannot allow such a current
to flow and hence it acts like a total blockage corresponding to Neumann boundary conditions.
On the other hand, a defect rate with β < 1 does not make a current of order 1/n impossible,
corresponding to a macroscopically irrelevant local perturbation of the particle system.
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Fig. 2. Exclusion process with three neighboring slow bonds.

Specifically we conjecture that the behavior for β = 1 should be described by the partial
differential equation

∂tρ(t, u) = ∂2
uρ(t, u), t ≥ 0, u ∈ (0, 1),

∂uρ(t, 0+) = ∂uρ(t, 0−) =
α

2
(ρ(t, 0+) − ρ(t, 0−)), t ≥ 0,

ρ(0, u) = ρ0(u), u ∈ (0, 1),

(5.1)

where 0+ and 0− denotes right and left side limits, respectively. This conjecture is motivated by
the observation that the equation above is the hydrodynamic equation of two neighboring slow
bonds at β = 1, a claim made precise in next section. Thus our conjecture in the slow site setting
is the following.

• For α > 0 and 0 ≤ β < 1, the hydrodynamic limit and the equilibrium fluctuations for
g(n) = αn−β should be driven by the heat equation periodic boundary conditions, achieving
the same limits we have obtained for g(n) = 1 + o(n).

• For α > 0 and β = 1, the hydrodynamic limit and the equilibrium fluctuations for
g(n) = αn−β should be driven by (5.1) in the same sense of [6,8,7] with the correction
of 1/2 in the boundary condition.

6. Hydrodynamics of the SSEP with k neighboring slow bonds

Here we characterize the hydrodynamic behavior of the SSEP with k neighboring slow bonds,
see Fig. 2 for an illustration of the rates in the case k = 3. This is an additional result we append
in order to support the conjecture presented in Section 5. We point out that, for the regime β = 1,
the result presented here is not a corollary of [6,8], since here we consider k neighboring slow
bonds, while the mentioned references considered macroscopically separated slow bonds.

The notation and topology issues will be the same as those we have considered in this paper.
Fix k a positive integer. The SSEP with k neighboring slow bonds is the Markov process on
{0, 1}

Tn defined through the generator

Ln f (η) =

k−1
x=0

α

nβ
[ f (ηx,x+1) − f (η)] +


x∈Tn

x∉{0,...,k−1}

[ f (ηx,x+1) − f (η)]

acting on functions f : {0, 1}
Tn → R.

Definition 6. Let ρ0 : T → [0, 1] be a measurable function. We say that ρ is a weak solution of
the heat equation with Robin’s boundary conditions given by

∂tρ(t, u) = ∂2
uρ(t, u), t ≥ 0, u ∈ (0, 1),

∂uρ(t, 0+) = ∂uρ(t, 0−) =
α

k
(ρ(t, 0+) − ρ(t, 0−)), t ≥ 0,

ρ(0, u) = γ (u), u ∈ (0, 1),

(6.1)
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if ρ belongs to L2(0, T ; H1) and for all t ∈ [0, T ] and for all H ∈ C2
[0, 1], such that

∂u H(0+) = ∂u H(0−) =
α

k
(H(0+) − H(0−)), (6.2)

holds that

⟨ρt , H⟩ − ⟨γ, H⟩ −

 t

0


ρs, ∂2

u H

ds = 0.

Proposition 6.1. For each n ∈ N, let µn be a Bernoulli product measure on {0, 1}
Tn as in (2.8).

Then, for any t > 0, for every δ > 0 and every H ∈ C(T), it holds that

lim
n→∞

Pµn


η· :

1
n


x∈Tn

H
 x

n


ηt (x) −


T

H(u) ρ(t, u)du
 > δ


= 0, (6.3)

where

• if 0 ≤ β < 1, the function ρ is the unique weak solution of (2.4);
• if β = 1, the function ρ is the unique weak solution of (6.1);
• if β > 1, the function ρ is the unique weak solution of (2.6).

Proof. As usual, the proof consists in proving tightness of the process induced by the empirical
measure, plus the uniqueness of the limit points.

Tightness can be handled in same way as we have done in Section 3.1. Characterization of the
limit points for the cases β ∈ [0, 1) and β ∈ (1, ∞) follows closely the steps of [6,8]. The case
β = 1 is tricky and described in more detail below.

Let Gn : {
0
n , 1

n , . . . , n−1
n } → R be some function depending on n. Performing elementary

computations, n2Ln⟨πn
s , Gn⟩ can be rewritten as the sum of

n


Gn


k + 1

n


− Gn


k

n


+ αn1−β


Gn


k − 1

n


− Gn


k

n


ηs(k)

+

k−1
j=1


αn1−β


Gn


j + 1

n


− Gn


j

n



+ αn1−β


Gn


j − 1

n


− Gn


j

n


ηs( j)

+


αn1−β


Gn


1
n


− Gn


0
n


+ n


Gn


−1
n


− Gn


0
n


ηs(0) (6.4)

and

n

x∈Tn

x∉{0,...,k}


Gn


x + 1

n


+ Gn


x − 1

n


− 2Gn

 x

n


ηs(x). (6.5)

Let H ∈ C2
[0, 1] satisfying (6.2). We define Gn by

Gn

 x

n


=


H

 x

n


, if x ∈ {k + 1, . . . , n − 1},

H(0−) +
x

k
(H(0+) − H(0−)), if x ∈ {0, . . . , k}.

(6.6)
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In other words, the function Gn is equal to H outside the region where the slow bonds are
contained. At the sites {0, 1, . . . , k}, the function Gn is a linear interpolation of H(0+) and
H(0−).

Since H ∈ C2
[0, 1], (6.5) is close to ⟨πn

s , ∂2
u H⟩. We claim now that (6.4) converges to zero,

as n → ∞. First, notice that (6.6) tells us that

k−1
j=1


αn1−β


Gn


j + 1

n


− Gn


j

n


+ αn1−β


Gn


j − 1

n


− Gn


j

n


ηs( j)

is null. Let us analyze the remaining terms in (6.4). Since β = 1, the term

n


Gn


k + 1

n


− Gn


k

n


+ αn1−β


Gn


k − 1

n


− Gn


k

n


converges to

∂u H(0+) +
α

k


H(0−) − H(0+)


,

which vanishes by (6.2). The same analysis assures that

αn1−β


Gn


1
n


− Gn


0
n


+ n


Gn


−1
n


− Gn


0
n


converges to zero as n → ∞. Provided by this claim and similar arguments of those in Section 5
one can conclude the proof. �
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