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Abstract This is a short survey on recent results obtained by the authors on
dynamical phase transitions of interacting particle systems. We consider par-
ticle systems with exclusion dynamics, but it is conjectured that our results
should hold for a general class of particle systems. The parameter giving rise
to the phase transition is the “slowness” of a single bond in the discrete lat-
tice. The phase transition is verified not only in the hydrodynamics, but also
in the fluctuations of the density, the current and the tagged particle. More-
over, we found a phase transition in the continuum, that is, at the level of the
hydrodynamic equations, in agreement with the dynamical phase transition
for the particle systems.
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1 Introduction

Amajor question in Statistical Mechanics is how to perform the limit from the
discrete to the continuum in such a way that the discretization of the system
really gives the correct description of the continuum? This question gave rise
to plenty of famous models and results, both in Physics and Mathematics.
In the particular context of particle systems and hydrodynamic limits, the
passage of the discrete to the continuum is a consequence of rescaling both
time and space. The discrete system consists in a collection of particles with a
stochastic dynamics. Depending on the prescribed interaction we are lead to
different limits. Therefore the random interaction of the microscopic system
is connected to the macroscopic phenomena to be explored.

As the main reference on the subject, we cite the classical book [9], which
treats the limit of several particle systems, as the zero range process, the
symmetric and asymmetric exclusion process, the generalized K-exclusion
process, independent random walks and some of their scaling limits. We point
out some of the possible natures of those scaling limits.

The scaling limit for the time-trajectory of the spatial density of particles
is the so-called hydrodynamic limit of the system, which is a Law of Large
Numbers (L.L.N.) type-theorem. The scaling limit for how the discrete system
oscillates around its hydrodynamic limit is usually referred as fluctuations,
being a Central Limit Theorem (C.L.T.). The study of the rate at which
the probability of observing the discrete deviates from the expected limit
decreases (roughly, exponentially fast) is the theme of the Large Deviations
Principle.

Recently, the scientific community has given attention to particle systems
in random and non-homogeneous media, and several approaches have been
developed in order to study the problem. In the papers [6, 8, 10], the authors
considered random walks in a random environment, as for example the case
where the environment is driven by an α-subordinator. These works inspired
a series of other papers in the context of particle systems, as [1, 5, 7, 11].
The work in [5] was related to the hydrodynamic limit of exclusion processes
driven by a general increasing function W , not necessarily a toss of an α-
subordinator. This work, in its hand, inspired the work [2], which dealt with
the case W being the distribution function of the Lebesgue measure plus a
delta of Dirac measure, being the mass of the delta of Dirac dependent on the
scale parameter. The model of [2] can be described as follows. To each site
of the discrete torus with n sites, it is allowed to have at most one particle.
Each bond has a Poisson clock which is independent of the clocks on other
sites. When the Poisson clock of a bond rings, the occupation at the vertices
of this bond are interchanged. All the Poisson clocks have parameter one,
except one special clock, which has parameter given by αn−β , with α > 0
and β ∈ [0,∞]. This “slower” clock, makes the passage of particles across the
corresponding bond more difficult, and for that reason that bond coined the
name slow bond.



Slowed exclusion process: hydrodynamics, fluctuations and phase transitions 3

In the scenario of [2], according to the value of β, three different limits
for the time trajectory of the spatial density of particles were obtained. If
β ∈ [0, 1) the limit is given by the weak solution of the periodic heat equation,
meaning that the slow bond is not slow enough to originate any change in
the continuum. If β = 1, the limit is given by the weak solution of the heat
equation with some Robin’s boundary conditions representing the Fick’s Law
of passage of particles. And if β ∈ (1,∞], the limit is given by the weak
solution of the heat equation with Neumann’s boundary conditions, meaning
that the slow bond in this regime of β is slow enough to divide the space in
the continuum.

Such dynamical phase transition (based on the strength of a single slow
bond) is not limited to the hydrodynamic limit. In the ensuing papers [3, 4],
some other dynamical phase transitions were proved. In [3], it was shown
that the solutions of the three partial differential equations aforementioned
are continuously related to a given boundary’s parameter, indicating a dy-
namical phase transition also at the macroscopic level. In [4], it was proved
that the equilibrium fluctuations of the exclusion process with a slow bond
evolving on an infinite volume, is also characterized by the same regimes of β.
As before, in each case, namely for β ∈ [0, 1), β = 1 or β ∈ (1,∞], the limit
fluctuations of the system are driven by three Ornstein-Uhlenbeck processes.
As a consequence of the density fluctuations, we have also obtained the cor-
responding phase transition for the current of particles through a fixed bond
and for a tagged particle.

In these notes we make a synthesis of last results, all of them related
to dynamic phase transitions that occur when the strength of a particular
slow bond varies. We notice that the theme is not finished at all. There are
a lot of particle systems to examine and different limits to prove. As an
example, in the cited papers [2, 3, 4], the underlying particle systems are
only of exclusion constrain and with symmetric dynamics. Therefore, one
can exploit other dynamics and obtain other partial differential equations of
physical interest. Moreover, even for the symmetric exclusion dynamics with
a slow bond, the full scenario for the scaling limits is not closed yet: a Large
Deviations Principle is still open. This is subject for future work.

Here follows an outline of these notes. In Section 2 we present the ex-
clusion process with a slow bond. Section 3 is devoted to the scaling limits
at the level of hydrodynamics. We present the hydrodynamic equations, the
hydrodynamic limit and the phase transition for the corresponding partial
differential equations. In Section 4 we present the scaling limits at the level
of fluctuations. We present the Ornstein-Uhlenbeck processes and the fluctu-
ations of the density of particles. We finish in Section 5 with a description of
the fluctuations of the current of particles and of a tagged particle.
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2 Exclusion processes

We are concerned with the study of dynamical phase transitions in par-
ticle systems with a single slow bond. Before discussing what we mean by
a dynamical phase transition we describe our particle systems. We consider
the simple exclusion process (SEP) with a single slow bond. Probabilistic
speaking, the SEP is a Markov process that we denote by {ηt : t ≥ 0} and
we consider it evolving on the state space Ω := {0, 1}Tn , where Tn = Z/nZ
is the one-dimensional discrete torus with n points. A configuration of this
Markov process is denoted by η and it consists in a vector with n compo-
nents, each one taking the value 0 or 1. The physical interpretation is that
whenever η(x) = 1 we say that the site x is occupied, otherwise it is empty.

The microscopic dynamics of this process can be informally described as
follows. At each bond {x, x + 1} of Tn, there is an exponential clock of pa-
rameter anx,x+1. When this clock rings, the value of η at the vertices of this
bond are interchanged. We choose the parameters of the clocks in all bonds
equal to 1, except at the bond {−1, 0}, in such a way that the passage of
particles across this bond is more difficult with respect to other bonds. For
β ∈ [0,∞] and α > 0, we consider

anx,x+1 =

{
αn−β , if x = −1 ,
1, otherwise .

This means that particles cross all the bonds at rate 1, except the bond
{−1, 0}, whose dynamics is slowed down as αn−β , with α > 0 and β ∈ [0,∞],
see the figure below.

Fig. 1 SEP with a slow bond with vertices {−1, 0}, whose jump rates are given by αn−β .

Black balls represent occupied sites.

The dynamics described above can be characterized via the infinitesimal
generator, which we denote by Ln and is given on functions f : Ω → R as

Lnf(η) =
∑
x∈Tn

anx,x+1

[
f(ηx,x+1)− f(η)

]
,

where ηx,x+1 is the configuration obtained from η by exchanging the occu-
pation variables η(x) and η(x+ 1), namely
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ηx,x+1(y) =

 η(x+ 1), if y = x ,
η(x), if y = x+ 1 ,
η(y), otherwise .

Let ρ ∈ [0, 1] and denote the Bernoulli product measure, defined in Ω and
with parameter ρ, by

νnρ {η ∈ Ω : η(x) = 1, for any x ∈ A} = ρ#A,

for all set A ⊂ Tn. Here #A denotes the cardinality of the set A. It is well
known that the measures νnρ are invariant for the dynamics introduced above.
Moreover, these measures are also reversible.

The trajectories of the Markov process {ηt : t ≥ 0} live on the space
D(R+, Ω), that is, the path space of càdlàg trajectories with values in Ω. For
a measure µn on Ω, we denote by Pµn the probability measure on D(R+, Ω)
induced by µn and {ηt : t ≥ 0}; and we denote by Eµn expectation with
respect to Pµn .

We notice that we do not index the Markov process, the generator nor the
measures, in β or α for simplicity of notation.

3 Hydrodynamical phase transition

The study of the hydrodynamical behavior consists in the analysis of the
time evolution of the density of particles. For that purpose we introduce the
empirical measure process as follows.

For t ∈ [0, T ], let πn
t (η, du) := πn(ηt, du) ∈ M be defined as

πn(ηt, du) = 1
n

∑
x∈Tn

ηt(x) δx/n(du) ,

where δy is the Dirac measure concentrated on y ∈ T. Above, T denotes the
one-dimensional torus and M denotes the space of positive measures on T
with total mass bounded by one, endowed with the weak topology.

The hydrodynamic limit can be stated as follows. If we assume a L.L.N.
for {πn

0 }n∈N to a limit ρ0(u)du under the initial distribution of the system,
then at any time t > 0 the L.L.N. holds for {πn

t }n∈N to a limit ρ(t, u)du under
the corresponding distribution of the system at time t. Moreover, the density
ρ(t, u) evolves according to a partial differential equation - the hydrodynamic
equation. For this model, depending on the range of the parameter β, we
obtain different hydrodynamic equations for the underlying particle system.

In the next section we describe the hydrodynamic equations we obtained
and we precise in which sense ρ(t, u) is a solution to those equations.
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3.1 Hydrodynamic equations

We start by describing the hydrodynamic equations that govern the evo-
lution of the density of particles for the models introduced above. Depending
on the range of the parameter β we obtain hydrodynamic equations which
have different behavior. More precisely, we always obtain the heat equation
but with different boundary conditions. The first hydrodynamic equation is
the heat equation with periodic boundary conditions, namely:{

∂tρ(t, u) = ∆ρ(t, u) , t ≥ 0, u ∈ T ,
ρ(0, u) = ρ0(u), u ∈ T .

(1)

In the hydrodynamic limit scenario, we obtain ρ(t, u) as a weak solution
of the corresponding hydrodynamic equation. To make this notion precise,
we introduce the following definition:

Definition 1. Let ρ0 : T → [0, 1] be a measurable function. We say that
ρ : [0, T ] × T → [0, 1] is a weak solution of the heat equation with periodic
boundary conditions given in (1) if ρ is measurable and, for any t ∈ [0, T ]
and any H ∈ C1,2([0, T ]× T),∫

T
ρ(t, u)H(t, u)du−

∫
T
ρ(0, u)H(0, u)du

−
∫ t

0

∫
T
ρ(s, u)

(
∂sH(s, u) +∆H(s, u)

)
du ds = 0 .

(2)

Above and in the sequel the space C1,2([0, T ]×T) is the space of real valued
functions defined on [0, T ]× T of class C1 in time and C2 in space.

The second equation we consider is the heat equation with a type of
Robin’s boundary conditions, that is:∂tρ(t, u) = ∆ρ(t, u) , t ≥ 0, u ∈ (0, 1) ,

∂uρ(t, 0) = ∂uρ(t, 1) = α(ρ(t, 0)− ρ(t, 1)) , t ≥ 0,
ρ(0, u) = ρ0(u), u ∈ (0, 1) .

(3)

To introduce the notion of weak solution of this equation we need to recall
the notion of Sobolev’s spaces.

Definition 2. LetH1 be the set of all locally summable functions ζ : (0, 1) →
R such that there exists a function ∂uζ ∈ L2(0, 1) satisfying∫

T
∂uG(u)ζ(u) du = −

∫
T
G(u)∂uζ(u) du ,
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for all G ∈ C∞(0, 1) with compact support. Let L2(0, T ;H1) be the space of
all measurable functions ξ : [0, T ] → H1 such that

∥ξ∥2L2(0,T ;H1) :=

∫ T

0

(
∥ζ∥2L2[0,1] + ∥∂uζ∥2L2[0,1]

)
dt < ∞ .

Above ∥ · ∥L2[0,1] denotes the L2-norm in [0, 1].

Definition 3. Let ρ0 : T → [0, 1] be a measurable function. We say that
ρ : [0, T ] × T → [0, 1] is a weak solution of the heat equation with Robin’s
boundary conditions given in (3) if ρ ∈ L2(0, T ;H1) and for all t ∈ [0, T ] and
for all H ∈ C1,2([0, T ]× [0, 1]),∫

T
ρ(t, u)H(t, u)du−

∫
T
ρ(0, u)H(0, u)du

−
∫ t

0

∫
T
ρ(s, u)

(
∂sH(s, u) +∆H(s, u)

)
du ds

−
∫ t

0

(ρs(0)∂uHs(0)− ρs(1)∂uHs(1)) ds

+

∫ t

0

α(ρs(0)− ρs(1))(Hs(0)−Hs(1)) ds = 0 .

(4)

The last equation we consider is the heat equation with Neumann’s boundary
conditions given by:∂tρ(t, u) = ∆ρ(t, u) , t ≥ 0, u ∈ (0, 1) ,

∂uρ(t, 0) = ∂uρ(t, 1) = 0 , t ≥ 0 ,
ρ(0, u) = ρ0(u), u ∈ (0, 1) .

(5)

Definition 4. Let ρ0 : T → [0, 1] be a measurable function. We say that
ρ : [0, T ]×T → [0, 1] is a weak solution of the heat equation with Neumann’s
boundary conditions if ρ ∈ L2(0, T ;H1) and for all t ∈ [0, T ] and for all
H ∈ C1,2([0, T ]× [0, 1]),∫

T
ρ(t, u)H(t, u)du−

∫
T
ρ(0, u)H(0, u)du

−
∫ t

0

∫
T
ρ(s, u)

(
∂sH(s, u) +∆H(s, u)

)
du ds

−
∫ t

0

(ρs(0)∂uHs(0)− ρs(1)∂uHs(1)) ds = 0 .

(6)

Our argument to prove the hydrodynamic limit is standard in the theory
of stochastic processes and goes through a tightness argument for {πn

t }n∈N,
which means relatively compactness of {πn

t }n∈N. Therefore, there exists a
limit point. To have uniqueness of the limit point of {πn

t }n∈N it is sufficient
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to prove uniqueness of the weak solution of the corresponding hydrodynamic
equation. Then, it follows the convergence of the whole sequence {πn

t }n∈N to
the unique limit point. For tightness issues we refer the reader to [2] and the
uniqueness of the weak solution is stated below.

Proposition 1. Let ρ0 : T → [0, 1] be a measurable function. There exists a
unique weak solution of the heat equation with periodic boundary conditions
given in (1) and a unique weak solution of the heat equation with Neumann’s
boundary conditions given in (5). Moreover, for each α > 0, there exists a
unique weak solution of the heat equation with Robin’s boundary conditions
given in (3).

3.2 Hydrodynamic limit

Returning to our discussion on the validity of the hydrodynamic limit, we
introduce the set of initial measures for which we deduce the result.

Definition 5. Let ρ0 : T → [0, 1] be a measurable function. A sequence
of probability measures {µn}n∈N on Ω is said to be associated to a profile
ρ0 : T → [0, 1] if, for every δ > 0 and every continuous function H : T → R,
it holds that

lim
n→∞

µn

{
η :

∣∣∣ 1n ∑
x∈Tn

H( xn ) η(x)−
∫
T
H(u) ρ0(u)du

∣∣∣ > δ
}

= 0 . (7)

One could ask about the existence of a measure associated to the profile
ρ0 : T → [0, 1]. For instance, we can consider a Bernoulli product measure in
Ω with marginal at η(x) given by µn{η ∈ Ω : η(x) = 1} = ρ0(x/n).

For these processes we obtained in [2, 3] that:

Theorem 1. [L.L.N. for the density of particles] Fix β ∈ [0,∞] and ρ0 :
T → [0, 1] a measurable function. Let {µn}n∈N be a sequence of probability
measures on Ω associated to ρ0. Then, for any t ∈ [0, T ], for every δ > 0 and
every continuous function H : T → R:

lim
n→∞

Pµn

{
η. :

∣∣∣ 1n ∑
x∈Tn

H
(
x
n

)
ηt(x)−

∫
T
H(u)ρ(t, u)du

∣∣∣ > δ
}

= 0 ,

where:

• for β ∈ [0, 1), ρ(t, ·) is the unique weak solution of (1);
• for β = 1, ρ(t, ·) is the unique weak solution of (3);
• for β ∈ (1,∞], ρ(t, ·) is the unique weak solution of (5).

All equations have the same initial condition ρ0 : T → [0, 1].
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3.3 Phase transition for the hydrodynamic equations

A puzzling question is whether there is a similar phase transition as de-
scribed above, but at the macroscopic level. More precisely, does the unique
weak solution of the heat equation with Robin’s boundary conditions, that
we denote by ρα, converge in any sense to the weak solution of the heat equa-
tion with periodic boundary conditions or to the weak solution of the heat
equation with Neumann’s boundary conditions? In [3] we gave an affirmative
answer to this question. We proved that ρα converges to the unique weak
solution of the heat equation with Neumann’s boundary conditions, when
α goes to zero and to the unique weak solution of the heat equation with
periodic boundary conditions, when α goes to infinity. This is the content of
the next theorem.

This result is concerned only with the partial differential equations, having
at principle nothing to do with the underlying particle systems. Nevertheless,
our approach of proof is based on energy estimates coming from these particle
systems.

Theorem 2. [Phase transition for the heat equation with Robin’s boundary
conditions] For α > 0, let ρα : [0, T ] × [0, 1] → [0, 1] be the unique weak
solution of the heat equation with Robin’s boundary conditions:∂tρ

α(t, u) = ∆ρα(t, u) , t ≥ 0, u ∈ (0, 1) ,
∂uρ

α(t, 0) = ∂uρ
α(t, 1) = α(ρα(t, 0)− ρα(t, 1)) , t ≥ 0 ,

ρα(0, u) = ρ0(u), u ∈ (0, 1) .

Then, limα→0 ρ
α = ρ0, in L2([0, T ]× [0, 1]), where ρ0 : [0, T ]× [0, 1] → [0, 1]

is the unique weak solution of the heat equation with Neumann’s boundary
conditions 

∂tρ
0(t, u) = ∆ρ0(t, u) , t ≥ 0, u ∈ (0, 1) ,

∂uρ
0(t, 0) = ∂uρ

0(t, 1) = 0 , t ≥ 0 ,

ρ0(0, u) = ρ0(u) , u ∈ (0, 1)

and limα→∞ ρα = ρ∞, in L2([0, T ] × [0, 1]), where ρ∞ : [0, T ] × [0, 1] →
[0, 1] is the unique weak solution of the heat equation with periodic boundary
conditions {

∂tρ
∞(t, u) = ∆ρ∞(t, u) , t ≥ 0, u ∈ T ,

ρ∞(0, u) = ρ0(u) , u ∈ T .
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4 Equilibrium fluctuations

Above we obtained a L.L.N. for the empirical measure considering the
process starting from a measure which is associated to a profile ρ0 : T → [0, 1].
The natural question that follows is: what are the fluctuations around this
“mean” profile? Do we have a C.L.T. for the density of particles? Under
what set of initial measures? In the next lines we answer this question for a
particular set of initial distributions, namely for the invariant measures νnρ .
In case of non-invariant measures the problem is still open.

In this case we consider the process evolving on Z, being its state space
{0, 1}Z. To define properly our results, we fix ρ ∈ [0, 1], and we introduce the
density fluctuation field as follows. For t ∈ [0, T ], let

Yn
t (η, du) =

√
nπn

tn2(η, du)− Eνn
ρ
[
√
nπn

tn2(η, du)],

where x runs through Z in the definition of πn
t (η, du) and Eνn

ρ
denotes ex-

pectation with respect to νnρ . Then, for any function H : R → R we have
that ∫

R
H(u)Yn

t (η, du) =
1√
n

∑
x∈Z

H
(x
n

)
[ηtn2(x)− ρ].

By computing the characteristic function of Yn
0 , we obtain that {Yn

0}n∈N
converges as n goes to ∞ to a mean zero gaussian process Y0. More precisely,
for any H, Y0(H) is a gaussian random variable with mean zero and variance
given by

ρ(1− ρ)

∫
R
(H(x))2dx.

Next, we are going to characterize the stochastic partial differential equations
governing the evolution of the limit points of {Yn

t }n∈N.

4.1 Ornstein-Uhlenbeck processes

In order to properly write down the stochastic partial differential equations
that we deal with, we need to introduce different sets of test functions and
two type of operators defined on these spaces.

Definition 6. Define S(R\{0}) as the space of functions H ∈ C∞(R\{0}),
that are continuous from the right at x = 0, for which

∥H∥k,ℓ := sup
x∈R\{0}

|(1 + |x|ℓ)H(k)(x)| < ∞ ,
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for all integers k, ℓ ≥ 0, and H(k)(0−) = H(k)(0+), for all k integer, k ≥ 1.

• For β ∈ [0, 1), let Sβ(R) be the subset of S(R\{0}) composed of functions
H satisfying H(0−) = H(0+) .

• For β = 1, let Sβ(R) as the subset of S(R\{0}) composed of functions H
satisfying H(1)(0+) = H(1)(0−) = α(H(0+)−H(0−)) .

• For β ∈ (1,+∞], let Sβ(R) be the subset of S(R\{0}) composed of func-
tions H satisfying H(1)(0+) = H(1)(0−) = 0 .

Above and in the sequel, H(k)(·) represents the k-th derivative of the
function H and H(0+) (resp. H(0−)) denotes the limit of H from the right
(resp. left) of 0.

Definition 7. For β ∈ [0,∞], we define the operators ∆β ,∇β : Sβ(R) →
S(R) by

∇βH(u) =

{
H(1)(u), if u ̸= 0 ,
H(1)(0+), if u = 0 ,

and

∆βH(u) =

{
H(2)(u), if u ̸= 0 ,
H(2)(0+), if u = 0 ,

which are essentially the usual derivative and the usual second derivative,
but defined in the domains Sβ(R). We have the following uniqueness result
which is a key point in our approach.

Denote by T β
t the semigroup corresponding to the partial differential equa-

tions (1), (3) or (5), if β ∈ [0, 1), if β = 1 or if β ∈ (1,∞], respectively.

Proposition 2. For each β ∈ [0,∞] and α > 0, there exists an unique ran-
dom element Y· taking values in the space C([0, T ], S′β(R)) such that:

i) For every function H ∈ Sβ(R), Mt(H) and Nt(H) given by

Mt(H) = Yt(H)− Y0(H)−
∫ t

0

Ys(∆βH)ds ,

Nt(H) =
(
Mt(H)

)2 − 2χ(ρ) t ∥∇βH∥22,β

(8)

are Ft-martingales, where Ft := σ(Ys(H); s ≤ t,H ∈ Sβ(R)), for t ∈ [0, T ].
ii)Y0 is a mean zero gaussian field with covariance given on G,H ∈ Sβ(R)

as

E
[
Y0(G)Y0(H)

]
= χ(ρ)

∫
R
G(u)H(u)du . (9)

Moreover, for each H ∈ Sβ(R), the stochastic process {Yt(H) ; t ≥ 0} is gaus-
sian, being the distribution of Yt(H) conditionally to Fs, for s < t, gaussian

of mean Ys(T
β
t−sH) and variance

∫ t−s

0
∥∇βT

β
r H∥22,β dr.

Above and in the sequel S′β(R) denotes the space of bounded linear function-
als f : Sβ(R) → R and D([0, T ], S′β(R)) (resp. C([0, T ], S′β(R))) is the space
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of càdlàg (resp. continuous) S′β(R) valued functions endowed with the Sko-

horod topology. Also ∥H∥22,β = ∥H∥22 + (H(0))21{β=1}, where ∥ · ∥2 denotes

the L2-norm in R. We call to Y· the generalized Ornstein-Uhlenbeck process
of characteristic operators ∆β and ∇β and it is the formal solution of the
following equation

dYt = ∆βYtdt+
√
2χ(ρ)∇βdWt ,

where Wt is a space-time white noise of unit variance.

4.2 Central Limit Theorem

We are in position to state the equilibrium fluctuations for the density of
particles. Notice that our initial distribution is νnρ , an invariant measure.

Theorem 3 (C.L.T. for the density of particles). The sequence of
processes {Yn

t }n∈N converges in distribution, as n goes to ∞, with respect
to the Skorohod topology of D([0, T ], S′β(R)) to a gaussian process Yt in
C([0, T ], S′β(R)), which is the formal solution of the Ornstein-Uhlenbeck equa-
tion given by

dYt = ∆βYtdt+
√
2χ(ρ)∇βdWt . (10)

5 Current and Tagged particle fluctuations

In this section we are still restricted to the invariant state νnρ and for that
purpose we fix a density ρ from now on up to the rest of these notes.

5.1 The current

Now, we introduce the notion of current of particles through a fixed bond
{x, x + 1}. For a bond ex := {x, x + 1}, denote by Jn

ex(t) the current of
particles over the bond ex, that is Jn

ex(t) counts the total number of jumps
from the site x to the site x + 1 minus the total number of jumps from the
site x + 1 to the site x in the time interval [0, tn2], see the figure below.
More generally, to each point macroscopic point u ∈ R we can define the
current through its associated microscopic bond of vertices {⌊un⌋− 1, ⌊un⌋},
as Jn

u (t) := Jn
e⌊un⌋−1

(t) . Here ⌊un⌋ denotes the biggest integer smaller or equal

to un. As a consequence of the C.L.T. for the density of particles, namely of
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+

-
Fig. 2 Current at the bond {−1, 0} of the SEP with a slow bond. Every time a particle

jumps from −1 to 0 (0 to −1) the current increases (decreases) by one.

Theorem 3, it is simple to derive the C.L.T. for the current of particles which
we enounce as follows.

Theorem 4 (C.L.T. for the current of particles). Under Pνn
ρ
, for every

t ≥ 0 and every u ∈ R,
Jn
u (t)√
n

−−−−→
n→∞

Ju(t)

in the sense of finite-dimensional distributions, where Ju(t) is a gaussian
process with mean zero and variance given by

• for β ∈ [0, 1), Eνn
ρ
[(Ju(t))

2] = 2χ(ρ)
√

t
π , that is Ju(t) is a fractional

Brownian Motion of Hurst exponent 1/4;

• for β = 1, Eνn
ρ
[(Ju(t))

2] = 2χ(ρ)
(√

t
π + Φ2t(2u+4αt) e4αu+4α2t−Φ2t(2u)

2α

)
;

• for β ∈ (1,+∞], Eνn
ρ
[(Ju(t))

2] = 2χ(ρ)
(√

t
π

[
1− e−u2/t

]
+ 2uΦ2t(2u)

)
,

where

Φ2t(x) :=

∫ +∞

x

e−u2/4t

√
4πt

du .

It worth to remark the variance at u = 0, corresponding to the current of
particles through the slow bond e−1. If β ∈ [0, 1), the variance corresponds to
the one of a fractional Brownian Motion of Hurst exponent 1/4. If β ∈ (1,∞],
the variance equals to zero as expected. This is a consequence of having
Neumann’s boundary conditions at x = 0 which turns it into an isolated
boundary. And for β = 1, we obtain a family of gaussian processes indexed
in α interpolating the two aforementioned processes.

Corollary 1. For β = 1, denote the limit, as n → ∞, of Jn
u (t)/

√
n by Jα

u (t).
Then for every t ≥ 0 and every u ∈ R,

Jα
u (t) −−−−−→

α→+∞
J∞
u (t),

where J∞
u (t) is the fractional Brownian Motion with Hurst exponent 1/4 and

Jα
u (t) −−−→

α→0
J0
u(t) ,
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where J0
u(t) is the mean zero gaussian process with variance given by

Eνn
ρ
[(Ju(t))

2] = 2χ(ρ)
(√

t
π

[
1− e−u2/t

]
+ 2uΦ2t(2u)

)
.

The convergence is in the sense of finite dimensional distributions.

5.2 Tagged particle fluctuations

Our last goal is to present the asymptotic behavior of a tagged particle
in the system. The dynamic of this tagged particle is no longer Markovian,
since its behavior is influenced by the presence of other particles in the sys-
tem. Nevertheless, we can relate the position of the tagged particle with the
current and the density of particles, and from the previous results we obtain
information about the behavior of this particle.

Suppose to start the system from a configuration with a particle at the site
⌊un⌋ and in all other sites suppose that the configuration is distributed ac-
cording to νnρ . In other words, this means that we consider the Markov process
{ηt : t ≥ 0} starting from the measure νnρ conditioned to have a particle at the
site ⌊un⌋, that we denote by νn,uρ . That is, νu,nρ (·) := νnρ ( · |ηtn2(⌊un⌋) = 1).

Fig. 3 The tagged particle of the SEP with a slow bond. At initial time, the tagged
particle is at the site 0.

We notice that the previous results were obtained considering the process
starting from νnρ . In order to be able to use them, we couple the process
starting from νn,uρ and starting from νnρ , in such a way that both processes
differ at most by one site at any given time. This allow us to derive the same
statements of Theorems 3 and 4 for the starting measure νn,uρ .

Now, let Xn
u (t) be the position at the time tn2 of a tagged particle initial

at the site ⌊un⌋. Since our study is restricted to the one dimensional setting,
particles do preserve their order, and it is simple to check that

{Xn
u (t) ≥ k} =

{
Jn
u (t) ≥

⌊un⌋+k−1∑
x=⌊un⌋

ηtn2(x)
}
.
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We explain briefly how to get the previous equality. Suppose for simplicity
that u = 0, so that we start the system with the tagged particle at the
origin. If this particle is, at time tn2, at the right hand side of n, then all
the particles that jumped from −1 to 0 and did not jump backwards, are
somewhere at the sites {0, 1, . . . , Xn

u (t)}. It follows that the current through
the bond {−1, 0} has to be greater or equal than the density of particles in
{0, . . . , n}. Reasoning similarly, we get the equality between those events.

Finally, last relation together with Theorem 4, implies the following result.

Theorem 5 (C.L.T. for a tagged particle). Under Pνu
ρ
, for all β ∈ [0,∞],

every u ∈ R and t ≥ 0
Xn

u (t)√
n

−−−−→
t→+∞

Xu(t)

in the sense of finite-dimensional distributions, where Xu(t) = Ju(t)/ρ in
law and Ju(t) is the same as in Theorem 4. In particular, the variance of the
process Xu(t) is given by

• for β ∈ [0, 1), Eνn
ρ
[(Xu(t))

2] = 2
χ(ρ)

ρ2

√
t
π , that is Xu(t) is a fractional

Brownian Motion of Hurst exponent 1/4;

• for β = 1, Eνn
ρ
[(Xu(t))

2] = 2
χ(ρ)

ρ2

(√
t
π + Φ2t(2u+4αt) e4αu+4α2t

2α

)
;

• for β ∈ (1,+∞], Eνn
ρ
[(Xu(t))

2] = 2
χ(ρ)

ρ2

(√
t
π

[
1− e−u2/t

]
+2uΦ2t(2u)

)
.
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sil” provided by CAPES (Brazil).
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