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Resumo

Apresentamos aqui um princı́pio de grandes desvios com a norma do supremo
para o limite de altas densidades de um sistema de passeios aleatórios sobrepostos
e independentes com uma dinâmica de nascimento e morte, que exibe como função
taxa uma versão semi-linearizada da função taxa de [11], que lidava com grandes
desvios dos processos de exclusão sobrepostos com uma dinâmica de nascimento e
morte. Devido à força natural da topologia do conjunto, a prova do limite inferior
se torna muito simples em comparação com as provas padrões do limite inferior do
ponto de vista hidrodinâmico (como em [12], [Capı́tulo 10], por exemplo), além do
próprio resultado, que pode ter aplicações devido à ampla ocorrência de equações
diferenciais parciais de reação-difusão. A principal novidade do presente trabalho
consiste em fornecer uma estratégia para estender a abordagem original de alta
densidade (como em [1, 3, 4, 8, 13, 14], por exemplo), originalmente desenvolvido
para sistemas de difusão simétrica, para sistemas fracamente assimétricos.

Palavras-chave: Reação-difusão, grandes desvios, dinâmica de nascimento-
morte.
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Abstract

We present here a full large deviations principle in the supremum norm for
the high density limit of a system of independent random walks superposed with
a birth-and-death dynamics, which exhibits as a rate function a semi-linearised
version of the rate function of [11], which dealt with large deviations of exclusion
processes superposed with birth-and-death dynamics. Due to the strong nature
of the topological setting, the proof of the lower bound turns to be very simple in
comparison with the standard proofs of lower bound in the hydrodynamic point
of view (as in [12, Chapter 10], for instance), aside of the result itself, which may
have many applications due the broad occurrence of reaction-diffusion partial dif-
ferential equations. The main novelty of the present work consists in providing
a strategy to extend the original high density approach (as in [1, 3, 4, 8, 13, 14]
for instance), originally developed to systems of symmetric diffusion, to weakly
asymmetric systems.

Keywords: Reaction-diffusion, large deviations, birth-and-death dynamics.
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Chapter 1

Introduction

Since the early works of Dobrushin (see [5]) and the seminal paper of Guo, Pa-
panicolau and Varadhan (see [9]), an entire theory on scaling limits of interacting
particle systems has been established, see the reference book [12]. Such a subject
has its great importance in the context of statistical mechanics, in understanding
the behaviour of macroscopic systems by means of its microscopic interactions, but
has also many connections with partial differential equations, probability theory
and even combinatorics (see [16]).

At same epoch the hydrodynamic limit (see [12] on the subject) started to be
developed, some works were published in a close topic sometimes called high den-
sity limit, also in the context of scaling limit of interacting particle systems, as
[1, 3, 4, 13, 14] for instance. The main difference between the hydrodynamic limit
and the high density limit can be resumed as follows: while in hydrodynamic limit
space and time are rescaled in order to obtain a macroscopic limit, in the high den-
sity limit, space, time and the initial quantity of particles per site are rescaled, see
the survey [7] for a discussion about. Of course, each context requires a different
topology setting. Whilst the hydrodynamic limit usually deals with convergence of
measures, Schwartz distributions and Sobolev norms, the high density limit deals
usually with Sobolev norms, but also allows the supremum norm set-up, see [4].

In opposition to the hydrodynamic limit, which has been continuously studied
since its beginning, the high density limit felt in disuse for many years. Its was
probably due to the following reason: the powerful Varadhan’s Entropy Method
allowed the study of systems of non-linear diffusion1, while the high density limit
approach was restricted to systems of linear diffusion. Basically, independent ran-
dom walks with some superposed dynamics, as the birth-and-death dynamics, for
example. Actually, the high density approach is heavily based on the smoothing
properties of the discrete heat kernel, which explains this restriction to indepen-
dent random walks.

On the other hand, despite its symmetric nature, the high density limit offers
some particular perspectives, which would be difficult to be followed in the hydro-
dynamic setting. For example, in [8], it was considered a system exhibiting explo-
sion in finite time. Since the hydrodynamic limit techniques are mainly based on

1As well as some other methods, as the Yau’s Relative Entropy Method, see [12].
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averages, the system of [8] would thea hard topic to be analysed in the hydrody-
namic point of view since there is no finite expectation of standard observables. In
the intersection, some recent works also rescale the initial quantity of particles per
site, which may be interpreted as a kind of high density limit, as [10] for example.

The main result we present here is a large deviations principle for the law of
large numbers of [4], which consists in the high density limit in the supremum
norm for a system of independent random walks on the discrete torus superposed
with a birth and death dynamics. Actually, following some observations of [8],
weaking some assumptions on the birth and and death rates, we consider a slightly
more general system than that in [4], but we may say that the model we consider is
essentially that one of [4]. As usual in large deviations, an important ingredient of
the proof is a law of large numbers for a class of perturbations of the original model,
which is an interesting result by itself. Since the high density limit was originally
designated for systems of symmetric diffusion (independent random walks super-
posed with some extra dynamics), we can say that the more challenging step in our
proof is to reach the law of large numbers for the perturbed processes, which are
weakly asymmetric systems. Following some remarks from [8] we were also able
to assure that the law of large numbers for the perturbed processes takes place in
the almost sure sense, which is an important feature.

The rate function we obtain in the large deviations is a spatially linearised
version of the rate function of [11], which dealt with large deviations of a superpo-
sition of Glauber and Kawasaki dynamics. However, this resemblance is limited to
this observation: since [11] works on the hydrodynamic limit and we work on the
high density limit, the technical challenges we face here are very distinct of those
in [11].

Due to the strong topological nature of the supremum norm and the obtained
almost sure convergence, some usual difficulties when proving large deviations for
the hydrodynamic point of view do not appear in this setting, considerably simpli-
fying the upper and lower bound arguments, except when achieving the exponen-
tial tightness, which demanded some extra effort. For example, no superexponen-
tial replacement lemmas are required here. On the other hand, as aforementioned,
the convergence of the perturbed processes, which is in general a standard proce-
dure in the hydrodynamic limit (for the exclusion process for instance, see [12,
Chapter 10]), here is an obstacle to be overcome.

Apart of the result itself, which is relevant due the broad occurrence of reaction-
diffusion partial differential equations and the importance of the supremum norm
for simulations, the main novel of the present work consists in providing a strat-
egy to extend the original high density approach (as in [1, 3, 4, 8, 13, 14]), origi-
nally developed to systems of symmetric diffusion, to spatially weakly asymmetric
systems. Before explaining our strategy for weakly asymmetric systems, let us
hand-waving resume the way in [4] of proving the high density limit.

The first ingredient is to show that the solution of a spatially discrete version of
the limit PDE is close to the solution of the limiting PDE. After that, we must study
the martingales associated to the projection at each site. Due to the scale setting
of parameters, in opposition to the Entropy Method, showing that the quadratic
variation of those martingales vanish does not suffice to lead to the convergence
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in the supremum norm. From these martingales and the presence of the discrete
Laplacian, we obtain integral equations via the Duhamel’s Principle, which involve
the heat semigroup instead of the Laplacian operator. Then, by providing some
suitable estimates on the random term of these equations and recalling smoothing
properties of the heat semi-group allows to get the desired convergence in the
supremum norm.

For our work we use this same process to get the high density limit for the
weakly asymmetric systems, however, as has been said, the asymmetry in the sys-
tem causes some difficulties. Having the high density limit for a class of perturbed
processes we proceed with the large deviations principle. Before we need to find
the expression for the Radon-Nikodym derivative between the original process and
the perturbed process. Knowing the existence of the Radon-Nikodyn derivative we
can prove the large deviations upper bound, here arises the need to show that the
sequence of measures of process is exponentially tight. For the lower bound, we
separated in two cases. First, we consider that profiles, which are a solution of
the differential equation considering the perturbed process, are smooth functions.
Finally, we will consider more general profiles but include additional assumptions
on the process birth and death rates and about the parameter that indicates the
initial mean number of particles.

This work is divided into three parts. In the Chapter 2, we will present the
models of interacting particle systems with reaction and diffusion used here and
enunciate out the main results of this work. In the Chapter 3, we will do all the
necessary steps to prove the high desity limit for the perturbed process and finally,
in the Chapter 4, we find the Radon-Nikodym derivative and we demonstrate the
large deviations principle.
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Chapter 2

Models and Results

In this chapter we will present the model of interacting particle systems with
reaction and diffusion and the result made in [4, 8] that motivated this work. Next,
we will present the model for the perturbed process which will be a modification
of the original model and the high density limit for perturbed process. Finally, we
will state the principle of large deviations obtained for this model.

2.1 Introduction
We fix some notation that will be used at various moments throughout the text.

Consider by g = O(f) we mean that the function g is bounded in modulus by a
constant times the function f , where the constant may change from line to line,
or even may represent different functions in the same formula, but it will never
depend on the parameter of interest. The spatial first and second derivates on
space will be denoted by ∇ and ∆. However, sometimes we will write also ∂x and
∂2
x instead of ∇ and ∆ to better differentiate it of discrete derivatives to be later

defined.

Denote by TN = Z/(NZ) the discrete torus with N sites and by T denote the
continuous torus R/Z = [0, 1), where the point 0 is identified with the point 1.
Let b, d : R+ → R+ be two Lipschitz functions such that d(0) = 0. Throughout
this paper, ` = `(N) will be a parameter meaning the initial average number of
particles at any given site of TN . We define below the continuous-time Markov
chain

(
η(t)

)
t≥0

with state space ΩN = NTN by(
η(t)

)
t≥0

=
(
η1(t), . . . , ηN(t)

)
t≥0

,

where ηk(t) means the quantity of particles at the site k at the time t. The jump
rates of the process will be given by:
• a particle jumps from k for k + 1 at rate N2ηk, as in Figure 2.1 ,
• a particle jumps from k for k − 1 at rate N2ηk, as in Figure 2.2,
• a new particle is created at site k at rate `b(`−1ηk), as in Figure 2.3,
• a particle is destroyed at site k at rate `d(`−1ηk), if ηk ≥ 1, as in Figure 2.4.

4



kN = 0 k + 1 · · ·· · · N
η(t)

Figure 2.1: Particle jump to the right.

k − 1N = 0 k · · ·· · · N
η(t)

Figure 2.2: Particle jump to the left.

kN = 0 · · · · · · N
η(t−)

kN = 0 · · ·· · · N
η(t)

Figure 2.3: Particle is created.

kN = 0 · · · · · · N
η(t−)

kN = 0 · · ·· · · N
η(t)

Figure 2.4: Particle is destroyed.

Throughout the entire thesis, it is fixed a time-horizon T > 0. Let D
(
[0, T ],ΩN

)
be the path space of càdlàg time trajectories taking values on ΩN . For short, we
will denote this space just by DΩN . Given a measure µN on ΩN , denote by PN the
probability measure on DΩN induced by the initial state µN and the Markov process
{η(t) : t ≥ 0}. Expectation with respect to PN will be denoted by EN . The object
we are interested in this thesis is the spatial density XN of particles, defined as
follows. For k ∈ TN , denote xk = k/N . Let

XN(t, xk) = `−1ηk(t) (2.1)

and, for xk < x < xk+1, we define XN(t, x) by means of a linear interpolation, i.e.

XN(t, x) = (Nx− k)XN(t, xk+1) + (k + 1−Nx)XN(t, xk) . (2.2)

In [4, 8] it was essentially proved the following law of large numbers for the density
of particles.

Theorem 2.1.1 ([4, 8]). Let u(t, x) be the strong solution of the following PDE:{
∂tu = ∆u+ f(u) (t, x) ∈ [0, T ]× T ,
u(0, x) = γ(x) ≥ 0 x ∈ T , (2.3)

Let b, d : R+ → R+ be Lipschitz C1 functions with d(0) = 0 and f = b − d, and let
γ : T→ R+ be a C4 profile. Assume that

5



(1) ‖XN(0, ·)− γ(·)‖∞ → 0 almost surely;

(2) for any c > 0, ` = `(N) satisfies
∑

N≥0N
3e−c ` <∞ .

Then, for any T > 0 ,

lim
N→∞

sup
t∈[0,T ]

‖XN(t, ·)− u(t, ·)‖∞ = 0 almost surely. (2.4)

The assumption (1) above allows us to interpret the parameter ` as the initial
order of particles per site, from where comes the terminology high density limit
(see [14] for instance). In contrast with the hydrodynamic limit (see [12]), where
only time and space are rescaled, here time, space and the initial quantity of par-
ticles per site are rescaled, which permits convergence in the supremum norm.

In [4], the above result was proved under the assumption that b, d were poly-
nomial functions and the leader coefficient of f = b − d is negative, being the
convergence in probability. In [8], this result was proved the setting where b and d
were smooth but not necessarily bounded, with almost sure convergence.

The specific statement given above is a particular case of our Theorem 2.2.1
which we enunciate ahead. The subtle differences in the hypothesis will be rele-
vant when dealing with large deviations.

2.2 High density limit for a class of perturbed pro-
cesses

In the proof of large deviations, a law of large numbers for a class of perturba-
tions of the original process is naturally required, which is an interesting result
by itself. For the reaction-diffusion model we study here, inspired by the process
of [11] the perturbed process will be the following. Given H ∈ C1,2, we define the
continuous-time Markov chain

(
η(t)

)
t≥0

with state space ΩN = NTN by(
η(t)

)
t≥0

=
(
η1(t), . . . , ηN(t)

)
t≥0

,

where ηk(t) means the quantity of particles at site k at time t as before, and the
jump rates of the process are given by:
• a particle jumps from k for k + 1 with rate N2ηk exp

{
H
(
t, k+1

N

)
−H

(
t, k
N

)}
,

• a particle jumps from k for k − 1 with rate N2ηk exp
{
H
(
t, k−1

N

)
−H

(
t, k
N

)}
,

• a new particle is created at site k with rate `b(`−1ηk) exp
{
H
(
t, k
N

)}
,

• a particle is destroyed at site k with rate `d(`−1ηk) exp
{
−H

(
t, k
N

)}
, if ηk ≥ 1.

Note that this Markov chain actually depends on H. However, to not overload
notation, this dependence will be dropped. Given a measure µN on ΩN , denote by
PHN the probability measure on DΩN induced by the initial state µN and the Markov
process {η(t) : t ≥ 0} above. Expectation with respect to PHN will be denoted by EHN .
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Let ψ : [0, T ]× T→ R be the solution of the following PDE:{
∂tψ = ∂2

xψ − 2∂x
(
ψ ∂xH

)
+ eHb(ψ)− e−Hd(ψ) , (t, x) ∈ [0, T ]× T ,

ψ(0, x) = γ(x), x ∈ T.
(2.5)

Assuming that H ∈ C1,2, b, d ∈ C1 and γ is Holder continuous in T, there exists
a unique solution of the PDE (2.5), which we denote by ψ, see [15, Chapter II,
Section 2.3]. We point out that the PDE above can be understood as a linearised
version of the PDE in [11, (2.11)].

Next, we state the high density limit for the perturbed process. As before,
XN(t) = XN(t, x) is equal to ηk(t)/` for x = k/N and linearly interpolated otherwise.
Of course, this process depends on H, whose dependence is omitted. For the High
density limit for perturbed processes, we consider XN(0, ·) are random profiles for
each N ∈ N. Let µN the sequence measure that describes this initial processes.

Theorem 2.2.1 (High density limit for perturbed processes). Let b, d : R+ → R+ be
Lipschitz C1 functions with d(0) = 0, let H ∈ C1,2 and let γ : T→ R+ be a C4 profile.
Assume the following conditions:

(A1) The sequence of initial measures µN is such that

‖XN(0, ·)− γ(·)‖∞ → 0 , almost surely as N →∞ . (2.6)

(A2) The parameter ` = `(N) satisfies

N‖∂xH‖
2
∞/π

2
logN

`
→ 0 , as N →∞ . (2.7)

Then,

lim
N→∞

sup
t∈[0,T ]

‖XN(t, ·)− ψ(t, ·)‖∞ = 0 , almost surely as N →∞ ,

where ψ is the strong solution of (2.5).

Remark 2.2.2. Note that there is no further hypothesis on the sequence of initial
measures µN aside of (2.6). As an example of a sequence of initial measures, one
may consider µN as a product measure of Poisson distributions whose parameter
at the site x ∈ T is given by `γ(x/N). However, as we are interested in dynamical
large deviations, throughout the thesis we will assume that µN is a deterministic
sequence, that is, each µN is a delta of Dirac on some configuration.

Remark 2.2.3. Let us discuss the meaning of (A2). Taking `(N) = Nα with α > 0,
condition (2.7) holds once ‖∂xH‖∞ < π

√
α. This may look weird at a first glance,

but it is not completely unexpected. The role of H is to introduce an asymmetry in
the system. Since the density limit approach is heavily founded on the smoothing
properties of the discrete heat kernel (which is associated to the symmetric random
walk), it is somewhat reasonable to have a competition between the speed of `(N)
and the strength of the function H.

On the other hand, under the hypothesis ` = `(N) ≥ ecN for some constant c,
the high density limit holds for any perturbation H ∈ C1,2.

7



2.3 Large deviations results
In the present thesis we prove the large deviations principle for the law of

large numbers of Theorem 2.1.1, which we state in the sequel. Denote by C(T)
the Banach space of continuous functions H : T → R under the supremum norm
‖ · ‖∞. Denote by C1,2 def

= C1,2
(
[0, T ] × T

)
the set of functions H : [0, T ] × T → R

such that H is C2 in space and C1 in time. Let D def
= D

(
[0, T ], C(T)

)
be the Skorohod

space of càdlàg trajectories taking values on C(T). We define now the functional
JH : D→ R by

JH(u) =

∫
T

[
H(t, x)u(t, x)−H(0, x)u(0, x)

]
dx

+

∫ t

0

∫
T

[
− u(s, x)

(
∂sH(s, x) + ∆H(s, x) +

(
∇H(s, x)

)2
)

+ b
(
u(s, x)

)(
1− eH(s,x)

)
+ d
(
u(s, x)

)(
1− e−H(s,x)

)]
dx ds

(2.8)

Recalling that γ : T → R+ is the non negative C4 function which appears in in
the Theorems 2.1.1 and 2.2.1, let I : D → [0,+∞], rate function which depends on
γ, be given by

I(u) =

 sup
H∈C1,2

JH(u) , if u(0, ·) = γ(·),

+∞ , otherwise.

Initially we will prove the principle of large deviations for a subspace of
D
(
[0, T ], C(T)

)
, denoted by Dα

pert , which we define below.

Definition 2.3.1. Denote by Dα
pert ⊆ D = D

(
[0, T ], C(T)

)
the set of all profiles ψ :

[0, T ]× T→ R satisfying:
• ψ ∈ C2,3,
• ψ ≥ ε for some ε > 0,
• there exists a functionH ∈ C1,2, with ‖∂xH‖∞ ≤ π

√
α such that ψ is the solution

of (2.5).

We are in position to state the main result of this thesis. Let PN be the prob-
ability measure on the D induced by the stochastic process XN(t) defined by (2.1)
and (2.2).

Theorem 2.3.2 (Large deviations principle). Assume the hypothesis of
Theorem 2.1.1 and additionally assume that XN(0, ·) are deterministic profiles for
each N ∈ N. Let ` = `(N) = Nα for some fixed α > 0. Then,

1) For every closed set C ⊆ D,

lim sup
N→∞

1

`N
logPN(C) ≤ − inf

u∈C
I(u) . (2.9)
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2) For every open set O ⊆ D,

lim inf
N→∞

1

`N
logPN(O) ≥ − inf

u∈O∩Dαpert

I(u) . (2.10)

We note that the assumption that the initial conditions are deterministic pre-
vents the occurrence of large deviations from the initial profile, also known as stat-
ical large deviations. Our main interest here are the dynamical large deviations,
that is, the large deviations coming from the dynamics. Moreover, in the previous
result, the clearly more relevant result is the upper bound. The lower bound holds
only over sets intersected with Dα

pert , which has no explicit representation.
In the case ` = `(N) grows at least exponentially, we were able to provide a full

large deviations principle.

Theorem 2.3.3. Assume the hypothesis of Theorem 2.1.1 and additionally assume
that XN(0, ·) are deterministic profiles for each N ∈ N and b and d are concave
functions. Let ` = `(N) ≥ ecN for some constant c > 0. Then,

1) For every closed set C ⊆ D,

lim sup
N→∞

1

`N
logPN(C) ≤ − inf

u∈C
I(u) . (2.11)

2) For every open set O ⊆ D,

lim inf
N→∞

1

`N
logPN(O) ≥ − inf

u∈O
I(u) . (2.12)

9



Chapter 3

High density limit for the
perturbed process

In this chapter we will introduce the ingredients to prove Theorem 2.2.1. First,
we will do the semidiscrete approximation ψN of the PDE (2.5), which will be di-
rectly used to calculate the difference between the solution of PDE (2.5) and the
spatial density of particles XN . After that, through the infinitesimal generator
of process, we calculate the Dynkin martingale of the (perturbed) Markov pro-
cess present in Section 2.2. For this martingal and for ψN , we prove a version of
Duhamel’s principle and finally, having all these tools, prove Theorem 2.2.1 in last
section.

3.1 Semi-discrete scheme
In this section we consider a spatial discretization of the PDE (2.5), keeping

continuous the time variable. We follow the ideas used in [8]. Our goal is to prove
convergence of such spatial discretization to the solution of the partial differential
equation (2.5), which is an ingredient in the proof of the high density limit for the
perturbed process. In fact, the proof of Theorem 2.2.1 is done in two steps. First,
we prove that the solution of the PDE (2.5) is close to the solution of its spatial
discretization; then, we will prove that the (deterministic) solution of the spatial
discretization is close to the random density of particles defined by XN(t).

We denote Hk = Hk(t) = H(k/N, t), ψk = ψ(xk, t) and by SN±1 the shifts of ±N−1.
That is,

SN1 f
(
s, k

N

)
= f

(
s, k+1

N

)
and SN−1f

(
s, k

N

)
= f

(
s, k−1

N

)
.

We define the semidiscrete approximation ψN(t) =
(
ψN1 (t), . . . , ψNN (t)

)
of the PDE

(2.5) as the solution of the following system of ODE’s:
∂tψ

N
k = N2

(
ψNk+1 − 2ψNk + ψNk−1

)
−N

(
ψNk+1 − ψNk−1

)
∂xHk

−1
2

(
SN1 + SN−1 + 2

)
ψNk ∂

2
xHk + eHkb

(
ψNk
)
− e−Hkd

(
ψNk
)
, k ∈ TN ,

ψNk (0) = γ(k/N) , k ∈ TN .

(3.1)
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Proposition 3.1.1. Let ψ be the solution of (2.5) and let ψN be the solution of the
semidiscrete approximation (3.1). Then, there exists a positive constant C such that,
for every N large enough,

sup
t∈[0,T ]

max
k∈TN

∣∣ψNk (t)− ψk(t)
∣∣ ≤ CN−1 . (3.2)

To prove the result above we will need an auxiliary lemma about solutions for
the following system of ODE’s, all of them considered in the time interval [0, T ],

∂tϕk = N2
(
ϕk+1 − 2ϕk + ϕk−1

)
−N

(
ϕk+1 − ϕk−1

)
∂xHk

+C∗
(
|ϕk|+ |ϕk+1|+ |ϕk−1|+N−1

)
,

ϕk(0) = 0, k ∈ TN .

(3.3)

We say that ϕ = (ϕ1, · · · , ϕn) is supersolution of (3.3) if
∂tϕk ≥ N2

(
ϕk+1 − 2ϕk + ϕk−1

)
−N

(
ϕk+1 − ϕk−1

)
∂xHk

+C∗
(
|ϕk|+ |ϕk+1|+ |ϕk−1|+N−1

)
,

ϕk(0) ≥ 0, k ∈ TN ,

(3.4)

and we say that ϕ = (ϕ
1
, · · · , ϕ

n
) is subsolution of (3.3) if

∂tϕk ≤ N2
(
ϕ
k+1
− 2ϕ

k
+ ϕ

k−1

)
−N

(
ϕ
k+1
− ϕ

k−1

)
∂xHk

+C∗
(
|ϕ
k
|+ |ϕ

k+1
|+ |ϕ

k−1
|+N−1

)
,

ϕ
k
(0) ≤ 0, k ∈ TN .

(3.5)

Above,

C∗
def
= max

{
‖eH‖∞ · ‖b‖L, ‖e−H‖∞ · ‖d‖L, ‖∂xH‖∞, ‖∂2

xH‖∞, ‖∂xψ‖∞
}
, (3.6)

where ψ is the solution of PDE (2.5) and ‖b‖L and ‖d‖L are the Lipschitz constants
of b and d, respectively. The necessity of these notions and the definition (3.6) will
be made clear later in the proof of Proposition 3.1.1.

Lemma 3.1.2 (Principle of sub and supersolutions). Let ϕ, ϕ, ϕ be a supersolution,
a subsolution and a solution of (3.3), respectively. Then there exists N0 ∈ N such
that , for any N ≥ N0,

ϕk(t) ≥ ϕk(t) ≥ ϕ
k
(t) (3.7)

for any k ∈ TN and any t ∈ [0, T ].

Proof. We will prove only that ϕ ≥ ϕ, being the second inequality analogous. We
claim that it is enough to prove ϕ ≥ ϕ assuming strict inequalities in (3.4) and in
(3.7). In fact, assume that ϕ is a supersolution, that is, it satisfies (3.4) and define
ϕ̃(t) = ϕ(t) + εt. Hence,
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∂tϕ̃ = ∂tϕ+ ε ≥ N2(ϕk+1 − 2ϕk + ϕk−1)−N(ϕk+1 − ϕk−1)∂xHk

+ C∗
(
|ϕk|+ |ϕk+1|+ |ϕk−1|+N−1

)
+ ε

≥ N2(ϕ̃k+1 − 2ϕ̃k + ϕ̃k−1)−N(ϕ̃k+1 − ϕ̃k−1)∂xHk

+ C∗
(
|ϕ̃k|+ |ϕ̃k+1|+ |ϕ̃k−1|+N−1

)
− 3C∗tε+ ε .

Therefore, ϕ̃ is a (strictly) supersolution once −3C∗tε + ε > 0 or, equivalently, if
t < 1/(3C∗). Partitioning the time interval [0, T ] into a finite number of intervals
of length strictly smaller than 1/(3C∗) allows us to conclude that ϕ̃ is a stricly
supersolution in the time interval [0, T ]. Hence ϕ̃ > ϕ by assumption and letting
ε↘ 0 yields ϕ ≥ ϕ. This concludes the proof of the claim.

Suppose by contradiction that there is a first time t∗ and a site k ∈ TN such that
for any t < t∗, ϕk(t) > ϕk(t) and ϕj(t) > ϕj(t) for any j 6= k, and ϕk(t∗) = ϕk(t∗). In
this situation,

0 ≥ ∂tϕk(t∗)− ∂tϕk(t∗)

> N2
(
ϕk+1(t∗)− ϕk+1(t∗) + ϕk−1(t∗)− ϕk−1(t∗)

)
−N

(
ϕk+1(t∗)− ϕk+1(t∗)− ϕk−1(t∗) + ϕk−1(t∗)

)
∂xHk

+ C∗

(
|ϕk+1| − |ϕk+1|+ |ϕk−1| − |ϕk−1|

)
≥ (N2 −N∂xHk)

(
ϕk+1(t∗)− ϕk+1(t∗) + ϕk−1(t∗)− ϕk−1(t∗)

)
which is greater than zero for N large enough, leading to a contradiction and hence
concluding the proof.

Proof of Proposition 3.1.1. Our goal is to estimate |ψN(xk, t) − ψ(xk, t)|. To do this,
let us define the error function

ek = ψNk − ψk . (3.8)

Using a Taylor expansion, for k ∈ TN there exist ck ∈ (xk, xk+1) and c̃k ∈ (xk−1, xk)
such that

ψk+1 = ψk +
∂xψk
N

+
∂2
xψk

2!N2
+
∂3
xψk

3!N3
+
∂4
xψ(ck, t)

4!N4
,

ψk−1 = ψk −
∂xψk
N

+
∂2
xψk

2!N2
− ∂3

xψk
3!N3

+
∂4
xψ(c̃k, t)

4!N4
.

Adding the equations above we have that

ψk+1 + ψk−1 = 2ψk +
∂2
xψk
N2

+
ak
N4

, (3.9)

where ak = 1
4!

(
∂4
xψ(ck, t) + ∂4

xψ(c̃k, t)
)
. Since ψ is the solution of the PDE (2.5),

∂2
xψk = ∂tψk + 2∂x

(
ψk∂xHk

)
− eHkb(ψk) + e−Hkd(ψk) ,
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and replacing this into (3.9) gives us

N2(ψk+1 − 2ψk + ψk−1)− ak
N2

= ∂tψk + 2∂xψk∂xHk + 2ψk∂
2
xHk − eHkb(ψk) + e−Hkd(ψk) . (3.10)

Observe that above we still have a first order derivative of ψ, which we want to
write in terms of ψk+1 and ψk−1. In order to do that, we apply again a Taylor
expansion, telling us that, for k ∈ TN , there exist dk ∈ (xk, xk+1) and d̃k ∈ (xk−1, xk)
such that

ψk+1 = ψk +
∂xψk
N

+
∂2
xψ(dk, t)

2!N2
and ψk−1 = ψk −

∂xψk
N

+
∂2
xψ(d̃k, t)

2!N2
.

Subtracting the equations above we have that

ψk+1 − ψk−1 =
2

N
∂xψk +

ak
N2

,

where ak =
1

2
(∂2
xψ(dk, t)− ∂2

xψ(d̃k, t)). Substituting this into (3.10), we get

∂tψk = N2(ψk+1 − 2ψk + ψk−1)−N(ψk+1 − ψk−1)∂xHk − 2ψk∂
2
xHk

+ eHkb(ψk)− e−Hkd(ψk)−
ak∂xHk

N
− ak
N2

.

Recalling that ψN is a solution of (3.1) and the definition (3.8), we obtain that

∂tek = N2(ek+1 − 2ek + ek−1)−N(ek+1 − ek−1)∂xHk

−
[1

2

(
SN1 + SN−1 + 2

)
ψNk − 2ψk

]
∂2
xHk

+ eHk
(
b(ψNk )− b(ψk)

)
− e−Hk

(
d(ψNk )− d(ψk)

)
+
ak∂xHk

N
+
ak
N2

.

Since ∣∣∣1
2

(
SN1 + SN−1 + 2

)
ψk − 2ψk

∣∣∣ ≤ ‖∂xψ‖∞
N

,

hence

∂tek ≤ N2(ek+1 − 2ek + ek−1)−N(ek+1 − ek−1)∂xHk

−
[1

2

(
SN1 + SN−1 + 2

)
ek

]
∂2
xHk + eHk

(
b(ψNk )− b(ψk)

)
− e−Hk

(
d(ψNk )− d(ψk)

)
+
ak∂xHk

N
+
ak
N2

+
‖∂xψ‖∞
N

∂2
xHk .

Recalling (3.6), we get that

∂tek ≤ N2(ek+1 − 2ek + ek−1)−N(ek+1 − ek−1)∂xHk

+ C∗(|ek+1|+ |ek|+ |ek−1|+N−1) .
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We have therefore proved that (e1, . . . , eN) is a subsolution for (3.3). Consider now
zk(t) = exp(λC∗t)/N , where λ > 0. Note that zk(t) does not depend on the space
and a simple calculation permits to check that it will be a supersolution of (3.3)
provided λ > 3 + 1

C∗
. Fix henceforth some λ satisfying the condition above. By the

Lemma 3.1.2 we have that

ek(t) ≤
exp(λC∗t)

N
≤ exp(λC∗T )

N
.

Repeating the previous argument for −ek, we get that

|ek(t)| ≤
exp(λC∗T )

N
.

Therefore,
sup
t∈[0,T ]

max
k∈TN

|ψNk − ψk| ≤ CN−1 ,

finishing the proof.

3.2 Dynkin Martingale
A natural way to obtain martingales from a particle system consists on the

Dynkin’s Formula which is quite suitable when we start with a function of the
process: subtracting the initial value and the compensator gives us a martingale.
In this section we will get the Dynkin martingale associated with the Markov
process presented in Section 2.2.

From now on, we will use several times the notations

∆Nf(k) = N2
[
f
(
k+1
N

)
+ f
(
k−1
N

)
− 2f

(
k
N

)]
and (3.11)

∇̃Nf(k) =
N

2

[
f
(
k+1
N

)
− f

(
k−1
N

)]
. (3.12)

Note that (3.11) is the discrete Laplacian while (3.12) is not the usual discrete
derivative but it also approximates the continuous derivative in the case f is
smooth. Equivalently, we may have defined the (perturbed) Markov process pre-
sented in Section 2.2 through its infinitesimal generator LN which acts on functions
f : ΩN → R as

LNf(η) =
∑
k∈TN

N2ηk exp
{
Hk+1 −Hk

}[
f(ηk,k+1)− f(η)

]
+
∑
k∈TN

N2ηk exp
{
Hk−1 −Hk

}[
f(ηk,k−1)− f(η)

]
+
∑
k∈TN

`b(`−1ηk) exp
{
Hk

}[
f(ηk,+)− f(η)

]
+
∑
k∈TN

`d(`−1ηk) exp
{
−Hk

}[
f(ηk,−)− f(η)

]
,
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where

ηk,k±1
j =


ηj , if j 6= k, k ± 1

ηk − 1 , if j = k and ηk ≥ 1
ηk±1 + 1 , if j = k ± 1 and ηk ≥ 1

ηk , if j = k and ηk = 0
ηk±1 , if j = k ± 1 and ηk = 0

and

ηk,+j =

{
ηj , if j 6= k

ηk + 1 , if j = k
, ηk,−j =


ηj , if j 6= k

ηk − 1 , if j = k and ηk ≥ 1
ηk , if j = k and ηk = 0

.

It is a well known fact that the process Zf (t) defined by

Mf (t) = f(η(t))− f(η(0))−
∫ t

0

LNf(η(s))ds

is a martingale with respect to the natural filtration, the so-called Dynkin martin-
gale, see [12, Appendix] for instance. Fix some k ∈ TN and to simplify the notation
we will omit the time variable in function H. Picking up the particular f(η) = ηk
tells us that

Mk(t) = ηk(t)− ηk(0)−
∫ t

0

[
−N2ηk(s)

[
exp

{
Hk+1 −Hk

}
+ exp

{
Hk−1 −Hk

}]
+N2ηk+1(s) exp

{
Hk −Hk+1

}
+N2ηk−1(s) exp

{
Hk −Hk−1

}
+ `b(`−1ηk) exp

{
Hk

}
− `d(`−1ηk) exp

{
−Hk

}]
ds

is a martingale. Since H has a finite Lipschitz constant, a Taylor expansion gives
us that

exp
{
Hk±1 −Hk

}
= 1 +Hk±1 −Hk +

(
Hk±1 −Hk

)2

2!
+ Err

(
k
N
, k±1
N
, s
)
,

where the error term Err
(
k
N
, k±1
N
, s
)

is O(N−3) uniform on k ∈ TN . This allows us
to rewrite the above martingale as

Mk(t) = ηk(t)− ηk(0)−
∫ t

0

[
N2
[
ηk+1(s) + ηk−1(s)− 2ηk(s)

]
− ηk(s)N2

[
Hk+1 +Hk−1 − 2Hk

]
+ ηk+1N

2
(
Hk −Hk+1

)
+ ηk−1N

2
(
Hk −Hk−1

)
+ `b(`−1ηk) exp

{
Hk

}
− `d(`−1ηk) exp

{
−Hk

}
+ Ak(s)

]
ds ,

where

Ak(s) = N2

[
1

2

(
Hk+1 −Hk

)2
ηk+1(s) +

1

2

(
Hk−1 −Hk

)2
ηk−1(s)− 1

2

(
Hk+1 −Hk

)2
ηk(s)

− 1

2

(
Hk−1 −Hk

)2
ηk(s) + Err

(
k
N
, k+1
N
, s
)
ηk+1(s) + Err

(
k
N
, k−1
N
, s
)
ηk−1(s)
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− Err
(
k
N
, k+1
N
, s
)
ηk(s)− Err

(
k
N
, k−1
N
, s
)
ηk(s)

]
.

Using by Taylor that Hk±1−Hk = ± 1
N
∂xHk + 1

2N2∂
2
xHk +O(N−3) , (3.11) and (3.12),

we can rewrite the martingale simply as

Mk(t) = ηk(t)− ηk(0)−
∫ t

0

[
∆Nηk(s)− ηk(s)∆NHk − 2∇̃Nηk(s)∂xHk

− 1

2

(
ηk+1 + ηk−1

)
∂2
xHk + `b(`−1ηk) exp

{
Hk

}
− `d(`−1ηk) exp

{
−Hk

}
+ Ak +O(N−1)ηk+1(s) +O(N−1)ηk−1

]
ds .

Dividing the equation above by ` and using that the discrete Laplacian approxi-
mates the continuous Laplacian, it yields that

ZN
(
t, k
N

)
= XN

(
t, k
N

)
−XN

(
0, k

N

)
−
∫ t

0

[
∆NX

N
(
s, k

N

)
− 2∇̃NX

N
(
s, k

N

)
∂xHk

− 1

2

(
XN
(
s, k+1

N

)
+XN

(
s, k−1

N

)
+ 2XN

(
s, k

N

))
∂2
xHk (3.13)

+ b
(
XN
(
s, k

N

))
exp

{
Hk

}
− d
(
XN
(
s, k

N

))
exp

{
−Hk

}
+ Bk(s)

]
ds ,

is a martingale for each k ∈ TN , now in a suitable form to our future purposes,
where

Bk(s) =
1

2N2
(∂xHk)

2∆NX
N
(
s, k

N

)
+O(N−1)XN

(
s, k+1

N

)
+O(N−1)XN

(
s, k

N

)
+O(N−1)XN

(
s, k−1

N

)
is the term which will not contribute in the limit as N goes to infinity, as we shall
see later.

3.3 Duhamel’s Principle
In this section we formulate a version of Duhamel’s Principle for the mar-

tingales in (3.13), which will be necessary in the proof of Theorem 2.2.1. Let
TN(t) = e∆N t the semigroup on C(RTN ) generated by the discrete Laplacian ∆N .
To not overload notation, the spatial variable will be omitted in the sequel. Keep-
ing this in mind, the martingales of (3.13) can be shortly written as

ZN
(
t
)

= XN(t)−XN(0)−
∫ t

0

[
∆NX

N(s)− 2∇̃NX
N(s)∂xH(s)

− 1

2

(
SN1 + SN−1 + 2

)
XN(s)∂2

xH(s)

+ b
(
XN(s)

)
exp

{
H(s)

}
− d
(
XN(s)

)
exp

{
−H(s)

}
+ B(s)

]
ds .

(3.14)

Note that ZN(0) = 0. Below, when we say that a stochastic process evolving on RTN

is a martingale, we mean that each one of its N coordinates are martingales.
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Proposition 3.3.1 (Duhamel’s Principle for XN(t)). Consider the martingale ZN

defined in (3.14), which evolves on RTN . We have that

XN
(
t
)

= TN(t)XN(0) +

∫ t

0

TN(t− s)
[
− 2∇̃NX

N(s)∂xH(s)

− 1

2

(
SN1 + SN−1 + 2

)
XN(s)∂2

xH(s) + b
(
XN(s)

)
exp

{
H(s)

}
− d
(
XN(s)

)
exp

{
−H(s)

}
+ B(s)

]
ds+

∫ t

0

TN(t− s)dZN(s) .

(3.15)

Before proving the proposition above let us make a break to explain the mean-
ing of the last integral on right hand-side of (3.15) and provide an integration by
parts formula for it. Its definition is given by:∫ t

0

TN(t− s)dZN(s)
def
= lim

∆si→0

n∑
i=1

TN(t− si)
[
ZN(si)− ZN(si−1)

]
, (3.16)

where {0 = s0, . . . , sn = t} is a partition of the interval [0, t] and ∆si is its size.
Expanding the summation on the rigth side above, we get

n∑
i=1

TN(t− si)
[
ZN(si)− ZN(si−1)

]
=

n∑
i=1

TN(t− si)ZN(si)−
n−1∑
i=0

TN(t− si+1)ZN(si)

=
n−1∑
i=1

[
TN(t− si)− TN(t− si+1)

]
ZN(si) + ZN(t) .

Now dividing and multiplying the sum on the right hand-side of the equation above
by (si+1 − si) and then taking the limit as ∆si → 0, one can deduce that∫ t

0

TN(t− s)dZN(s) =

∫ t

0

∂tTN(t− s)ZN(s) ds+ ZN(t)− ZN(0) .

Due to TN(t) = e∆N t, we obtain that∫ t

0

TN(t− s)dZN(s) =

∫ t

0

∆NTN(t− s)ZN(s) ds+ ZN(t)− ZN(0) , (3.17)

which is the desired integration-by-parts formula.

Proof of the Proposition 3.3.1. We show that (3.15) and (3.14) are equivalent. Be-
low we will calculate the integral of the Laplacian of XN to ease some later calcu-
lations. Recall (3.17). Then,∫ t

0

∆NX
N(s)ds =

∫ t

0

∆NTN(s)XN(0) ds

+

∫ t

0

∫ s

0

∆NTN(s− v)

[
− 2∇̃NX

N(v)∂xH(v)− 1

2

(
SN1 + SN−1 + 2

)
XN(v)∂2

xH(v)

+ b
(
XN(v)

)
exp

{
H(v)

}
− d
(
XN(v)

)
exp

{
−H(v)

}
+ B(v)

]
dv ds
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+

∫ t

0

∫ s

0

∆2
NTN(s− v)ZN(v) dv ds+

∫ t

0

∆NZ
N(s) ds .

Again by TN(t) = e∆N t and by Fubini’s Theorem, we obtain∫ t

0

∆NX
N(s) ds = TN(t)XN(0)−XN(0)

+

∫ t

0

TN(t− v)

[
− 2∇̃NX

N(v)∂xH(v)− 1

2

(
SN1 + SN−1 + 2

)
XN(v)∂2

xH(v)

+ b
(
XN(v)

)
exp

{
H(v)

}
− d
(
XN(v)

)
exp

{
−H(v)

}
+ B(v)

]
dv

−
∫ t

0

[
− 2∇̃NX

N(v)∂xH(v)− 1

2

(
SN1 + SN−1 + 2

)
XN(v)∂2

xH(v)

+ b
(
XN(v)

)
exp

{
H(v)

}
− d
(
XN(v)

)
exp

{
−H(v)

}
+ B(v)

]
dv

+

∫ t

0

∆NTN(t− v)ZN(v) dv .

Using the above result we have that

XN(t) = XN(0) + TN(t)XN(0)−XN(0) +

∫ t

0

TN(t− v)

[
− 2∇̃NX

N(v)∂xH(v)

− 1

2

(
SN1 + SN−1 + 2

)
XN(v)∂2

xH(v) + b
(
XN(v)

)
exp

{
H(v)

}
− d
(
XN(v)

)
exp

{
−H(v)

}
+ B(v)

]
dv −

∫ t

0

[
− 2∇̃NX

N(v)∂xH(v)

− 1

2

(
SN1 + SN−1 + 2

)
XN(v)∂2

xH(v) + b
(
XN(v)

)
exp

{
H(v)

}
− d
(
XN(v)

)
exp

{
−H(v)

}
+ B(v)

]
dv +

∫ t

0

∆NTN(t− v)ZN(v)dv

+

∫ t

0

[
− 2∇̃NX

N(s)∂xH(s)− 1

2

(
SN1 + SN−1 + 2

)
XN(s)∂2

xH(s)

+ b
(
XN(s)

)
exp

{
H(s)

}
− d
(
XN(s)

)
exp

{
−H(s)

}
+ B(s)

]
ds+ ZN(t).

Therefore

XN(t) = TN(t)XN(0) +

∫ t

0

TN(t− v)

[
− 2∇̃NX

N(v)∂xH(v)

− 1

2

(
SN1 + SN−1 + 2

)
XN(v)∂2

xH(v) + b
(
XN(v)

)
exp

{
H(v)

}
− d
(
XN(v)

)
exp

{
−H(v)

}
+ B(v)

]
dv +

∫ t

0

TN(t− v)dZN(v) .

The next proposition provides an expression for the solution of the ODE system
(3.1).
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Proposition 3.3.2 (Duhamel’s Principle for ψN(t)). The solution ψN(t) of (3.1)
solves

ψNk (t) = TN(t)ψNk (0) +

∫ t

0

TN(t− s)
[
− 1

2

(
SN1 + SN−1 + 2

)
ψNk (s)∂2

xHk(s)

− 2∇̃Nψ
N
k (s)∂xHk(s) + b(ψNk (s)) exp

{
Hk(s)

}
− d(ψNk (s)) exp

{
−Hk(s)

}]
ds

(3.18)

with k = 1, . . . , N .

Proof. We will differentiate the right hand side of (3.18) in order to verify that it
is, in fact, a solution for the ODE system (3.1). It gives us

∂

∂t
TN(t)ψNk (0) +

∫ t

0

∂

∂t
TN(t− s)

[
− 1

2

(
SN1 + SN−1 + 2

)
ψNk (s)∂2

xHk(s)

− 2∇̃Nψ
N
k (s)∂xHk(s) + b(ψNk (s)) exp

{
Hk(s)

}
− d(ψNk (s)) exp

{
−Hk(s)

}]
ds

+ TN(0)

[
− 1

2

(
SN1 + SN−1 + 2

)
ψNk (t)∂2

xHk(t)− 2∇̃Nψ
N
k (t)∂xHk(t)

+ b(ψNk (t)) exp
{
Hk(t)

}
− d(ψNk (t)) exp

{
−Hk(t)

}]
.

By the definition of the semigroup TN and the fact that the Laplacian is linear, the
expression above is equal to

∆N

[
TN(t)ψNk (0) +

∫ t

0

TN(t− s)
[
− 1

2

(
SN1 + SN−1 + 2

)
ψNk (s)∂2

xHk(s)

− 2∇̃Nψ
N
k (s)∂xHk(s) + b(ψNk (s)) exp

{
Hk(s)

}
− d(ψNk (s)) exp

{
−Hk(s)

}]
ds

]
− 1

2

(
SN1 + SN−1 + 2

)
ψNk (t)∂2

xHk(t)− 2∇̃Nψ
N
k (t)∂xHk(t)

+ b(ψNk (t)) exp
{
Hk(t)

}
− d(ψNk (t)) exp

{
−Hk(t)

}
,

so the equation (3.18) holds true.

3.4 High density limit
In this section we prove Theorem 2.2.1. Before going through details, let us

explain the involved ideas. Noting the resemblance of (3.15) and (3.18), we would
like to have that

sup
t∈[0,T ]

‖Y N(t)‖∞ → 0 (3.19)

in some sense, where

Y N(t) =

∫ t

0

TN(t− s)dZN(s)
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is the only (random) term which differs (3.15) from (3.18). Since the solution ψN(t)
of the semi-discrete scheme converges to the solution of the concerning PDE (see
Section 3.1), Gronwall inequality would finish the job, assuring that XN(t) con-
verges to the solution of the PDE (2.5). However, (3.19) is not true, or at least,
not clear how to be argued. The reason of this is the following: the essential in-
gredient to prove that a process as Y N goes to zero as N → ∞ requires that the
corresponding martingale ZN(t) is bounded, which is not true.

Next, we mixture ideas from the original strategy of [4] with the approach of
[8]. Instead of working with XN(t), we will deal with a stopped process XN

(t) close
to XN(t). Fix ε0 > 0, let

τ = inf
{
t : ‖XN(t)− ψN(t)‖∞ > ε0

}
and define

X
N

(t) =

{
XN(t), if t ≤ τ

WN(t), if if t > τ

where WN(t) =
(
WN

1 (t), . . . ,WN
N (t)

)
is defined for each k ∈ TN and t > τ through

∂tW
N
k = N2

(
WN
k+1 − 2WN

k +WN
k−1

)
−N

(
WN
k+1 −WN

k−1

)
∂xHk

−1
2

(
SN1 + SN−1 + 2

)
WN
k ∂

2
xHk + eHkb

(
WN
k

)
− e−Hkd

(
WN
k

)
,

WN
k (τ) = XN

k (τ) , k ∈ TN .

Note that WN is defined as in 3.1 but considering the density XN as an initial
condition to ensure that XN does not have jumps.

The reason we may work with X
N

(t) instead of XN(t) is that

lim
N→∞

sup
t∈[0,T ]

‖XN
(t)− ψN(t)‖∞ = 0 a.s. (3.20)

implies

lim
N→∞

sup
t∈[0,T ]

‖XN(t)− ψN(t)‖∞ = 0 a.s.,

since if t ≤ τ , XN
(t) = XN(t) and if t > τ , WN

k (t) = ψNk (t) for each k ∈ TN .
Thus, our goal now is to prove (3.20). Of course, there are many different

choices for the stopped process. Consider XN

k (·) = X
N

(·, k/N) . The main features
of XN

(t) are the following. First, its version of Duhamel’s Principle is given by

X
N

k (t) = TN(t)X
N

k (0) + Y
N

k (t) +

∫ t

0

TN(t− s)
[
− 1

2

(
SN1 + SN−1 + 2

)
X
N

k (s)∂2
xHk(s)

− 2∇̃NX
N

k (s)∂xHk(s) + b
(
X
N

k (s)
)

exp
{
Hk(s)

}
− d
(
X
N

k (s)
)

exp
{
−Hk(s)

}]
ds

(3.21)
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where

Y
N

(t) =

∫ t

0

TN(t− s)dZN
(s ∧ τ) ,

with Z
N being the same martingale given in (3.14) changing XN by XN . The proof

of (3.21) above is similar to the proof of Proposition 3.3.1 and will be omitted.
Second, but not less important, is the fact that there exists some C > 0 such that

sup
t∈[0,T ]

‖XN
(t)‖∞ ≤ C (3.22)

for all large enough N ∈ N. The inequality above can be argued as follows. Since
the solution ψ of the PDE (2.5) is smooth and defined on a compact domain, it is
bounded. Proposition 3.1.1 tells us that ψN converges uniformly to ψ, hence ψN is
bounded as well by some constant c1 > 0. By the definition of the stopping time τ ,
the process XN

(t) is bounded by c1 + ε0 for any time t < τ . After time τ , the process
runs deterministically under the same dynamics of ψN , but with the random initial
condition given by X

N
(τ) at time τ . Since ‖XN

(τ)‖∞ ≤ c1 + ε0 + 1
`
, an argument

on super-solutions (similar to that one presented in Section 3.1) gives that XN
(t)

is also bounded for some constant for all time t > τ .
To furnish the necessary martingales for the proof of Theorem 2.2.1 and in

many others cases, we provide a general statement in the next proposition. This
is a well-known result. However we could not find any reference in the literature
in a suitable form. For this reason, we include it here for sake of completeness.

Proposition 3.4.1. Let (Xt)t≥0 be a continuous time Markov chain taking values
on the countable set Ω. Denote by λ : Ω × Ω → R+ the jump rate, assume that
λ(x, x) = 0 for all x ∈ Ω and

sup
x∈Ω

{∑
y∈Ω

λ(x, y)
}
< ∞ .

This continuous time Markov chain can described as follows. When at the state
x ∈ Ω, the next state is chosen according to the minimum of a family of independent
exponentials of parameter λ(x, z), where z ∈ Ω, z 6= x. If the minimum of such
exponentials is attained at the exponential of parameter λ(x, y), the process remains
at x during a period of time equal to the value of this exponential and then jumps to
y. Denote by Nt(x, y) the number of times the process has made the transition from
x to y in the time interval [0, t]. Then

Mt = Nt(x, y)− λ(x, y)

∫ t

0

1[Xs=x] ds

is a martingale with respect to the natural filtration.

Proof. Denote by µ the initial distribution and by Ft the natural filtration, i.e. the
σ-algebra generated by the process until time t ≥ 0. Let 0 ≤ u ≤ t.

Eµ
[
Nt(x, y)− λ(x, y)

∫ t

0

1[Xs=x]ds
∣∣∣Fu] = Nu(x, y)− λ(x, y)

∫ u

0

1[Xs=x]ds

+ Eµ
[
Nt(x, y)−Nu(x, y)− λ(x, y)

∫ t

u

1[Xs=x]ds
∣∣∣Fu].
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By the Markov Property, in order to show is null the second parcel in the r.h.s. of
the equation above, it is sufficient to proof that

Ez
[
Nt(x, y)− λ(x, y)

∫ t

0

1[Xs=x]ds
]

= 0 (3.23)

for any z ∈ Ω and any t ≥ 0. Let 0 = t0 < t1 < · · · < tn = t be a partition of the
interval [0, t]. Expression (3.23) can be rewritten as

n−1∑
i=0

Ez
[
Nti+1

(x, y)−Nti(x, y) + λ(x, y)

∫ ti+1

ti

1[Xs=x]ds
]
.

Since the probability of two or more jumps in a interval of length h is O(h2), it is
enough to show that

Ez
∣∣∣Nti+1

(x, y)−Nti(x, y)− λ(x, y)

∫ ti+1

ti

1[Xti=x]ds
∣∣∣ = O

(
(ti+1 − ti)2

)
.

By the Markov Property, it is enough to assure that Ex|Nh(x, y)− λ(x, y)h| is O(h2).
On his hand, this is a consequence of the definition of Nh(x, y).

Denote δf(t) = f(t) − f(t−). Applying the above proposition considering our
model, we have:

Lemma 3.4.2. The following processes are martingales with respect to the natural
filtration, for all k = 0, 1, · · · , N − 1,

MN,1
t = `

[
X
N

k (t)−XN

k (0)
]
−
∫ t

0

`N2
[
X
N

k−1(s)eHk−Hk−1 − 2X
N

k (s)eHk+1−Hk

+X
N

k+1(s)eHk+2−Hk+1

]
ds−

∫ t

0

`
[
b(X

N

k (s))eHk − d(X
N

k (s))e−Hk
]
ds , (3.24)

MN,2
t = `2

∑
s≤t

(
δX

N

k (s)
)2 −

∫ t

0

`N2
[
X
N

k−1(s)eHk−Hk−1 + 2X
N

k (s)eHk+1−Hk

+X
N

k+1(s)eHk+2−Hk+1

]
ds−

∫ t

0

`
[
b(X

N

k (s))eHk + d(X
N

k (s))e−Hk
]
ds , (3.25)

MN,3
t = − `2

∑
s≤t

δX
N

k (s) δX
N

k+1(s)−
∫ t

0

`N2
[
X
N

k (s)eHk+1−Hk +X
N

k+1(s)eHk+2−Hk+1

]
ds .

(3.26)

Proof. As we shall see below, each of the expressions (3.24), (3.25), and (3.26) are
equal to the number of times some kind of transitions has been made minus the
integral in time of the corresponding rates.

In (3.24), the parcel
`
[
X
N

k (t)−XN

k (0)
]

of that expression counts how many times in [0, t] the Markov process (ηt)t≥0 has
made a transition ηk = j to ηk = j + 1 for some j ∈ N, minus how many times the
process has made a transition ηk = j + 1 to ηk = j, normalized by the parameter `.
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In (3.25), the parcel
`2
∑
s≤t

(δX
N

k (s))2

of that expression counts how many times in [0, t] the process has made a transition
ηk = j to ηk = j ± 1 for some j ∈ N.

In (3.26), the parcel
−`2

∑
s≤t

δX
N

k (s) δX
N

k+1(s)

of that expression counts how many times in [0, t] particles have jumped between
the sites k and k+ 1. Since the integral parts in (3.24), (3.25) and (3.26) are the in-
tegrals in time of the respective rates, one application of Proposition 3.4.1 finishes
the proof.

As we shall see, (3.21) and (3.22) are two necessary ingredients in the proof of
(3.20), as well as the next lemma.

Lemma 3.4.3. Recall the constant C > 0 as in (3.22). Then, there exists some
a = a(C, T ) > 0 such that, for any ε > 0,

P

[
e−4T sup

[0,T ]

‖Y N
(t)‖∞ > ε

]
≤ 4N3 exp(−aε2`) . (3.27)

The demonstration of Lemma 3.4.3 follows in a similar way to the demonstra-
tion of Lemma 4.10 in [4] before proving it, we need the following Lemma 3.4.4 and
recall two results of [4], which are the main ingredients of its proof. Denote

∇+
Nf(k) = N

[
f
(
k+1
N

)
− f

(
k
N

)]
and ∇−Nf(k) = N

[
f
(
k−1
N

)
− f

(
k
N

)]
.

Lemma 3.4.4. The process∑
s≤t

(
δ
〈
Z
N

(t), ϕ
〉)2 − (N`)−1

∫ t

0

〈
X
N

(s)e∇
+
NH/N , (∇+

Nϕ)2 + (∇−Nϕ)2
〉
ds

− (N`)−1

∫ t

0

〈
b(X

N
(s))eH + d(X

N
(s))e−H , ϕ2

〉
ds,

where 〈·, ·〉 is the inner product in L2(T) with respect to the Lebesgue measure, is a
mean zero martingale with respect to the natural filtration.

Proof. First, note that the process XN and ZN have the same jumps of discontinu-
ity. Then given ϕ ∈ SN we have that

∑
s≤t

(
δ
〈
Z
N

(t), ϕ
〉)2

=
∑
s≤t

1

N2

(N−1∑
k=0

ϕkδX
N

k (s)

)2

=
∑
s≤t

1

N2

N−1∑
k=0

ϕ2
k

(
δX

N

k (s)
)2

+
∑
s≤t

2

N2

N−1∑
k=0

ϕkϕk+1δX
N

k (s)δX
N

k+1(s),
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so, by (3.25) and (3.26), the process below is a martingale:∑
s≤t

(
δ
〈
Z
N

(t), ϕ
〉)2

−
N−1∑
k=0

∫ t

0

ϕ2
k

`

(
X
N

k−1(s)eHk−Hk−1 + 2X
N

k (s)eHk+1−Hk +X
N

k+1(s)eHk+2−Hk+1

)
+

ϕ2
k

N2`

(
b(X

N

k (s))eHk + d(X
N

k (s))e−Hk
)
ds

+
N−1∑
k=0

∫ t

0

2ϕkϕk+1

`

(
X
N

k (s)eHk+1−Hk +X
N

k+1(s)eHk+2−Hk+1

)
ds . (3.28)

Note now that

N−1∑
k=0

ϕ2
k

N

(
b(X

N

k (s))eHk + d(X
N

k (s))e−Hk
)

=
〈
b(X

N
(s))eH + d(X

N
(s))e−H , ϕ2

〉
, (3.29)

and

N−1∑
k=0

[
ϕ2
k

(
X
N

k−1(s)eHk−Hk−1 + 2X
N

k (s)eHk+1−Hk +X
N

k+1(s)eHk+2−Hk+1
)

− 2ϕkϕk+1

(
X
N

k (s)eHk+1−Hk +X
N

k+1(s)eHk+2−Hk+1
)]

=
N−1∑
k=0

X
N

k (s)eHk+1−Hk
(
(ϕk+1 − ϕk)2 + (ϕk−1 − ϕk)2

)
=

N−1∑
k=0

X
N

k (s)eHk+1−Hk

N2

(
(∇+

Nϕk)
2 + (∇−Nϕk)

2
)

= N−1
〈
X
N

(s)e∇
+
NH/N , (∇+

Nϕ)2 + (∇−Nϕ)2
〉
. (3.30)

Substituting (3.29) and (3.30) in (3.28) we conclude that

∑
s≤t

(
δ
〈
Z
N

(t), ϕ
〉)2 − (N`)−1

∫ t

0

〈
X
N

(s)e∇
+
NH/N , (∇+

Nϕ)2 + (∇−Nϕ)2
〉
ds

− (N`)−1

∫ t

0

〈
b(X

N
(s))eH + d(X

N
(s))e−H , ϕ2

〉
ds

is a mean zero martingale.

Lemma 3.4.5 (Lemma 4.3 in [4]). Let f = N1[k/N,(k+1)/N). Then exist function hN
such that 〈(

∇+
NTN(t)f

)2
+
(
∇−NTN(t)f

)2
+
(
TN(t)f

)2
, 1
〉
≤ hN(t) (3.31)

where
∫ t

0
hN(s)ds ≤ CN + t.
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Lemma 3.4.6 (Lemma 4.4 in [4]). Let m(t) be a bounded martingale of finite vari-
ation defined on [t0, t1] with m(t0) = 0 and satisfying:

i) m is right-continuous with left limits.

ii) |δm(t)| ≤ 1 for t0 ≤ t ≤ t1.

iii)
∑

t0≤s≤t(δm(s))2−
∫ t
t0
g(s)ds is a mean 0 martingale with 0 ≤ g(s) ≤ h(s), where

h(s) is a bounded deterministic function and g(s) is adapted to the natural
filtration.

Then
E exp

(
m(t1)

)
≤ exp

(
3

2

∫ t1

t0

h(s)ds

)
.

Proof of Lemma 3.4.3. Fix t ∈ (0, T ], k ∈ TN and consider f = N1[k/N,(k+1)/N). De-
fine

m(t) =
〈∫ t

0

TN(t− s)dZN
(s), f

〉
, for all 0 ≤ t ≤ t .

which satisfies m(t) = Y
N

(t, k/N). Since Z
N is a (vector) martingale, then the

integral
∫ t

0
TN(t− s)dZN

(s) is a zero mean (vector) martingale, hence m(t) is a zero
mean martingale on 0 ≤ t ≤ t as well. By the integration by parts formula (3.17),
the discontinuity jumps of the process m(t) are the same discontinuity jumps of
〈ZN

(t), TN(t− t)f〉. Therefore, by Lemma 3.4.4,∑
s≤t

(
δm(s)

)2 − (N`)−1

∫ t

0

〈
X
N

(s)e∇
+
NH/N ,

(
∇+
NTN(t− s)f

)2
+
(
∇−NTN(t− s)f

)2
〉
ds

− (N`)−1

∫ t

0

〈
b(X

N
(s))eH + d(X

N
(s))e−H ,

(
TN(t− s)f

)2
〉
ds (3.32)

is a mean 0 martingale. For θ ∈ [0, 1], consider θ`m(t) instead of m(t). Recall the
constant C > 0 as in (3.22), and rewrite the martingale above as

(θ`)2
∑
s≤t

(δm(s))2 − (θ`)2

∫ t

0

g(s)ds .

Since X
N

(s)e∇
+
NH/N and b(X

N
(s))eH + d(X

N
(s))e−H are bounded in modulus by a

constant a(C) and recalling Lemma 3.4.5, we have that

(θ`)2g(s) ≤ a(C)θ2`N−1hN(t) .

So, by Lemma 3.4.6,

E
[

exp(θ`m(t))
]
≤ exp

(
3

2
a(C)θ2`N−1

∫ t

0

hN(s)ds

)
≤ exp

(
a(C)θ2`(1 + tN−1)

)
.

(3.33)
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Fix ε > 0. Using Chebychev inequality we obtain that

P
[
Y
N

(t, k/N) > ε
]
≤ E

[
exp(θ`Y

N
(t, k/N))

]
exp(−θ`ε) = E

[
exp(θ`m(t))

]
exp(−θ`ε) .

Since t ≤ T , we may assume that t/N ≤ 1, then by (3.33)

P
[
Y
N

(t, k/N) > ε
]
≤ exp

(
θ`(a(C)θ − ε)

)
= exp(−`ε2a(C)) ,

with a(C) depending on a(C), ε and θ. Arguing analogously for P
[
Y
N

(t, k/N) <
−ε
]
, we conclude that, for 0 < t < T and k ∈ TN ,

P
[ ∣∣Y N

(t, k/N)
∣∣ > ε

]
≤ 2 exp(−`ε2a(C)) ,

and taking the supremum in k, we then get

P
[ ∥∥Y N

(t, ·)
∥∥
∞ > ε

]
≤ 2N exp(−`ε2a(C)) . (3.34)

Integrating the laplacian of Y N in (3.17) and using Fubini’s Theorem, we de-
duce that ∫ t

0

∆NY
N

(s)ds = Y
N

(t)− ZN
(t).

Then, for nTN−2 ≤ t ≤ (n+ 1)TN−2 with n = 0, . . . , N2 − 1,∫ t

nTN−2

∆NY
N

(s)ds = Y
N

(t)− Y N
(nTN−2)− ZN

(t) + Z
N

(nTN−2).

So, taking the supremum norm and recalling the definition of the discrete Lapla-
cian,

‖Y N
(t)‖∞ ≤ ‖Y

N
(nTN−2)‖∞ + 4N2

∫ t

nTN−2

‖Y N
(s)‖∞ds+ ‖ZN

(t)− ZN
(nTN−2)‖∞.

Using Gronwall’s inequality and taking the supremum in the time we get that

sup
[nTN−2,(n+1)TN−2]

‖Y N
(t)‖∞ (3.35)

≤
(
‖Y N

(nTN−2)‖∞ + sup
[nTN−2,(n+1)TN−2]

‖ZN
(t)− ZN

(nTN−2)‖∞
)
e4T .

Observe that δ
(
Z
N

(t) − ZN
(nTN−2)

)
= δZ

N
(t) = δX

N
(t). Then, by Lemma 3.4.2,

for k fixed and θ ∈ [0, 1],

(θ`)2
∑

nTN−2≤s≤t

(
δ
(
Z
N

(t)− ZN
(nTN−2)

))2 − θ2`

∫ t

nTN−2

N2
[
X
N

k−1(s)eHk−Hk−1

+ 2X
N

k (s)eHk+1−Hk +X
N

k+1(s)eHk+2−Hk+1

]
+
[
b(X

N

k (s))eHk + d(X
N

k (s))e−Hk
]
ds ,
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is a mean zero martingale for nTN−2 ≤ t ≤ (n + 1)TN−2. Again recalling the
constant C as in (3.22), we rewrite the martingale above as

(θ`)2
∑

nTN−2≤s≤t

(
δ
(
Z
N

(t)− ZN
(nTN−2)

))2 − θ2`

∫ t

nTN−2

N2g(s)ds ,

and by Lemma 3.4.6, we have that

E
[

exp
(
θ`
(
Z
N

((n+ 1)TN−2)− ZN
(nTN−2)

))]
≤ exp

(
a(C)θ2`T

)
.

Fix ε > 0. Using the Doob’s inequality we obtain that

P
[

sup
[nTN−2,(n+1)TN−2]

(
Z
N

(t)− ZN
(nTN−2)

)
> ε
]

= P
[

sup
[nTN−2,(n+1)TN−2]

exp
(
θ`
(
Z
N

(t)− ZN
(nTN−2)

))
> exp(θ`ε)

]
≤ E

[
exp

(
θ`
(
Z
N

(t)− ZN
(nTN−2)

))]
exp(−θ`ε)

≤ exp
(
a(C)θ2`T − θ`ε

)
= exp

(
− a(C, T )`ε2

)
.

Repeating analogously to P
[

sup[nTN−2,(n+1)TN−2]

(
Z
N

(t) − Z
N

(nTN−2)
)
< −ε

]
and

taking the supremum norm we have that

P
[

sup
[nTN−2,(n+1)TN−2]

∥∥ZN
(t)− ZN

(nTN−2)
∥∥
∞ > ε

]
= 2N exp

(
− a(C, T )`ε2

)
. (3.36)

Thus, by (3.35)

P
[
e−4T sup

[nTN−2,(n+1)TN−2]

‖Y N
(t)‖∞ > ε

]
≤ P

[
‖Y N

(nTN−2)‖∞ > ε
]

+ P
[

sup
[nTN−2,(n+1)TN−2]

‖ZN
(t)− ZN

(nTN−2)‖∞ > ε

]
,

and by (3.34) and (3.36)

P
[
e−4T sup

[nTN−2,(n+1)TN−2]

‖Y N
(t)‖∞ > ε

]
≤ 4N exp

(
− a(C, T )`ε2

)
.

Note that

P
[
e−4T sup

[0,T ]

‖Y N
(t)‖∞ > ε

]
≤

N2−1∑
n=0

P
[
e−4T sup

[nTN−2,(n+1)TN−2]

‖Y N
(t)‖∞ > ε

]
,

therefore

P
[
e−4T sup

[0,T ]

‖Y N
(t)‖∞ > ε

]
≤ 4N3 exp

(
− a(C, T )`ε2

)
,

concluding the proof.
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Corollary 3.4.7. Consider Y N
(t) =

∫ t
0
TN(t)(t− s)dZN

(s). Then

N4‖∂xH‖∞/π sup
[0,T ]

‖Y N
(t)‖∞ → 0 a.s.

if
N4‖∂xH‖2∞/π2

logN

`
→ 0 when N →∞.

Proof. By Lemma 3.4.3,

P

[
e−4T sup

[0,T ]

‖Y N
(t)‖∞ > ε

]
≤ 4N3 exp(−aε2`) ,

therefore

P

[
e−4TN4‖∂xH‖∞/π sup

[0,T ]

‖Y N
(t)‖∞ > ε

]
≤ 4N3 exp

(
−aε2`

N4‖∂xH‖2∞/π2

)
.

By hypothesis c log(N)N4‖∂xH‖2∞/π2
< `, for any c constant and N large enough.

Then
∞∑
N=1

4N3 exp

(
−aε2`

N4‖∂xH‖2∞/π2

)
<

∞∑
N=1

1

N1+δ
< ∞ .

So we have that

∞∑
N=1

P

[
e−4TN4‖∂xH‖∞/π sup

[0,T ]

‖Y N
(t)‖∞ > ε

]
<∞ .

And by Borel-Cantelli’s Lemma,

N4‖∂xH‖∞/π sup
[0,T ]

‖Y N
(t)‖∞ → 0 almost surely,

and we conclude the proof.

Consider SN the real-valued step function on [0, 1] that is constant on the in-
tervals [kN−1, (k + 1)N−1) with 0 ≤ k ≤ N − 1. Before proving Theorem 2.2.1 we
need to define an orthonormal basis to space

(
SN , 〈·, ·〉

)
. If N is odd integer define

ϕ0,N ≡ 1 and for m even, with 0 ≤ m ≤ N − 1, ϕm,N(r) =
√

2 cos(πmkN−1) and
φm,N(r) =

√
2 sin(πmkN−1) for r ∈ [kN−1, (k + 1)N−1). So {ϕm,N , φm,N} are eigenvec-

tors of ∆N , with eigenvalues defined by −βm,N = −2N2(1− cos(πmN−1)), and is the
basis sought. If N is even, we added the eigenvector ϕN,N(r) = cos(πk).

We define the base as in [4], where this fact has not been proven, we include
here the proof for completeness.

Lemma 3.4.8. The terms of the sequence {ϕm,N , φm,N}m are eigenvectors of ∆N , with
eigenvalues −βm,N and form an orthonormal basis for

(
SN , 〈·, ·〉

)
.
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Proof. To show that ϕm,N are eigenvectors note that, for m fixed and r ∈ [kN−1, (k+
1)N−1 we have that

∆Nϕm,N(r) = 2
√

2N2 cos(πmkN−1)
(

cos(πmN−1)− 1
)

= −βm,Nϕm,N(r).

For φm,N we have that

∆Nφm,N(r) = 2
√

2N2
(

sin(πmkN−1) cos(πmN−1)− sin(πmkN−1)
)

= −βm,Nϕm,N(r).

If N is odd we have N eigenvectors and therefore {ϕm,N , φm,N}m forms a basis.
In the case of N even we have N − 1 eigenvectors and for this reason we add
ϕN,N(r) = cos(πk) to form the basis. To show that it is orthonormal note that

〈ϕm,N , φm,N〉 =
N−1∑
k=0

2

N
cos(πmkN−1) sin(πmkN−1) =

N−1∑
k=0

1

N
sin(2πmkN−1) = 0 ,

since the terms in the last sum cancel each other out. Thus we conclude the proof.

Lemma 3.4.9. Given g ∈ SN , for r ∈ [0, 1],

TN(t)g(r) =
∑

m∈[0,N−1];
m even

e−βm,N t
(
〈g, ϕm,N〉ϕm,N(r) + 〈g, φm,N〉φm,N(r)

)
. (3.37)

Proof. Note that, since {ϕm,N , φm,N}m is a basis for SN , g can be written as

g(r) =
∑

m∈[0,N−1];
m even

〈g, ϕm,N〉ϕm,N(r) + 〈g, φm,N〉φm,N(r).

Then,

TN(t)g(r) =
∞∑
j=0

∆j
N t

j

j!

(∑
m

〈g, ϕm,N〉ϕm,N(r) + 〈g, φm,N〉φm,N(r)

)

=
∞∑
j=0

∑
m

−βjm,Nϕm,N(r)

j!
tj〈g, ϕm,N〉 −

βjm,Nφm,N(r)

j!
tj〈g, φm,N〉

= exp
(
− βm,N t

)∑
m

〈g, ϕm,N〉ϕm,N + 〈g, φm,N〉φm,N .

And we concluded the proof.

Now we can prove the high density limit for the perturbed process.

Proof of Theorem 2.2.1. We want to evaluate sup[0,T ] ‖X
N

(t) − ψ(t)‖∞. To do so, we
first consider Proposition 3.1.1 and then we can calculate sup[0,T ] ‖X

N
(t)−ψN(t)‖∞.

Denote eN(t) := X
N

(t) − ψN(t). Using the expressions (3.15) for XN and (3.18) for
ψN , we have that
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‖eN(t)‖∞ ≤
∥∥TN(t)eN(0)

]∥∥
∞ +

∥∥∥∥∫ t

0

TN(t− s)dZN
(s)

∥∥∥∥
∞

+

∥∥∥∥∫ t

0

TN(t− s)
[
− 2∇̃Ne

N(s)∂xH(s)− 1

2

(
SN1 + SN−1 + 2

)
eN(s)∂2

xH(s)

+ eH(s)
(
b(X

N
(s)− b(ψNk (s))

)
− e−H(s)

(
d(X

N
(s))− d(ψNk (s))

)
+ B(s)

]
ds

∥∥∥∥
∞
.

Note that 1
2
‖(SN1 +SN−1 +2)eN‖∞ ≤ 2‖eN‖∞ and, as TN is a contraction, we also have

to ‖TN(t)eN(0)‖∞ ≤ ‖eN(0)‖∞. Moreover, consider C constant such that

C
def
= max

{
‖eH‖∞ · ‖b‖L, ‖e−H‖∞ · ‖d‖L

}
, (3.38)

where ‖b‖L and ‖d‖L are the Lispchitz constants of the functions b and d, respec-
tively. Then

‖eN(t)‖∞ ≤ ‖eN(0)‖∞ + ‖Y N
(t)‖∞ +

∥∥∥∥∫ t

0

2TN(t− s)∇̃Ne
N(s)∂xH(s)ds

∥∥∥∥
∞

+

∫ t

0

2
∥∥eN(s)

∥∥
∞

∥∥∂2
xH(s)

∥∥
∞ds+

∫ t

0

2C
∥∥eN(s)

∥∥
∞ds+

∫ t

0

∥∥B(s)
∥∥
∞ds .

(3.39)

Observe the third term of the above inequality separately. We will use that

∇̃N

[
eN(s)∂xH(s)

]
= ∇̃Ne

N(s)∂xH(s) + eN(s)∇̃N∂xH(s) .

Therefore,∥∥∥∥2

∫ t

0

TN(t− s)∇̃Ne
N(s)∂xH(s)ds

∥∥∥∥
∞
≤
∥∥∥∥2

∫ t

0

TN(t− s)∇̃N

[
eN(s)∂xH(s)

]
ds

∥∥∥∥
∞

+

∥∥∥∥2

∫ t

0

TN(t− s)eN(s)∇̃N∂xH(s)ds

∥∥∥∥
∞
.

Since TN(t)∇N = ∇NTN(t) and TN contraction, it yields that∥∥∥∥2

∫ t

0

TN(t− s)∇̃Ne
N(s)∂xH(s)ds

∥∥∥∥
∞

≤ 2

∫ t

0

∥∥∇̃NTN(t− s)
[
eN(s)∂xH(s)

]∥∥
∞ds+

∫ t

0

‖∇̃N∂xH(s)‖∞‖eN(s)‖∞ds .
(3.40)

Using (3.37) we then have that

∇̃NTN(t− s)
[
eN(s)∂xH(s)

]
= ∇̃N

∑
m

e−βm,N (t−s)(〈eN(s)∂xH(s), ϕm,N〉ϕm,N + 〈eN(s)∂xH(s), φm,N〉φm,N
)
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=
∑
m

e−βm,N (t−s)(〈eN(s)∂xH(s), ϕm,N〉∇̃Nϕm,N + 〈eN(s)∂xH(s), φm,N〉∇̃Nφm,N
)
.

By the definition of ϕm,N e φm,N there exist a constant c such that∣∣∇̃Nϕm,N − (−πmφm,N)
∣∣ ≤ c

N
and

∣∣∇̃Nφm,N − πmϕm,N
∣∣ ≤ c

N
.

Thus,

2

∫ t

0

∥∥∇̃NTN(t− s)
[
eN(s)∂xH(s)

]∥∥
∞ds ≤ 2

∫ t

0

∑
m

e−βm,N (t−s)

∥∥∥∥〈eN(s)∂xH(s), ϕm,N〉
(
c

N
− πmφm,N

)
+ 〈eN(s)∂xH(s), φm,N〉

(
c

N
+ πmϕm,N

)∥∥∥∥
∞
ds

≤ 2

∫ t

0

∑
m

e−βm,N (t−s)
(
‖〈eN(s)∂xH(s), ϕm,N〉‖∞ + ‖〈eN(s)∂xH(s), φm,N〉‖∞

) c
N
ds

+ 2

∫ t

0

∑
m

e−βm,N (t−s)πm
(
‖〈eN(s)∂xH(s), ϕm,N〉φm,N‖∞

+ ‖〈eN(s)∂xH(s), φm,N〉ϕm,N‖∞
)
ds .

Applying the Cauchy-Schwarz inequality and writing the definition of βm,N we
have that

2

∫ t

0

∥∥∇̃NTN(t− s)
[
eN(s)∂xH(s)

]∥∥
∞ds

≤ 4c

N

∫ t

0

∑
m

exp
[
− 2N2(1− cos(πmN−1))(t− s)

]
‖∂xH(s)‖∞‖eN(s)‖∞ds

+ 4

∫ t

0

∑
m

exp
[
− 2N2(1− cos(πmN−1))(t− s)

]
πm‖∂xH(s)‖∞‖eN(s)‖∞ds .

Note that ∑
m

exp
[
− 2N2(1− cos(πmN−1))(t− s)

]
≤ N.

By Taylor’s expansion 1− cos(πmN−1) ≥ π2m2

2N2
+O(N−3), we get that

2

∫ t

0

∥∥∇̃NTN(t− s)
[
eN(s)∂xH(s)

]∥∥
∞ds ≤ 4c

∫ t

0

‖∂xH(s)‖∞‖eN(s)‖∞ds

+ 4π

∫ t

0

∑
m

exp

[
− 2N2

(
π2m2

2N2
+O(N−3)

)
(t− s)

]
m‖∂xH(s)‖∞‖eN(s)‖∞ds .

Coming back to (3.40) we have that∣∣∣∣∣∣∣∣2 ∫ t

0

TN(t− s)∇̃Ne
N(s)∂xH(s)ds

∣∣∣∣∣∣∣∣
∞
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≤
∫ t

0

(
4c‖∂xH(s)‖∞ + ‖∇̃N∂xH(s)‖∞

)
‖eN(s)‖∞ds

+ 4π

∫ t

0

∑
m

exp
[
−
(
π2m2 +O(N−1)

)
(t− s)

]
m‖∂xH(s)‖∞‖eN(s)‖∞ds .

To conclude the proof of the theorem, let us return to the inequality (3.39).

‖eN(t)‖∞ ≤ ‖eN(0)‖∞ + ‖Y N
(t)‖∞ +

∫ t

0

(
2‖∂2

xH(s)‖∞ + 2C
)
‖eN(s)‖∞ds

+

∫ t

0

∥∥B(s)
∥∥
∞ +

∫ t

0

(
4c‖∂xH(s)‖∞ + ‖∇̃N∂xH(s)‖∞

)
‖eN(s)‖∞ds

+ 4π

∫ t

0

∑
m

exp
[
−
(
π2m2 +O(N−1)

)
(t− s)

]
m‖∂xH(s)‖∞‖eN(s)‖∞ds

and applying Gronwall’s inequality, we get that

‖eN(t)‖∞ ≤
(
‖eN(0)‖∞ + ‖Y N

(t)‖∞ +

∫ t

0

∥∥B(s)
∥∥
∞ds

)
× exp

{∫ t

0

2‖∂2
xH(s)‖∞ + 2C + 4c‖∂xH(s)‖∞ + ‖∇̃N∂xH(s)‖∞

+ 4π
∑
m

exp
[
−
(
π2m2 +O(N−1)

)
(t− s)

]
m‖∂xH(s)‖∞ ds

}
.

Note that ∫ t

0

4π
∑
m

exp
[
−
(
π2m2 +O(N−1)

)
(t− s)

]
m‖∂xH(s)‖∞ ds

≤ 4‖∂xH‖∞
∑
m

1− exp
[
−
(
π2m2 +O(N−1)

)
t
]

πm

≤ 4‖∂xH‖∞
π

∑
m

1

m
≤ 4‖∂xH‖∞

π
logN .

Then,

‖eN(t)‖∞ ≤
(
‖eN(0)‖∞ + ‖Y N

(t)‖∞ +

∫ t

0

∥∥B(s)
∥∥
∞ds

)
× exp

{∫ t

0

2‖∂2
xH(s)‖∞ + 2C + 4c‖∂xH(s)‖∞ + ‖∇̃N∂xH(s)‖∞ ds

}
N4‖∂xH‖∞/π .

Taking

C def
= exp

{∫ t

0

2‖∂2
xH(s)‖∞ + 2C + 4c‖∂xH(s)‖∞ + ‖∇̃N∂xH(s)‖∞ ds

}
,

we have that

‖eN(t)‖∞ ≤
(
‖eN(0)‖∞ + ‖Y N

(t)‖∞ +

∫ t

0

∥∥B(s)
∥∥
∞ds

)
CN4‖∂xH‖∞/π .
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Moreover,

‖XN
(0)− ψ(0)‖∞ ≤

∣∣∣∣ηx(0)

`
− ψ(0, x)

∣∣∣∣ =

∣∣∣∣b`ψ(0, x)c
`

− ψ(0, x)

∣∣∣∣
=

1

`

∣∣∣b`ψ(0, x)c − `ψ(0, x)
∣∣∣ ≤ 1

`
,

thus ‖eN(0)‖∞CN4‖∂xH‖∞/π → 0 almost surely as N → ∞, and by Lemma 3.4.7 we
conclude the proof.
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Chapter 4

Large Deviations

We begin this chapter by finding an expression for the Radon-Nikodym deriva-
tive which will be used directly to obtain the rate function of the large deviations.
In the following sections we obtain the large deviations, starting with the upper
bound, then the lower bound considering smooth profiles and then the lower bound
for more general profiles.

4.1 Radon-Nikodym derivative
An important ingredient in the proof of large deviations consists in obtaining a

law of large numbers for a class of perturbed processes. To find the rate function
we need to calculate the Radon-Nikodym derivative dPN

dPHN
where PN and PHN are mea-

sures induced by processes considering H ≡ 0 and a general H ∈ C1,2, respectively.
This is the content of the next proposition.

Proposition 4.1.1 (An expression for the Radon-Nikodym derivative). Consider-
ing the model described above, the Radon-Nikodym derivative restricted to Ft =
σ(Xs : 0 ≤ s ≤ t) is given by

dPN
dPHN

∣∣∣∣
Ft

= exp

{
− `N

[∫ t

0

1

N

N−1∑
k=0

[
b
(
XN
k (s)

)(
1− eHk

)
+ d
(
XN
k (s)

)(
1− e−Hk

)
(4.1)

−XN
k (s)

(
∆NHk +

1

2

((
∇+
NHk

)2
+
(
∇−NHk

)2
)

+O(1/N)

)]
ds

+
1

N

N−1∑
k=0

(
Hk(t)X

N
k (t)−Hk(0)XN

k (0)−
∫ t

0

XN
k (s)∂sHkds

)]}
.

In particular, we can write

dPN
dPHN

∣∣∣∣
Ft

= exp
{
− `N

[
JH(XN) +O(1/N)

]}
, (4.2)

where
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JH(u) =

∫ t

0

∫
T

[
b
(
u(s, y)

)(
1− eH(s,y)

)
+ d
(
u(s, y)

)(
1− e−H(s,y)

)
− u(s, y)

(
∆H(s, y) +

(
∇H(s, y)

)2
)]
dy ds

+

∫
T

[
H(t, y)u(t, y)−H(0, y)u(0, y)−

∫ t

0

u(s, y)∂sH(s, y) ds
]
dy .

Now we are in position to prove the Proposition 4.1.1 which is the basis for de-
riving the rate function of large deviations. The large deviations provide the speed
of convergence of the process, which will be exponential, and this rate function will
provide the exponent of this exponential function. To do so, we need the following
general result which can be found in [12, Appendix 1, page 320].

Proposition 4.1.2. Let P and P be the probability measures corresponding to two
continuous time Markov chains on some countable space E, with bounded waiting
times λ and λ, respectively, and with transition probabilities p and p, respectively.
Assume that p and p vanish at the diagonal, that is, p(x, x) = p(x, x) = 0 for all
x ∈ E. Assume that P is absolutely continuous with respect to P . Then, the Radon-
Nikodym derivative of P with respect to P restricted to Ft = σ(X(s) : 0 ≤ s ≤ t) is
given by

dP

dP

∣∣∣∣
Ft
(X) = exp

{
−
∫ t

0

λ(X(s))− λ(X(s))ds+
∑
s≤t

log

(
λ
(
X(s)

)
p
(
X(s−), X(s)

)
λ(X(s))p

(
X(s−), X(s)

))} ,
(4.3)

where X denotes a pure jump càdlàg time trajectory on E.

In the case of our work, P = PN and P = PHN . The probabilities PN and PHN
are associated to trajectories η(t) of course. However, recalling the definition (2.1),
we will often write XN( k

N
, t) instead of `−1ηk(t), which makes notation shorter and

enlightens ideas. Furthermore, recall the notation Hk = H( k
N
, t) = H( k

N
, t−), where

this last equality holds since H is assumed to be smooth, in space and time, and
write for simplicity XN(t) = XN(·, t).

For fixed N , we have that

λ(XN(t)) =
N−1∑
k=0

`

[
b
(
XN
k (t)

)
+ d
(
XN
k (t)

)
+ 2N2XN

k (t)

]
,

λ(XN(t)) =
N−1∑
k=0

`

[
b
(
XN
k (t)

)
eHk + d

(
XN
k (t)

)
e−Hk +N2XN

k (t)e−Hk
(
eHk+1 + eHk−1

)]
,

(4.4)
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p
(
XN(s−), XN(s)

)
=



`b
(
XN
k (s−)

)/
λ(XN(s−)), if ηk(s)=ηk(s−) + 1;

`d
(
XN
k (s−)

)/
λ(XN(s−)), if ηk(s)=ηk(s−)− 1;

N2`XN
k (s−)

/
λ(XN(s−)), if ηk(s)=ηk(s−)− 1

and ηk+1(s)=ηk+1(s−) + 1;

N2`XN
k (s−)

/
λ(XN(s−)), if ηk(s)=ηk(s−)− 1

and ηk−1(s)=ηk−1(s−) + 1;

(4.5)

and

p
(
XN(s−), XN(s)

)
=



`b
(
XN
k (s−)

)
eHk
/
λ(XN(s−)), if ηk(s) = ηk(s−) + 1;

`d
(
XN
k (s−)

)
e−Hk

/
λ(XN(s−)), if ηk(s) = ηk(s−)− 1;

N2`XN
k (s−)eHk+1−Hk

/
λ(XN(s−)), if ηk(s) = ηk(s−)− 1

and ηk+1(s) = ηk+1(s−) + 1;

N2`XN
k (s−)eHk−1−Hk

/
λ(XN(s−)), if ηk(s) = ηk(s−)− 1

and ηk−1(s) = ηk−1(s−) + 1.

(4.6)

Proof of Proposition 4.1.1. Given a path η(t), define the sets of times

Bk
t =

{
s ≤ t : ηk(s) = ηk(s−) + 1

}
,

Dk
t =

{
s ≤ t : ηk(s) = ηk(s−)− 1

}
,

Jk,k+1
t =

{
s ≤ t : ηk(s) = ηk(s−)− 1 and ηk+1(s) = ηk+1(s−) + 1

}
,

Jk,k−1
t =

{
s ≤ t : ηk(s) = ηk(s−)− 1 and ηk−1(s) = ηk−1(s−) + 1

}
.

Note that Bk
t and Dk

t represents the set of times at which some particle is created
and destroyed at the site k, respectively. The set Jk,k+1

t represents the times at
which some particle jump the site k for site k+1 and Jk,k−1

t the times at which some
particle jump the site k for site k − 1. Invoking Proposition 4.1.2, the expressions
(4.4), (4.5), (4.6) and the sets defined above, we deduce that

dPN
dPHN

∣∣∣∣
Ft

= exp

{
−
∫ t

0

N−1∑
k=0

`

[
b
(
XN
k (s)

)(
1− eHk

)
+ d
(
XN
k (s)

)(
1− e−Hk

)
+N2XN

k (s)
(

2− eHk+1−Hk − eHk−1−Hk
))]

ds

+
N−1∑
k=0

(∑
s∈Bkt

(−Hk) +
∑
s∈Dkt

Hk +
∑

s∈Jk,k+1
t

(Hk −Hk+1) +
∑

s∈Jk,k−1
t

(Hk −Hk−1)

)}
.

Since H is smooth, by a Taylor expansion on the exponential function,

2−eHk+1−Hk − eHk−1−Hk

= −Hk+1 +Hk −
1

2!

(
Hk+1 −Hk

)2 −Hk−1 +Hk −
1

2!

(
Hk−1 −Hk

)2
+O(1/N3) ,
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hence

N2XN
k (s)

(
2− eHk+1−Hk − eHk−1−Hk

))
= −XN

k (s)

(
∆NHk +

1

2

((
∇+
NHk

)2
+
(
∇−NHk

)2
)

+O(1/N)

)
.

Moreover,

∑
s∈Bkt

(−Hk) +
∑
s∈Dkt

Hk +
∑

s∈Jtk,k+1

(Hk −Hk+1) +
∑

s∈Jk,k−1
t

(Hk −Hk−1)

=

∫ t

0

(−Hk) dB
k
t +

∫ t

0

Hk dD
k
t +

∫ t

0

(Hk −Hk+1) dJk,k+1
t +

∫ t

0

(Hk −Hk−1) dJk,k−1
t

= −
∫ t

0

Hk

(
dBk

t − dDk
t − dJ

k,k+1
t + dJk−1,k

t − dJk,k−1
t + dJk+1,k

t

)
= −

∫ t

0

Hk dηk(t).

Therefore,

dPN
dPHN

∣∣∣∣
Ft

= exp

{
− `N

[∫ t

0

1

N

N−1∑
k=0

[
b
(
XN
k (s)

)(
1− eHk

)
+ d
(
XN
k (s)

)(
1− e−Hk

)
−XN

k (s)

(
∆NHk +

1

2

((
∇+
NHk

)2
+
(
∇−NHk

)2
)

+O(1/N)

)]
ds+

1

`N

N−1∑
k=0

∫ t

0

Hk dηk(t)

]}
.

Applying integration by parts for Stieltjes measures (see for instance [6, Exercise
6.4, page 470]) and relation (2.1), we are lead to

1

`N

∫ t

0

Hk dηk(t) =
1

`N

[
Hk(t)ηk(t)−Hk(0)ηk(0)−

∫ t

0

ηk(s)∂sHkds

]
=

1

N

[
Hk(t)X

N
k (t)−Hk(0)XN

k (0)−
∫ t

0

XN
k (s)∂sHkds

]
.

Therefore,

dPN
dPHN

∣∣∣∣
Ft

= exp

{
− `N

[∫ t

0

1

N

N−1∑
k=0

[
b
(
XN
k (s)

)(
1− eHk

)
+ d
(
XN
k (s)

)(
1− e−Hk

)
−XN

k (s)

(
∆NHk +

1

2

((
∇+
NHk

)2
+
(
∇−NHk

)2
)

+O(1/N)

)]
ds

+
1

N

N−1∑
k=0

(
Hk(t)X

N
k (t)−Hk(0)XN

k (0)−
∫ t

0

XN
k (s)∂sHkds

)]}
= exp

{
− `N

[
JH(XN

t ) +O(1/N)
]}

,

where

JH(u) =

∫ t

0

∫
T

[
b
(
u(s, y)

)(
1− eH(s,y)

)
+ d
(
u(s, y)

)(
1− e−H(s,y)

)
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− u(s, y)
(

∆H(s, y) +
(
∇H(s, y)

)2
)]
dy ds

+

∫
T

[
H(t, y)u(t, y)−H(0, y)u(0, y)−

∫ t

0

u(s, y)∂sH(s, y) ds

]
,

finishing the proof.

4.2 Large deviations upper bound
With the aid of Theorem 4.1.1, we will get the upper bound for the large de-

viations, since we guarantee the existence of the Radon-Nikodym derivative and
therefore we can find the rate function. Recall that PN , EN denote the probabil-
ity and expectation, respectively, on trajectories of the particle system, while PN ,
EN denote probability and expectation induced by the density of particles XN , re-
spectively. Furthermore, the super index H on PHN , EHN , PH

N , EH
N have analogous

meaning, but considering instead the perturbed process defined on Section 2.2.
Let O ⊆ D = D

(
[0, T ], C(T)

)
be an open set. Then

PN
[
O
]

= PN
[
XN ∈ O

]
= EN

[
1[XN∈O]

]
= EN

[
dPN
dPHN

dPHN
dPN

1[XN∈O]

]
= EN

[
e−`NJH(XN )e`NJH(XN )1[XN∈O]

]
≤ sup

x∈O
e−`NJH(x)EN

[
e`NJH(XN )1[XN∈O]

]
≤ sup

x∈O
e−`NJH(x),

in the last inequality we use the fact that

EN
[
e`NJH(XN )1[XN∈O]

]
= EHN

[
1[XN∈O]

]
≤ 1 .

Therefore,

lim sup
N→∞

1

`N
logPN

[
O
]
≤ − inf

x∈O
JH(x) .

Optimizing over the set of perturbations, we then get

lim sup
N→∞

1

`N
logPN

[
O
]
≤ − sup

H
inf
x∈O

JH(x) . (4.7)

To pass to compact sets, we will apply the classical Minimax Lemma. To be used
in the sequel, we recall that

lim sup
n→∞

1

an
log(bn + cn) = max

{
lim sup
n→∞

1

an
log bn , lim sup

n→∞

1

an
log cn

}
(4.8)

for any sequence of real numbers such that an →∞ and bn, cn > 0.

Proposition 4.2.1 (Minimax Lemma). Let K ⊆ S compact, where (S, d) is a Polish
space. Given {−JH}H a family of upper semi-continuous functions, it holds that

inf
O1,...,OM

max
1≤j≤M

inf
H

sup
x∈Oj
−JH(x) ≤ sup

x∈K
inf
H
−JH(x) , (4.9)

where the first infimum is taken over all finite open coverings O1, . . . ,OM of K.
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For a proof of the Proposition above, see [12, page 363] for instance. Let now K
be a compact set of D

(
[0, T ], C(T)

)
. Taking {O1, . . . ,OM} a finite open covering of

K, then

lim sup
N→∞

1

`N
logPN

[
K
]
≤ lim sup

N→∞

1

`N
log
(
PN
[
O1

]
+ · · ·+ PN

[
OM

])
,

by (4.8) and (4.7) we have that

lim sup
N→∞

1

`N
logPN

[
K
]
≤ max

1≤j≤M

{
lim sup
N→∞

1

`N
logPN

[
Oj
]}

≤ max
1≤j≤M

{
− sup

H
inf
x∈Oj

JH(x)

}
≤ inf

O1,...,OM
open covering

max
1≤j≤M

{
− sup

H
inf
x∈Oj

JH(x)

}
(4.9)
≤ − inf

x∈K
sup
H
JH(x) ,

note that the last inequality it is true because JH is continuous functional in the
Skorohod topology (see [2]). This furnishes the upper bound for compact sets. The
next proposition is the usual key to pass to closed sets. Denote by

{
Pn
}
n∈N a gen-

eral sequence of probability measures on some metric space Ω.

Definition 4.2.2. A sequence of measures
{
Pn
}
n∈N on Ω is said to be exponentially

tight if, for any b <∞, there exists a compact set Kb ⊆ Ω such that

lim sup
n→∞

1

an
logPn

[
K{
b

]
≤ −b , (4.10)

where an is a constant depending on n.

Proposition 4.2.3. Suppose that
{
Pn
}
n∈N is exponentially tight and we have the

large deviations upper bound for compact sets, that is, for each compact set K ⊆ Ω,
it holds that

lim sup
n→∞

1

an
logPn

[
K
]
≤ − inf

x∈K
I(x) . (4.11)

Then, for any closed C ⊆ Ω,

lim sup
n→∞

1

an
logPn

[
C
]
≤ − inf

x∈C
I(x) .

Proof. Note that, given the subsets C and Kb of Ω, with closed C and compact Kb,
we have that

1

an
logPn

[
C
]
≤ 1

an
log
(
Pn
[
C ∩ Kb

]
+ Pn

[
K{
b

])
.

39



Taking the limsup and using (4.8) in the above equation, we have that

lim sup
n→∞

1

an
logPn

[
C
]
≤ max

{
lim sup
n→∞

1

an
logPn

[
C ∩ Kb

]
, lim sup

n→∞

1

an
Pn
[
K{
b

]}
.

Since Kb ∩ C is compact and by (4.11) and (4.10),

lim sup
n→∞

1

an
logPn

[
C
]
≤ max

{
− inf

x∈C∩Kb
I(x) , −b

}
≤ max

{
− inf

x∈C
I(x) , −b

}
.

Taking b→∞, we conclude the proof.

In view Proposition above, in order to prove the large deviations upper bound, it
remains to assure exponential tightness for the sequence of probability measures
PN on D induced by the random element XN and the probability PN . The next
propositions will be necessary for this conclusion. Denote by ‖ · ‖1 the L1-norm on
T with respect to the Lebesgue measure.

Proposition 4.2.4. Let C ∈ R be such that C − ‖XN(0)‖1 > T‖b‖∞. Then,

1

`N
logPN

[
sup
t∈[0,T ]

‖XN(t)‖1 > C

]
≤ −I

(
C − ‖XN(0)‖1

)
, (4.12)

for any N ∈ N, where I(x) = x log
(

x
‖b‖∞

)
− x+ ‖b‖∞.

Proof. First of all, we note that I(x) is the rate function for sums of i.i.d random
variables with Poisson distribution of parameter ‖b‖∞. To prove (4.12), we consider
a birth process WN(t) on the state space N which jump rate from k to k+ 1 is given
by N`‖b‖∞ for any k ∈ N and WN(0) =

∑
k∈TN ηk(0). Recall that, by assumption,

the initial quantity of particles is a deterministic value. Since the rate at which a
particle is created somewhere in the particle system η(t) is smaller than N`‖b‖∞, it
is a standard procedure to construct a coupling between WN(t) and η(t) such that,
almost surely,

WN(t) ≥
∑
k∈TN

ηk , ∀ t ∈ [0, T ] ,

which implies that, almost surely,

1

`N
WN(t) ≥ 1

`N

∑
k∈TN

ηk = ‖XN(t)‖1 , ∀ t ∈ [0, T ] , (4.13)

Abusing of notation, denote the coupling between η(t) and WN(t) also by PN , and
by P̃ the marginal probability concerning WN(t). Therefore, in view of (4.13),

PN
[

sup
t∈[0,T ]

‖XN(t)‖1 > C

]
≤ PN

[
sup
t∈[0,T ]

1

`N
WN(T ) > C

]
≤ P̃

[
WN(T )−WN(0) > `NC −WN(0)

]
. (4.14)
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Since the distribution of WN(T ) − WN(0) is Poisson of parameter `NT‖b‖∞, and
sum of independent Poisson random variables is Poisson, the probability in (4.14)
is equal to

P̃

(
Z1 + · · ·+ Z`N

`N
> C − WN(0)

`N

)
= P̃

(
Z1 + · · ·+ Z`N

`N
> C − ‖XN(0)‖1

)
,

where Z1, Z2, . . . are i.i.d. random variables of distribution Poisson
(
T‖b‖∞

)
on some

probability space with probability P̃ . Since C − ‖XN(0)‖1 > T‖b‖∞, standard large
deviations for sums of i.i.d. random variables gives us that

1

`N
log P̃

(
Z1 + · · ·+ Z`N

`N
> C − ‖XN(0)‖1

)
≤ −I

(
C − ‖XN(0)‖1

)
,

where I(x) = x log
(

x
‖b‖∞

)
− x+ ‖b‖∞, concluding the proof.

Proposition 4.2.5. For every continuous function H : [0,+∞)× T→ R and ε > 0,

lim
δ↘0

lim sup
N→∞

1

`N
logPN

[
sup
|t−s|<δ

∣∣∣〈XN(t), H(t)
〉
−
〈
XN(s), H(s)

〉∣∣∣ > ε

]
= −∞ . (4.15)

Proof. Partitioning the time interval [0, T ] in intervals of size at most δ and apply-
ing the triangular inequality together with (4.8), one can see that it is enough to
assure that

lim
δ↘0

lim sup
N→∞

1

`N
logPN

[
sup

kδ≤t≤(k+1)δ

∣∣∣〈XN(t), H(t)
〉
−
〈
XN(kδ), H(kδ)

〉∣∣∣ > ε

]
= −∞

(4.16)

in order to have (4.15). Therefore, our goal from now on is to prove (4.16) for fixed
K ∈ {1, . . . , bT/δc}. Since |x| = max{x,−x} and using (4.8), it is enough to show
that

lim
δ↘0

lim sup
N→∞

1

`N
logPN

[
sup

Kδ≤t≤(K+1)δ

(〈
XN(t), H(t)

〉
−
〈
XN(Kδ), H(Kδ)

〉)
> ε

]
= −∞

(4.17)

and

lim
δ↘0

lim sup
N→∞

1

`N
logPN

[
sup

Kδ≤t≤(K+1)δ

(〈
XN(t), H(t)

〉
−
〈
XN(Kδ), H(Kδ)

〉)
<−ε

]
= −∞ .

(4.18)

We will only prove (4.17) whereas the argument for (4.18) is similar. Analogously
to (4.1), we may find

ANa (t) =

∫ t

Kδ

1

N

N−1∑
k=0

[
b
(
XN
k (s)

)(
1− eaHk

)
+ d
(
XN
k (s)

)(
1− e−aHk

)
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−XN
k (s)

(
a∆NHk +

a2

2

((
∇+
NHk

)2
+
(
∇−NHk

)2
)

+O(1/N)

)]
ds

+
a

N

N−1∑
k=0

(
Hk(t)X

N
k (t)−Hk(Kδ)X

N
k (Kδ)−

∫ t

Kδ

XN
k (s)∂sHkds

)

such that exp
{
− `NANa

}
is a mean-one martingale. Define RN

a by the equality

RN
a (t) = ANa (t)− a

N

N−1∑
k=0

(
Hk(t)X

N
k (t)−Hk(Kδ)X

N
k (Kδ)

)
= ANa (t)− a

[〈
XN(t), H(t)

〉
−
〈
XN(Kδ), H(Kδ)

〉]
.

Then,

PN

[
sup

Kδ≤t≤(K+1)δ

(〈
XN(t), H(t)

〉
−
〈
XN(Kδ), H(Kδ)

〉)
> ε

]

= PN

[
sup

Kδ≤t≤(K+1)δ

(
ANa (t)−RN

a (t)
)
> aε

]

= PN

[
sup

Kδ≤t≤(K+1)δ

e`N
(
ANa (t)−RNa (t)

)
> eaε`N

]
.

Define the event

E =
[

sup
t∈[0,T ]

‖XN(t)‖1 ≤ C
]
.

Restrict to E, it is straightforward to check that

|RN
a | ≤ m(H, b, d)Cδ ,

where m(H, b, d) is a constant depending only on H, on its first and second deriva-
tives and on the Lipschitz constant of b and d. Note that the factor δ appears since
the integral in time is taken over the interval [Kδ, t]. Hence, partitioning into E
and E{, we have that

PN

[
sup

Kδ≤t≤(K+1)δ

e`N(ANa (t)−RNa (t)) > eaε`N

]
(4.19)

≤ PN

[
sup

Kδ≤t≤(K+1)δ

e`NA
N
a (t) > e`N(aε−m(H,b,d)Cδ)

]
+ PN

[
E{
]
.

By Doob’s inequality, the right-hand side of above is bounded from above by

EN
[
e`NA

N
a (t)
]

e`N(aε−m(H,b,d)Cδ)
+ PN

[
E{
]

= exp{−`N(aε−m(H, b, d)Cδ)}+ PN
[
E{
]
.
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Applying the logarithm function in (4.19), dividing it by `N , taking the lim supN
and recalling (4.8) give us that

lim sup
N→∞

1

`N
logPN

[
sup

Kδ≤t≤(K+1)δ

e`N(ANa (t)−RNa (t)) > eaε`N

]
≤ max

{
− (aε−m(H, b, d)Cδ) , lim sup

N→∞

1

`N
logPN

[
E{
]}
.

Applying Proposition 4.2.4, we can bound the expression above by

max
{
− aε+m(H, b, d)Cδ , lim sup

N→∞
−I
(
C − ‖XN(0)‖1

)}
= max

{
− aε+m(H, b, d)Cδ , −I

(
C − ‖ψ(0)‖1

)}
.

Since limx→∞ I(x) = ∞, we are allowed to first choose C large, then δ small, and
then finally a large, leading us to conclude that

lim sup
N→∞

1

`N
logPN

[
sup

Kδ≤t≤(K+1)δ

e`N(ANa (t)−RNa (t)) > eaε`N

]
= −∞ ,

finishing the proof.

Proposition 4.2.6. The sequence of measures
{
PN
}
N∈N on D is exponentially tight.

Proof. Using (4.15), we obtain the sequence of compact sets satisfying (4.10). De-
fine the sets

Lc =
{
u ∈ D : ‖u0‖∞ ≤ c

}
Cδ,1/n =

{
u ∈ D : sup

|t−s|<δ
‖ut − us‖∞ ≤ 1/n

}
,

A =
(
∩∞n=1 Cδ,1/n

)
∩ Lc .

By Arzelá-Ascoli’s Theorem, the set A is pre-compact, hence A is compact. Taking
{Hj}j∈N a dense set in C(T), let us define

C
Hj
δ,1/n =

{
u ∈ D : sup

|t−s|<δ

∣∣∣∣ ∫ ut(x)Hj(t, x)dx−
∫
us(x)Hj(s, x)dx

∣∣∣∣ ≤ 1/n

}
and

Bδ = Lc ∩
(
∩∞j,n=1 C

Hj
δ,1/n

)
.

Our goal is to prove that Bδ is compact, so it suffices to verify that Bδ ⊆ A. Let
u ∈

(
∩∞n=1Cδ,1/n

){, then there exists n0 ∈ N such that u ∈ C{
δ,1/n0

, that is, there exists
|t − s| < δ such that ‖ut − us‖∞ > 1/n. Since {Hj}j is dense, there exists Hj0 with
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∣∣ ∫ ut(x)Hj0(x, t)dx−
∫
us(x)Hj0(x, s)dx

∣∣ > 1/n, hence u ∈
(
C
Hj0
δ,1/n

){. Finally we show
(4.10). Note that

lim sup
N→∞

1

`N
logPN

[
B

{
δ

]
= lim sup

N→∞

1

`N
logPN

[(
Lc ∩

(
∩∞j,n=1 C

Hj
δ,1/n

){]
≤ lim sup

N→∞

1

`N
log

[
PN

[
L{
c

]
+

∞∑
j,n=1

PN

[(
C
Hj
δ,1/n

){]]

≤ max

{
lim sup
N→∞

1

`N
logPN

[
L{
c

]
, lim sup

N→∞

1

`N
log

[
∞∑

j,n=1

PN

[(
C
Hj
δ,1/n

){]]}
,

where in the second inequality we used (4.8). Since

lim sup
N→∞

1

`N
logPN

[
‖XN(0)‖∞ > c

]
= −∞ ,

then

lim sup
N→∞

1

`N
logPN

[
B

{
δ

]
≤ lim sup

N→∞

1

`N
log

[
∞∑

j,n=1

PN

[(
C
Hj
δ,1/n

){]]
, (4.20)

By (4.15), there exists δ0 such that

lim sup
N→∞

1

`N
logPN

[(
C
Hj
δ0,ε

){]
≤ −bδ0

ε
,

and there exists N0 such that for all N > N0,

1

`N
logPN

[(
C
Hj
δ0,ε

){]
≤ −bδ0

ε
.

Therefore,

∞∑
j,n=1

PN

[(
C
Hj
δ,1/n

){]
≤

∞∑
j,n=1

exp{−bδ`Nn} =
e−bδ`N

1− e−bδ`N
≤ 2e−bδ`N .

Then, coming back to (4.20),

lim sup
N→∞

1

`N
logPN

[
B

{
δ

]
< lim sup

N→∞

1

`N
log
(
2e−bδ`N

)
= −bδ .

Now, taking b = bδ we obtain the exponential tightness (4.10) hence finishing the
proof.

Therefore, with Lemma 4.2.3 and Proposition 4.2.6 at hand we have concluded
the proof of the upper bound for large deviations.

44



4.3 Large deviations lower bound for smooth pro-
files

In this section we will prove the large deviations principle lower bound consid-
ering profiles in Dα

pert , defined in Chapter 2. First, we obtain a non-variational
formulation of the rate functional I for profiles ψ which are solutions of the partial
differential equation corresponding to the perturbed process for some perturbation
H.

Proposition 4.3.1. Given H ∈ C1,2, let ψ = ψH be the unique solution of (2.5).
Then,

I(ψ)
def
= sup

G
JG(ψ) = JH(ψ) =

∫ t

0

∫
T

[
(∂xH)2ψ + b(ψ) Γ(H) + d(ψ) Γ(−H)

]
dx ds ,

(4.21)

where Γ(y) = 1− ey + y ey, y ∈ R.

Proof. Multiplying the PDE (2.5) by a test function G ∈ C1,2 and integrating in
space and time, we get that∫

T

∫ t

0

G∂tψ ds dx =

∫
T

∫ t

0

G∂2
xψ − 2G∂x

(
ψ∂xH

)
+G

[
eHb(ψ)− e−Hd(ψ)

]
ds dx .

Using integration by parts and that

GeHb(ψ) = b(ψ)Γ(G,H)− b(ψ)(1− eG) ,

−Ge−Hd(ψ) = d(ψ)Γ(−G,−H)− d(ψ)(1− e−G) ,

where Γ(x, y) = 1− ex + x ey, we conclude that∫
T

[
G(t, x)ψ(t, x)−G(0, x)ψ(0, x)−

∫ t

0

ψ(s, x)∂tG(s, x) ds

]
dx

=

∫ t

0

∫
T
∂2
xG(s, x)ψ(s, x) dx ds+

∫ t

0

∫
T

2ψ(s, x)∂xG(s, x)∂xH(s, x) dx ds

+

∫ t

0

∫
T
b(ψ(s, x))Γ

(
G(s, x), H(s, x)

)
− b(ψ(s, x))

(
1− eG(s,x)

)
+ d(ψ(s, x))Γ

(
−G(s, x),−H(s, x)

)
− d(ψ(s, x))

(
1− e−G(s,x)

)
dx ds ,

Recall the definition of JH in (2.8). The equality above allows us to deduce that

JG(ψ) =

∫ t

0

∫
T

[
− ψ(∂xG)2 + 2ψ∂xG∂xH + b(ψ)Γ(G,H) + d(ψ)Γ(−G,−H)

]
dx ds .

Finally, noting that 2∂xG∂xH = −
(
∂xG− ∂xH

)2
+ (∂xG)2 + (∂xH)2, we arrive at

JG(ψ) =

∫ t

0

∫
T

[
−
(
∂xG− ∂xH

)2
ψ + (∂xH)2ψ + b(ψ)Γ(G,H) + d(ψ)Γ(−G,−H)

]
dx ds .
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Fix y ∈ R. Since the function x 7→ Γ(x, y) assumes its maximum at x = y and
−(∂xG− ∂xH)2 assumes its maximum at G = H, we conclude that

I(ψ) = sup
G
JG(ψ) = JH(ψ).

Since Γ(y) = Γ(y, y), we obtain (4.21).

Solutions of (2.5) for some H provide the special representation above for the
rate function. It is thus natural to find the set of profiles ψ for which we may find
a perturbation H fulfilling the requirements in order to permit the high density
limit (towards ψ).

Proposition 4.3.2. Let ψ ∈ C2,3 such that ψ ≥ ε for some ε > 0. Then, there exists
a unique solution H ∈ C1,2 of the elliptic equation

∂2
xH +

∂xψ

ψ
∂xH =

∂2
xψ − ∂tψ

2ψ
+ eHb(ψ)− e−Hd(ψ) . (4.22)

Proof. For each fixed time t ∈ [0, T ], equation (4.22) can seen a non-linear second
order ordinary differential equation on the interval [0, 1]. As an ODE in [0, 1] any of
its solutions can be written as the sum of a particular solution of (4.22) plus some
solution of the homogeneous part

∂2
xH +

∂xψ

ψ
∂xH = 0 . (4.23)

Solving (4.23) and then properly choosing constants, allow to find a particular so-
lution of (4.22) such that H(0) = H(1), ∂xH(0) = ∂xH(1) and ∂2

xH(0) = ∂2
xH(1), that

is, such a solution H belongs to C1,2. Details are omitted here.

By Proposition 4.3.1, a profile which is a solution of (2.5) for some H provides a
special representation for the rate function. This together with Proposition 4.3.2
motivates the definition of Dα

pert given in Section 2.1.
Due to Proposition 4.3.2 and Remark 2.2.3, given ψ ∈ Dα

pert , we can find H =
H(ψ) ∈ C1,2 such that the assumptions of Theorem 2.2.1 are satisfied. In words,
the perturbed process (under the perturbation H) has a high density limit, and the
limiting profile is the aforementioned ψ. We are now in position to prove the lower
bound for trajectories in Dα

pert . Before, we need to gather some ingredients, which
will be given by the next four lemmas.

Lemma 4.3.3. Let C ∈ R be such that C − ‖XN(0)‖1 > T‖beH‖∞. Then,

1

`N
logPHN

[
sup
t∈[0,T ]

‖XN(t)‖1 > C

]
≤ −I

(
C − ‖XN(0)‖1

)
, (4.24)

for any N ∈ N, where I(x) = x log
(

x
‖beH‖∞

)
− x+ ‖beH‖∞.

Proof. Note that the probability above is the one associated to the perturbed pro-
cess. The proof of the inequality (4.24) is exactly the same as that one of Proposi-
tion 4.2.4 once we replace ‖b‖∞ by ‖beH‖∞.
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Lemma 4.3.4. The expectation EHN
[ ∣∣ 1

`N
log dPN

dPHN

∣∣2 ] is uniformly bounded in N ∈ N.

Proof. By Proposition 4.1.1, it not difficult to see that∣∣∣∣ 1

`N
log

dPN
dPHN

∣∣∣∣ ≤ f(XN)
def
= c̄

∫
T

(
|XN(t)|+ |XN(0)|+

∫ t

0

|XN(s)| ds
)
dx (4.25)

for some c̄ = c̄(H) > 0. Observe that

f(XN) ≤ c̄ · (2 + t) sup
t∈[0,T ]

‖XN(t)‖1 .

As a consequence of Lemma 4.3.3,

1

`N
logPHN

[
f(XN)

c̄(2 + t)
> C

]
≤ 1

`N
logPHN

[
sup
t∈[0,T ]

‖XN(t)‖1 > C

]
≤ −I

(
C − ‖XN(0)‖1

)
,

for any N ∈ N, where C and I above are the same as in the statement of Lemma
4.3.3. Replacing C by

√
k/c̄(2 + t), where k ∈ N is large enough, we conclude that

PHN
[
f(XN) >

√
k
]
≤ exp

{
− `N I

( √
k

c̄(2 + t)
− ‖XN(0)‖1

)}
,

thus

PHN
[
f(XN)2 > k

]
≤ exp

{
− `N I

( √
k

c̄(2 + t)
− ‖XN(0)‖1

)}
≤ exp

{
− I
( √

k

c̄(2 + t)
− ‖XN(0)‖1

)}
,

for all k ≥ k0 with k0 ∈ N. Keep in mind that the choice of k0 does not depend on
` neither N , see the statement of Lemma 4.3.3. Since I(x) = x log

(
x

‖beH‖∞

)
− x +

‖beH‖∞, some simple analysis permits to deduce that∑
k≥k0

PHN
[
f(XN)2 > k

]
≤ c1 < ∞ ,

for some suitably large k0 ∈ N. This allows to finish the proof.

Lemma 4.3.5. Let ψ ∈ Dα
pert , O be an open set of D such that ψ ∈ O and H ∈ C1,2

the solution of (4.22). Then

lim
N→∞

EHN
[
1[XN∈O{]

1

`N
log

dPN
dPHN

]
= 0 . (4.26)

Proof. By Lemma (4.3.4) and Cauchy-Schwarz inequality,

EHN
[
1[XN∈O{]

1

`N
log

dPN
dPHN

]
≤
√

PHN [XN ∈ O{]

√
EHN
[( 1

`N
log

dPN
dPHN

)2]
,

which proves (4.26) due to Theorem 2.2.1, concluding the proof.
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We make now the classical connection between the rate function and the en-
tropy between the process of reference and the perturbed process.

Lemma 4.3.6. Let
H
(
PHN |PN

) def
= EHN

[
log

dPHN
dPN

]
(4.27)

be the relative entropy of PHN with respect to PN . Then,

lim
N→∞

1

`N
H
(
PHN |PN

)
= I(ψ) ,

where ψ is the (unique) solution of (2.5).

Proof. Note that

1

`N
H
(
PHN |PN

)
=

1

`N
EHN
[

log
dPHN
dPN

]
= − 1

`N
EHN
[

log
dPN
dPHN

]
Recalling the expression 4.1 for the Radon-Nikodym derivative, we get that

1

`N
H
(
PHN |PN

)
= EHN

[
JH(XN) +O(1/N)

]
.

By Lemma 4.3.4, {JH(XN)} is a uniformly integrable sequence (with respect to
PHN ). Since JH : D→ R is a continuous function and PHN converges weakly to a delta
of Dirac at ψ, we conclude that

lim
N→∞

1

`N
H
(
PHN |PN

)
= JH(ψ) = I(ψ) ,

by Proposition 4.3.1, which finishes the proof.

We are in position to finally prove Proposition 2.12.

Proof of lower bound for profiles in Dα
pert . Fix an open set O. Given ψ ∈ O ∩Dα

pert ,
there exists H ∈ C1,2 such that ψ is solution of (2.5) and ‖∂xH‖∞ < π

√
α. Denote

by PH,ON the probability on the space DΩN given by

PH,ON [A]
def
=

PHN [A,XN ∈ O]

PHN [XN ∈ O]
,

for any A measurable subset of DΩN . Under this definition,

1

`N
logPN [O] =

1

`N
logPN [XN ∈ O]

=
1

`N
logEN

[
1[XN∈O]

dPN
dPHN

dPHN
dPN

]

=
1

`N
logEHN

[
1[XN∈O]

dPN
dPHN

]

48



=
1

`N
logEH,ON

[
dPN
dPHN

]
+

1

`N
logPHN [XN ∈ O] . (4.28)

Since O is a open set and ψ ∈ O, by Theorem 2.2.1 and Portmanteau’s Theorem,

lim inf PHN [XN ∈ O] ≥ 1 ,

hence the second parcel on (4.28) converges to zero as N →∞. Since the logarithm
is a concave function, by Jensen inequality the first parcel in (4.28) is bounded
from below by

EH,ON

[
1

`N
log

dPN
dPHN

]
=

EHN
[
1[XN∈O]

1

`N
log

dPN
dPHN

]
PHN [XN ∈ O]

. (4.29)

Adding and subtracting terms, we can rewrite (4.29) as

1

PHN
[
XN ∈ O

]{− 1

`N
H
(
PHN |PN

)
− EHN

[
1[XN∈O{]

1

`N
log

dPN
dPHN

]}
, (4.30)

Again by Theorem 2.2.1 and the Portmanteau Theorem, we have that PHN
[
XN ∈ O

]
goes to one as N increases to infinity. By Lemma 4.3.5 the second term inside
braces in (4.30) vanishes as N →∞. Thus

lim inf
N→∞

1

`N
logPN [O] ≥ lim

N→∞
− 1

`N
H
(
PHN |PN

)
= −I(ψ) ,

where the last equality has been assured in Lemma 4.3.6. Optimizing the inequal-
ity above over ψ ∈ Dα

pert leads us to (2.12) hence concluding the proof.

4.4 Large deviations lower bound for ` in the ex-
ponential case

In this section we will assume that `(N) = ecN in order to obtain a full large
deviations principle. The scheme of proof here follows the same ideas of [11] and
it is included here for sake of completeness.

Definition 4.4.1. Denote by D∞pert ⊆ D = D
(
[0, T ], C(T)

)
the set of all profiles ψ :

[0, T ]× T→ R satisfying:
• ψ ∈ C2,3 ,
• ψ ≥ ε for some ε > 0 .

Repeating ipsis litteris the arguments of the previous subsection, under the
hypothesis that `(N) = ecN we get that, given an open set O ⊂ D

(
[0, T ], C(T)

)
, for

any ψ ∈ D∞pert ∩ O, we have that

lim inf
N→∞

1

`N
logPN [O] ≥ −I(ψ) . (4.31)
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In what follows, we will say that a sequence ρn ∈ D
(
[0, T ], C(T)

)
approximates

ρ0 ∈ D
(
[0, T ], C(T)

)
if ρn converges to ρ0 in the topology of D

(
[0, T ], C(T)

)
and

lim
n→∞

I(ρn) = I(ρ0) . (4.32)

To conclude the proof of the lower bound large deviations it only remains to prove
that any profile ρ0 ∈ D

(
[0, T ], C(T)

)
such that I(ρ0) < ∞ can be approximated by

a sequence ρn ∈ D∞pert . In the usual terminology, we have to assure that the set
D∞pert is I-dense. In plain words, (4.32) together with the I-density of D∞pert imply
the lower bound in Theorem 2.3.3.

Let us start by splitting the functional JH into the H-dependent part, denoted
by J1

H , and the part which does depend on H, denoted by J2. That is:

J1
H(ρ) =

∫
T

[
H(t, x)ρ(t, x)−H(0, x)ρ(0, x)

]
dx

+

∫ t

0

∫
T

[
− ρ(s, x)

(
∂sH(s, x) + ∆H(s, x) +

(
∇H(s, x)

)2
)

− b
(
ρ(s, x)

)
eH(s,x) − d

(
ρ(s, x)

)
e−H(s,x)

]
dx ds ,

(4.33)

and

J2(ρ) =

∫ t

0

∫
T
b
(
ρ(s, x)

)
+ d
(
ρ(s, x)

)
dx ds . (4.34)

Hence we define I1(ρ) = supH∈C1,2 J1
H(ρ) if u(·, 0) = γ(·), and I1(ρ) = ∞ otherwise,

which gives us that
I(ρ) = I1(ρ) + J2(ρ) .

Proposition 4.4.2. The functional I1 : D
(
[0, T ], C(T)

)
→ R+ ∪ {+∞} is convex.

Proof. The functions b and d are assumed to be concave, thus J1
H is a convex func-

tion, see (4.33). Since the supremum of convex functions is a convex function, then
I1 is a convex function.

Proposition 4.4.3. The rate function I : D
(
[0, T ], C(T)

)
→ R+ ∪ {+∞} is a lower

semi-continuous (l.s.c) function, that is,

lim inf
ρ→ρ0

I(ρ) ≥ I(ρ0)

for any ρ0 ∈ D
(
[0, T ], C(T)

)
. Moreover, I1 : D

(
[0, T ], C(T)

)
→ R+ ∪ {+∞} is also

lower semi-continuous and J is continuous.

Proof. We start by noting that J1
H , J

2 : D
(
[0, T ], C(T)

)
→ R are continuous func-

tionals in the Skorohod topology (see [2]) hence they are l.s.c. Since the supremum
of l.s.c functions is a l.s.c function, we deduce that I1 is l.s.c. And since the sum of
l.s.c functions is a l.s.c function, we conclude that I : D

(
[0, T ], C(T)

)
→ R+ ∪ {+∞}

is also a l.s.c function.
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The next proposition tell us that time discontinuous space-time profiles play no
role in the large deviations behavior.

Proposition 4.4.4. If ρ ∈ D
(
[0, T ], C(T)

)
and ρ /∈ C

(
[0, T ]× T

)
, then I(ρ) = +∞.

Proof. We claim first that, if f : [0, T ] → R is discontinuous at a ∈ [0, T ] and has
side limits at a, and F,G : R→ R are continuous functions, then

sup
H∈C1([0,T ])

{∫ T

0

f(s)∂sH(s) ds−
∫ T

0

F (f(s))G(H(s)) ds

}
= ∞ . (4.35)

In fact, letHn : [0, T ]→ R such thatHn has support in the interval [a−1/n2, a+1/n2],
Hn ∈ C∞([0, T ]), Hn(a) = n and 0 ≤ Hn ≤ n, that is, Hn is close to a delta of Dirac
times the constant 1/n in the sense of Schwartz distributions.

Since the L1-norm of Hn is of order 1/n, it is easy to check that∫ T

0

F (f(s))G(Hn(s)) ds

converges as n→∞. On the other hand, it is easy to check that the integral∫ T

0

f(s)∂sHn(s) ds

is of order n
[
f(a+)− f(a−)

]
. These two facts imply (4.35), proving the claim.

The proof that the statement is a straightforward adaptation of the claim above,
and details are omitted here.

Proposition 4.4.5. The set of profiles ρ ∈ C
(
[0, T ]×T

)
such that ρ ≥ ε > 0 for some

ε = ε(ρ) > 0 is I-dense.

Proof. If ρ0 ∈ D
(
[0, T ], C(T)

)
is such that I(ρ0) <∞, we known by Proposition 4.4.4

that ρ ∈ C
(
[0, T ] × T

)
. Let ρn = 1

n
+
(
1 − 1

n

)
ρ0, which converges to ρ0 as n → ∞.

Since I is l.s.c, then
lim inf
n→∞

I(ρn) ≥ I(ρ0) .

Since J2 is continuous, then

lim
n→∞

J2(ρn) = J2(ρ0) .

And since I1 is convex, then

lim sup
n→∞

I(ρn) ≤ lim sup
n→∞

1

n
I(1) + lim sup

n→∞

(
1− 1

n

)
I(ρ0) = I(ρ0) .

Therefore, limn→∞ I(ρn) = I(ρ0).

Proposition 4.4.6. The set of profiles ρ ∈ C0,∞([0, T ] × T
)

such that ρ ≥ ε > 0 for
some ε = ε(ρ) > 0 is I-dense.
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Proof. By the Proposition 4.4.5, it is enough to prove the I-density of the set above
on the set of profiles ρ ∈ C

(
[0, T ] × T

)
such that ρ ≥ ε > 0 for some ε = ε(ρ) > 0.

Let Ψδ : T → R be an approximation of identity, that is,
∫
T Ψδ(x)dx = 1, Ψδ ≥

0, supp(Ψδ) ⊂ (−δ, δ), Ψδ is symmetric around zero and Ψ ∈ C∞(T). Denote by
(Ψδ ∗ ρ)(t, u) the spatial convolution of Ψδ with ρ ∈ C

(
[0, T ], C∞(T)

)
.

It is simple to check that Ψδ ∗ ρ converges to ρ as δ ↘ 0. Thus, by Proposi-
tion 4.4.3,

lim
δ→0

J(Ψδ ∗ ρ) = J(ρ) , (4.36)

and
lim inf
δ→0

I1(Ψδ ∗ ρ) ≥ I1(ρ) .

On the other hand, since I1 is convex and (spatially) translation invariant, we get
that

I1(Ψδ ∗ ρ) ≤
∫
T
I1(Tuρ)Ψδ(u) du =

∫
T
I1(ρ)Ψδ(u) du = I1(ρ) ,

where Tu denotes the rotation of u on the torus T. Thus lim supδ→0 I
1(Ψδ∗ρ) ≤ I1(ρ),

which leads us to
lim
δ→0

I1(Ψδ ∗ ρ) = I1(ρ) . (4.37)

Putting together (4.36) and (4.37) concludes the proof.
Proposition 4.4.7. The set of profiles ρ ∈ C∞,∞

(
[0, T ] × T) such that ρ ≥ ε > 0 for

some ε = ε(ρ) > 0 is I-dense.
Proof. By Proposition 4.4.6, it is enough to assure the I-density on the set of pro-
files ρ ∈ C0,∞([0, T ] × T

)
such that ρ ≥ ε > 0 for some ε = ε(ρ) > 0. Let henceforth

be ρ with these properties and such that I(ρ) <∞.
Let Ψ1/n be a time-approximation of identity, that is, Ψ1/n has support in

(−1/n, 1/n), is symmetric around zero, non negative and C∞(R). We define now
a suitable kind of time translation. Set, for t ∈ [0, T ],

σtρ(s, u) =

{
ρ(s+ t, u) for 0 ≤ s ≤ T − t,
ρ(T, u) for T − t ≤ s ≤ T,

and set, for t ∈ [−T, 0],

σtρ(s, u) =

{
ρ(s+ t, u) for − t ≤ s ≤ T,

ρ(0, u) for 0 ≤ s ≤ −t.

For n ∈ N such that 1/n < T/2, let

ρn(t, u) =

∫ T

−T
Ψ1/n(s)σsρ(t, u)ds .

It is easy to check that ρn converges to ρ, thus J(ρn) converges to J(ρ) as n → ∞.
By the convexity of I1 and an adaptation of [11, Prop. 3.1], we get that

I1(ρn) ≤ I1(ρ) +
c

n
,

where c = c(ρ) is a constant. This inequality and the lower semi-continuity of I1

implies that limn→∞ I(ρn) = I(ρ), concluding the proof.
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