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Resumo

Nesta tese, estabelecemos um Teorema do tipo Trotter-Kato. Mais precisamente,
caracterizamos a convergência em distibuição de processos de Feller examinando a con-
vergência de seus geradores. A principal contribuição aqui está em obter estimativas
de velocidade quantitativas na topologia vaga para tempos fixos. Como importante apli-
cação, e deduzimos um teorema central do limite funcional para passeios aleatórios na
semi-reta positiva, o qual converge para movimentos Brownianos na semi-reta positiva
com condições de fronteira, assim como passeios aleatórios na reta convergindo para o
Snapping Out Brownian motion.

Palavras-chave: Teorema central do limite funcional, geradores, estimativas
de Berry-Esseen, movimento Browniano geral, Snapping Out Brownian mo-
tion



Abstract

In this thesis, we establish a Trotter-Kato type theorem. More precisely, we charac-
terize the convergence in distribution of Feller processes by examining the convergence
of their generators. The main contribution here is to obtain quantitative rate estimates
in the vague topology for fixed times. As an important application, a central functional
limit theorem is derived for random walks on the positive half-line, which converges to
Brownian motions on the positive half-line with boundary conditions, as well as random
walks on the line converging to the Snapping Out Brownian motion.

Keywords: Functional central limit theorem, generator, Berry-Esseen esti-
mates, general Brownian motion, snapping-out Brownian motion
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Chapter 1

The General Framework

1.1 Introduction
The subject of functional central limit theorems (functional CLTs) originated from

the now standard Donsker Theorem and Invariance Principles for Brownian motion.
Since then, a substantial body of literature has emerged, focusing on invariance prin-
ciples for various types of random walks (including those on random media) and their
convergence to standard Brownian motion. However, the convergence to Brownian-type
processes, such as the skew Brownian motion, sticky Brownian motion, elastic Brownian
motion, and others, has received much less attention up to the present day.

As some rare examples, in 1981 [Harrison and Shepp, 1981], Harrison and Sheep
showed the convergence of a specific queue to sticky Brownian motion. In 1991, Amir
[Amir, 1991] established the convergence of rescaled discrete-time random walks with
deterministic waiting times, also to sticky Brownian motion. More recently, in 2021, Er-
hard, Franco, and da Silva [Erhard et al., 2021] proved a functional central limit for the
slow bond random walk. The limit of this process is given by the snapping out Brownian
motion, a Brownian-type process first introduced in 2016 by Lejay [Lejay, 2016]. Some-
what related to the subject, in a recent paper [Kosygina et al., 2022], Kosygina, Mount-
ford, and Peterson have shown the convergence of the one-dimensional cookie random
walk (a walk that takes a decision based on the local time of the present position) to-
wards what they called a Brownian motion perturbed at extrema, which is a stochastic
process W (t) solving a functional equation relating W (t), its maxima and minima, and
a standard Brownian motion.

In this work, we present a criterion to ensure a functional central limit theorem for
Feller processes, based on the rate of convergence of their generators. This criterion
comes with a corresponding Berry-Esseen type estimate. Convergence in distribution
via the convergence of generators is not a new topic. A classical result in the book by
Ethier and Kurtz [Ethier and Kurtz, 1986, Theorem 6.1 on page 28] can be stated as
follows:

Theorem 1.1. [Ethier and Kurtz, 1986, Theorem 6.1, page 28] Consider a sequence
{Tn(t) : t ≥ 0} of strongly continuous contraction semigroups, where each Tn is defined
on a Banach space Xn and has generator Ln. Denote by πn the projection of another
Banach space X onto Xn where a strongly continuous semigroup T with generator L is
defined. Then Tn(t)πnf converges to T(t)f for each t if and only if for every f in a core
for L there exists fn in a core for Ln such that fn → f and Lnfn → Lf .

The convergence assumed in Theorem 1.1 is in the sense of Definition 1.1 which will
be defined in sequence.

1
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Our main result complements Theorem 1.1 and shows that a rate of convergence in
the convergence of the generators implies a rate of convergence of the corresponding
semigroups. This in turn will imply a rate of convergence in the vague topology of the
law induced by Tn to the one induced by T. Our result therefore establishes a sort of
weak Berry-Esseen estimate. The primary applications we have in mind are boundary
problems, where we show that, in many cases, it is crucial that the function fn does
not necessarily coincide with πnf but can be chosen to address issues arising from the
boundary conditions. As an interesting application of this general framework, we estab-
lish a functional central limit theorem for a wide class of random walks on the positive
integers, which converge to the most general Brownian motion on the positive half-line,
and we show as well that the slow bond random walk converges to the snapping-out
Brownian motion in a simpler way than the one in the work or Erhard, Franco and
Silva [Erhard et al., 2021].

This chapter and the next one are based on the work [Erhard et al., 2024] and the
last chapter presents a toy model that gives insights into a new problem.

1.2 The Functional Setup
This section is reserved for presenting and rigorously proving the general framework

used in the applications explored throughout this doctoral dissertation.
Before proceeding, let us fix some notation: Throughout the text, by N0, we mean the

set of natural numbers with 0, that is {0, 1, 2, . . . }. Additionally, for any two functions f
and g, by f ≲ g we mean that there exists a positive constant c such that f(n) ≤ cg(n)
for every n ∈ N. Finally, the constant does not depend on n but is allowed to depend on
other parameters.

For each n ∈ N we consider Bn := (Bn, ∥·∥) and B := (B, ∥·∥) to be Banach spaces,
where by ∥·∥ we mean their norm. For each t ≥ 0 fixed, let Tn(t) : Bn → Bn and
T(t) : B → B strongly continuous contraction semigroups and we denote by Ln and L
their infinitesimal generators with domains D (Ln) and D (L) respectively. Finally, the
notation f ∈ D (L2) means that the element f and the generator applied to this element,
Lf , both belong to the domain D (L), formally, D (L2) := {f ∈ D (L) : Lf ∈ D (L)}.

Define πn : B → Bn to be a bounded linear operator indexed in n ∈ N, here called a
natural projection. Additionally, for each n ∈ N, define Ξn : B → Bn, a bounded family of
linear operators, called the correction operators. Moreover, let ∥·∥OP denote the operator
norm.

Definition 1.1. Let B and Bn Banach spaces, indexed in n ∈ N. We say that fn ∈ Bn

converges to f ∈ B if ∥πnf − fn∥ → 0 as n → ∞.

We further introduce the operator Φn := πn + Ξn which combines the natural projec-
tions and correction operators into a single mapping. Toward establishing the founda-
tion for proving the main theorem, we consider the following set of hypotheses:

(A1) If f ∈ B, then Φnf ∈ D (Ln) ;

(A2) There exist sequences s1(n) ↓ 0, s2(n) ↓ 0 and s3(n) ↓ 0 satisfying for any f ∈ D (L2)

∥πnLf − LnΦnf∥ ≤ s1(n) ∥f∥+ s2(n) ∥Lf∥+ s3(n)
∥∥L2f∥∥ ;

(A3) There exist sequences r1(n) ↓ 0 and r2(n) ↓ 0 such that, for any f ∈ D (L), we have
that

∥Ξnf∥ ≤ r1(n) ∥f∥+ r2(n) ∥Lf∥ .
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As we will see next, these conditions provide an upper bound on the distance between
the semigroups generated by L and Ln. This result serves as a quantitative refinement
of the work by [Trotter, 1958] and a later improvement in [Kato, 1978] where they es-
tablish equivalence between convergence of semigroups and convergence of generators.

Theorem 1.2. Under hypotheses (A1) - (A3), for any f ∈ D (L2) and for any t in a compact
interval [0, b], we have that

∥πnT(t)f − Tn(t)πnf∥ ≲ max{s1(n), r1(n)} ∥f∥+max{s2(n), r1(n), r2(n)} ∥Lf∥
+max{s3(n), r2(n)}

∥∥L2f∥∥ .

where the constant of proportionality depends only on b.

Proof. Firstly, note that, from the conditions (A2) with (A3), we have for any f ∈ D (L2)

∥ΦnLf − LnΦnf∥ ≤ ∥ΞnLf∥+ ∥πnLf − LnΦnf∥
≤ r1(n) ∥Lf∥+ r2(n)

∥∥L2f∥∥+ s1(n) ∥f∥+ s2(n) ∥Lf∥+ s3(n)
∥∥L2f∥∥

≤ s1(n) ∥f∥+ 2max{r1(n), s2(n)} ∥Lf∥+ 2max{s3(n), r2(n)}
∥∥L2f∥∥ .

(1.2.1)

Fix t ≥ 0 and define gs,t := T(t − s)f for 0 ≤ s ≤ t. Taking the derivative with respect to
s, it follows that

∂sgs,t = ∂sT(t− s)f = −LT(t− s)f = −Lgs,t . (1.2.2)

Since {T(t) : t ≥ 0} is a semigroup, we have that

Φnf = ΦnT(0)f = Φngs,s .

From equation (1.2.2) and the assumption that Φn is a bounded operator, one can check
that

Tn(t)Φnf = Tn(0)Φng0,t +

∫ t

0

∂sTn(s)Φngs,t ds

= Tn(0)Φng0,t +

∫ t

0

[LnTn(s)Φngs,t − Tn(s)ΦnLgs,t] ds

where the first identity follows from The Fundamental Theorem of Calculus while the
second one is due to the chain rule. Also note that the hypothesis (A1) ensures that
LnΦngs,t is well defined.

Bearing the above equation in mind, the semigroups in consideration, {T(t) : t ≥ 0}
and {Tn(t) : t ≥ 0} are contraction semigroups, that is, for every t > 0,

∥T(t)∥OP ≤ 1 , and ∥T(t)∥OP ≤ 1 ,

and since T(t)L = LT(t) and Tn(t)Ln = LnTn(t) for all n ∈ N, and in addition considering
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equation (1.2.1), for all t ≥ 0 and for every f ∈ D (L2) it follows

∥Tn(t)Φnf − ΦnT(t)f∥ =

∥∥∥∥∫ t

0

Tn(s) [LnΦngs,t − ΦnLgs,t] ds

∥∥∥∥
≤

∫ t

0

∥Tn(s)∥OP · ∥LnΦngs,t − ΦnLgs,t∥ ds

≤
∫ t

0

[s1(n) ∥T(t− s)f∥+ 2max{r1(n), s2(n)} ∥LT(t− s)f∥] ds

+ 2

∫ t

0

max{s3(n), r2(n)}
∥∥L2T(t− s)f

∥∥ ds
≤

∫ t

0

[s1(n) ∥T(t− s)f∥+ 2max{r1(n), s2(n)} ∥T(t− s)Lf∥] ds

+ 2

∫ t

0

max{s3(n), r2(n)}
∥∥T(t− s)L2f

∥∥ ds
≤ 2t

(
s1(n) ∥f∥+max{s2(n), r1(n)} ∥Lf∥+max{s3(n), r2(n)}

∥∥L2f∥∥) . (1.2.3)

Finally, recalling that Φn = πn + Ξn, from the triangle inequality it follows that

∥Tn(t)πnf − πnT(t)f∥ = ∥Tn(t) (Φn − Ξn) f − (Φn − Ξn)T(t)f∥
≤ ∥Tn(t)Φnf − ΦnT(t)f∥+ ∥Tn(t)Ξnf∥+ ∥ΞnT(t)f∥ . (1.2.4)

Again, since {Tn(t) : t ≥ 0} and {T(t) : t ≥ 0} are contraction semigroups, by invoking
hypothesis (A3) one can check that

∥Tn(t)Ξnf∥+ ∥ΞnT(t)f∥ ≤ ∥Tn(t)∥OP ∥Ξnf∥+ ∥ΞnT(t)f∥
≤ r1(n) ∥f∥+ r2(n) ∥Lf∥+ r1(n) ∥T(t)f∥+ r2(n) ∥LT(t)f∥
≤ r1(n) ∥f∥+ r2(n) ∥Lf∥+ r1(n) ∥T(t)∥OP ∥f∥+ r2(n) ∥T(t)Lf∥
≤ 2r1(n) ∥f∥+ r2(n) ∥Lf∥+ r2(n) ∥T(t)∥OP ∥Lf∥
≤ 2 (r1(n) ∥f∥+ r2(n) ∥Lf∥) . (1.2.5)

Thus, by gluing (1.2.3), (1.2.4) and (1.2.5), the result follows.

1.3 The Probability Setup
So far, we have a result on functional analysis. From this point onward, we restrict

our focus to the setting of probability measures. Let us then define the space of trajec-
tories in which the stochastic processes will take place.

Consider (S, ρ) to be a separable locally compact (but possibly not complete) metric
space and consider a function f : S → R. For us, by limx→∞ f(x) = 0 we mean that, for
any fixed x0 ∈ S,

lim
x:ρ(x,x0)→∞

f(x) = 0 . (1.3.1)

In other words, if a point is arbitrarily far from any fixed point, the function evaluated
at this point vanishes. It is important to note that, in this context, the choice of x0 is not
relevant.

Denote by S̄ the completion of the metric space (S, ρ) with respect to the metric ρ, and
by ∂S := S̄ \ S we mean the boundary of the completion. Let ∆ denote an extra point
isolated from S such that the distance between ∆ and any other x ∈ S is positive, for
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instance, ρ(∆, x) ≥ 1. We call it the cemetery point of S and such point has the property
that any test function vanishes when evaluated at it.

From now on, we are interested on the following function subspace:

Definition 1.2. We denote by C0(S) the space of functions f : S̄ ∪ ∆ → R vanishing at
infinity, if f satisfy that

• limx→∞ f(x) = 0 ,

• for any x0 ∈ ∂S, it holds that limx→x0 f(x) = 0 ,

• f(∆) = 0.

Remark 1.1. Observe that Definition 1.2 ensures that f is continuous over S̄ ∪ ∆ and
therefore, measurable. Indeed, for any point on the boundary, every function belonging
to that set vanishes, and as a result, the isolated point does not generate any jump for
those functions.

To formally state the theorem concerning the space of subprobability measures, we
introduce additional hypotheses that serve as the foundation for constructing a base for
the topology in which our analysis will take place.

(B1) From now on, the Banach space B is given by C0(S) equipped with the uniform
topology and the natural projection πn is the restriction to a subset Sn of S, that is,
πnf = f |Sn .

(B2) There is a sequence of functions {fk : k ≥ 0} in C0(S) such that span({fk : k ≥ 0}) is
dense. Moreover, for each k ∈ N, one can find a sequence {fj,k : j, k ≥ 0} ⊂ D (L2)
such that fj,k → fk when j → ∞, in the uniform topology.

(B3) There exist sequences h1(j) and h2(j) such that, for all k, j ≥ 0,

∥Lfk,j∥ ≤ h1(j) ∥fk∥ and
∥∥L2fk,j∥∥ ≤ h2(j) ∥fk∥ (1.3.2)

satisfying that ∑
j≥0

hi(j)

2j
< ∞, for i = 1, 2 . (1.3.3)

Additionally, the sequences {fk : k ≥ 0} and {fk,j : k, j ≥ 0} satisfy∑
j≥0

∥fk∥
2k

< ∞ , (1.3.4)

and ∑
j,k≥0

∥fj,k∥
2k+j

< ∞ . (1.3.5)

Remark 1.2. Let us briefly summarize the conditions outlined above:

• The first condition (B1), establishes a connection between the discrete and continu-
ous spaces, specifically by considering a sequence of embedded discrete spaces that
converge toward the continuous counterpart.

• The second condition, (B2), will play an important role in defining the metric we
will use on the space of sub-probability measures, as we shall see.
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• Finally, for the last condition (B3), observe that in (1.3.2), the sequences h1(j) and
h2(j) do not depend on k ∈ N. Therefore, applying the generator ensures uniformity
in k ∈ N. Moreover, these sequences are well-behaved in the sense that they do
not grow too fast, as explicitly shown in (1.3.4) and (1.3.5). The key point here
is to ensure that span({fk : k ≥ 0}) is dense, and in particular, by normalizing the
functions fk, we can always guarantee that (1.3.4) holds. It is noteworthy that
(1.3.5) is a direct consequence of (1.3.2), (1.3.3) and (1.3.4). This structure is used
to simplify the presentation later on.

Lemma 1.1. Suppose that condition (B2) holds. Then the space D (L2) is dense on C0(S).

Proof. Let f ∈ C0(S). From the hypothesis (B2), there exists {fk : k ≥ 0} ⊂ C0(S) such
that the space generated by it, span({fk : k ≥ 0}), is dense in C0(S). Fix an arbitrary
ε > 0. Then, there exist constants {ak}Nk=1 such that∥∥∥∥∥f −

N∑
k=1

akfk

∥∥∥∥∥ ≤ ε

2
.

Again from hypothesis (B2), for every k ∈ {1, · · · , N} fixed, there exists j0 := j0(k, ε) such
that for every j ≥ j0 it holds ∥fk − fk,j∥ ≤ ε

2N
. Define gj :=

∑N
k=1 akfk,j ∈ D (L2). Thus, for

j > j0

∥f − gj∥ ≤

∥∥∥∥∥f −
N∑
k=1

akfk

∥∥∥∥∥+

∥∥∥∥∥
N∑
k=0

ak[fk − fk,j]

∥∥∥∥∥
This shows the density of D (L2) in C0(S).

Let us now introduce a suitable metric on the space of sub-probability measures.
Let B denote the Borel σ-algebra on (S, d), and let M≤1 (S) represent the set of all sub-
probability measures defined on the measurable space (S,B).

Definition 1.3. let {fk : k ≥ 0} ⊂ C0(S) and {fj,k : j, k ≥ 0} ⊂ D (L2) be as in (B2). We
define

d(µ, ν) :=
∑
j,k≥0

1

2j+k

(∣∣∣∣∫ fj,kdµ−
∫

fj,kdν
∣∣∣∣ ∧ 1

)
for any µ, ν ∈ M≤1 (S).

Remark 1.3. At first glance, defining the distance d using a doubly indexed sequence
{fk,j : k, j ≥ 0} instead of the more common singly indexed sequence might seem uncon-
ventional. However, this notation aligns more naturally with our intended applications.
Additionally, we emphasize that each fk,j belongs to the domain of L2, a detail that will
be essential in the forthcoming arguments.

Proposition 1.1. Assume that S is a Polish space. The function d : M≤1 (S)×M≤1 (S) →
[0,∞) defined in Definition 1.3 is a metric on the set M≤1 (S) and convergence with
respect to the metric d is equivalent to vague convergence. Moreover, if limn→∞ d(µn, µ) =
0 and µ is a probability measure, then µn converges weakly to µ.

Proof. It is immedate that d is a metric. Moreover, from Lemma 1.1, we have that D (L2)
is dense in C0(S), it follows that convergence under d implies convergence on the vague
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topology. Indeed, for any f ∈ C0(S), from the density, given ε > 0, there exists a function
g ∈ D (L2) such that ∥f − g∥ < ε. Thus∣∣∣∣∣

∫
S

fdµn −
∫
S

fdµ

∣∣∣∣∣ =
∣∣∣∣∣
∫
S

fdµn −
∫
S

gdµn

∣∣∣∣∣+
∣∣∣∣∣
∫
S

gdµn −
∫
S

gdµ

∣∣∣∣∣+
∣∣∣∣∣
∫
S

gdµ−
∫
S

fdµ

∣∣∣∣∣
≤

∫
S

|f − g|dµn +

∣∣∣∣∣
∫
S

gdµn −
∫
S

gdµ

∣∣∣∣∣+
∫
S

|g − f |dµ

≤ µn(S) · ε+ µ(S) · ε+

∣∣∣∣∣
∫
S

gdµn −
∫
S

gdµ

∣∣∣∣∣
since µn(S) ≤ 1 and µ(S) = 1, from the hypothesis, that is, d(µn, µ) → 0, the result holds.
Conversely, since we are working with vague topology and fj,k ∈ C0(S), the convergence
under d holds.

Now, suppose that we have the convergence over d. Therefore we have convergence
under vague topology. Since S is complete and separable, a single probability measure is
tight in S, see [Billingsley, 1999, Theorem 1.4, page 10]. Thus, for any ε > 0, there exists
a compact K := K(ε) ⊂ S such that µ(K) > 1− ε

2
.

Fix f ∈ Cb(S) a bounded continuous function. Given δ > 0, define g := gδ as follows

g(x) := f(x) ·
[
1− ρ(x,K)

δ

]+
∈ C0(S) ,

where by m+ we mean the positive part of the m. Thus∣∣∣∣∫
S

f dµn −
∫
S

fdµ
∣∣∣∣ ≤ ∣∣∣∣∫

S

fdµn −
∫
S

gdµn

∣∣∣∣+ ∣∣∣∣∫
S

gdµn −
∫

gdµ
∣∣∣∣+ ∣∣∣∣∫

S

gdµ−
∫
S

fdµ
∣∣∣∣

≤
∫
S

|(f − g)|dµn +

∣∣∣∣∫ g(dµ− dµn)

∣∣∣∣+ ∫
S

|(g − f)|dµ

≤ 2 ∥f∥ · [µn(K
c) + µ(Kc)] +

∣∣∣∣∫
S

g(dµ− dµn)

∣∣∣∣ .
Observe that the last term vanishes as n goes to infinity because we have assumed
convergence under d and consequently, we have vague convergence.

To finish the proof, we must check that there is no escape of mass, that is, µn concen-
trate, almost all its mass, inside a compact set, say K.

Define
h(x) :=

[
1− ρ(x,K)

δ

]+
and Kδ := {y : ρ(K, y) < δ}. Since h is also in C0(S), there exists n0 := n0(ε) such that, for
n ≥ n0,

ε

2
≥

∣∣∣∣∫
S

hdµ−
∫
S

hdµn

∣∣∣∣ ≥ ∣∣∣∣∫
Kδ

hdµ
∣∣∣∣− ∣∣∣∣∫

Kδ

hdµn

∣∣∣∣
≥

∫
1Kδdµ−

∫
K

dµn

= µ(Kδ)− µn(K) ,

and hence, ε
2
−µ(Kδ) ≥ −µn(K). Summing 1 and making δ → 0, we achieve ε

2
+ ε

2
≥ µn(K

c),
and we conclude the proof.

We state now our last hypothesis which ensures regularity at the initial time:
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(B4) The semigroup T associated to the generator L is Lipschitz in the sense that, for
each t > 0, there exists a constant M := M(t) > 0 such that

|T(t)f(x)− T(t)f(y)| ≤ M · ∥f∥d(x, y), ∀x, y ∈ S ∀f ∈ C0(S) .

We are now prepared to present the first principal result of this work. Recall that
Sn ⊂ S. This result is referred to as the weak Berry-Esseen estimate due to its reliance on
the vague topology. Specifically, it establishes rates of convergence within the framework
of a weaker topological structure.

Theorem 1.3 (Berry-Esseen estimate with respect to d and functional CLT). Assume
hypotheses (A1) - (A3) and (B1) - (B4). Let {X(t) : t ∈ [0, T ]} and {Xn(t) : t ∈ [0, T ]} be
Feller processes on S and Sn associated to the generators L and Ln, respectively, assumed
to start at the points xn ∈ Sn and x ∈ S, respectively, where d(xn, x) ≤ i(n) for some
function i(n) such that i(n) ↓ 0.

Fix some time t > 0 and denote by µ and µn the probability distribution on S̄ ∪ ∆
induced by X(t) and Xn(t), respectively, starting from the points xn ∈ Sn and x ∈ S. Then

d(µn, µ) ≲ max{i(n), s1(n), s1(n), s2(n), s3(n), r1(n), r2(n)} (1.3.6)

Moreover, we also have pathwise convergence Xn ⇒ X in the Skorohod DS[0,∞).

Remark 1.4. The main novelty in the statement above is the weak Berry-Esseen esti-
mate (1.3.6). The convergence in the Skorohod space DS[0,∞) is actually a corolary
of (1.3.6) and [Ethier and Kurtz, 1986, Theorem 2.11, page 172] as we will see.

Proof. Let {fk : k ≥ 0} ⊂ C0(S) be a dense family and, for each k fixed, consider the
sequence fj,k ∈ D (L2) such that fj,k → fk whenever j → ∞ in the uniform topology
satisfying hypothesis (B2). To simplify, denote by

a(n) = max{r1(n), s1(n)} ,
b(n) = max{s1(n), r1(n), r2(n)} ,
c(n) = max{s2(n), r2(n)} .

Firstly, note that∑
j,k≥0

1

2j+k

(
a(n) ∥fk∥+ b(n)h1(n) ∥fk∥+ c(n)h2(n) ∥fk∥

)
= a(n)

∑
j,k≥0

∥fk∥
2j+k

+ b(n)
∑
j,k≥0

h1(j)

2j
∥fk∥
2k

+ c(n)
∑
j,k≥0

h2(j)

2j
∥fk∥
2k

= a(n)
∑
j,k≥0

∥fk∥
2j+k

+ b(n)
∑
j≥0

h1(j)

2j

∑
k≥0

∥fk∥
2k

+ c(n)
∑
j≥0

h2(j)

2j

∑
k≥0

∥fk∥
2k

(1.3.3), (1.3.4), (1.3.5)
≲ max{a(n), b(n), c(n)} . (1.3.7)

Also, it is noteworthy that∣∣∣∣∫ fk,jdµn −
∫

fk,jdµ
∣∣∣∣ = |Tn(t)πnfj,k(xn)− T(t)fj,k(x)|

≤ |Tn(t)πnfj,k(xn)− πnT(t)fj,k(xn)|+ |πnT(t)fj,k(xn)− T(t)fj,k(x)|
(B4)

≲ max {i(n), ∥Tn(t)πnfj,k − πnT(t)fj,k∥} . (1.3.8)
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Let us obtain now, the Berry-Esseen estimate for this convergence:

d(µn, µ) =
∑
j,k≥0

1

2k+j

(∣∣∣∣∫ fk,jdµn −
∫

fk,jdµ
∣∣∣∣ ∧ 1

)
(1.3.8)
≲ max

{
i(n),

∑
j,k≥0

1

2j+k

(
∥Tn(t)πnfj,k − πnT(t)fj,k∥ ∧ 1

)}
Thm 1.2

≲ max

{
i(n),

∑
j,k≥0

1

2j+k

(
a(n) ∥fj,k∥+ b(n) ∥Lfj,k∥+ c(n)

∥∥L2fj,k∥∥) ∧ 1

}
(B3)

≲ max

{
i(n),

∑
j,k≥0

1

2j+k

(
a(n) ∥fk∥+ b(n)h1(j) ∥fk∥+ c(n)h2(j) ∥fk∥

)
∧ 1

}
(1.3.7)
≲ max{i(n), a(n), b(n), c(n)} .

Finally, since Xn(0) ⇒ X(0) and d(µn, µ) → 0 as n → 0, the convergence Xn ⇒ X in
the Skorohod topology is a consequence of [Ethier and Kurtz, 1986, Theorem 2.11, page
173] and we can conclude the proof.



Chapter 2

A functional Central Limit Theorem
for the General Brownian motion on

the half-line

2.1 Introduction
This chapter is dedicated to obtaining a Donsker-type theorem for what is known

in the literature as the general Brownian motion on the half line and guarantees con-
vergence in the Skorohod space. The most general Brownian motion on the positive
half-line was studied by Feller, and a comprehensive overview on it can be found in
Knight’s book, see [Knight, 1981, Theorem 6.2, p. 157]. To put it simply, it is defined
as a class of Feller processes on the positive half line such that its excursions to zero
are the same as those of a standard Brownian motion, which can be shown to be a mix-
ture of the reflected Brownian motion, absorbed Brownian motion, and killed Brownian
motion. Its generator is given by one half of the continuous Laplacian acting on the do-
main of C2-functions decaying at infinity and satisfying c1f(0)−c2f

′(0)+ c3
2
f ′′(0) = 0 with

c1 + c2 + c3 = 1, ci ≥ 0. Given three non-negative parameters c1, c2, c3 that sum to one, we
also occasionally denote by B(c1, c2, c3) the corresponding general Brownian motion.

The discrete class of models considered here involves continuous-time random walks
on ( 1

N
N) ∪ {∆}, where N = 0, 1, . . . and the state ∆ is usually referred to as the ceme-

tery. The walk follows the usual symmetric walk on 1, 2, . . . with jump rates to nearest
neighbors everywhere equal to 1/2. However, at state 0, we introduce the following: the
rate to jump to state 1 is A/nα, and the rate to jump to the cemetery is B/nβ, where
α,A, β,B ≥ 0, and n is the scaling parameter. Additionally, if the walk reaches the
cemetery, it remains there indefinitely.

The chosen values of parameters α,A, β,B then determine the limiting
Brownian-type process of the random walk. We show here that for any choice of c1, c2, c3 ≥
0 such that c1 + c2 + c3 = 1 and c1 ̸= 1 there are classes of choices of α,A, β,B such that
the above random walk converges to B(c1, c2, c3). We additionally show that by making a
small shift to the right of the random walk, we have convergence to the killed Brownian
motion, which corresponds to c1 = 1.

Each type of Brownian motion has different properties and behaviors, which makes
them useful in different applications. For example, reflected Brownian motion can model
a financial asset that cannot have negative values, while absorbed Brownian motion can
model the extinction of a biological population. Elastic Brownian motion can model the
behavior of a particle that is attracted to 0 but has long-range repulsion from some
boundary point and finally, sticky Brownian motion can model a particle that sticks to

10
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a point, killed Brownian motion corresponds to a continuous walk that jumps directly
to the cemetery when it gets arbitrarily close to the origin. All of these processes are
particular cases of the above-mentioned general Brownian motion on the half-line

2.2 Model and further notation
Denote by B0(t) the Brownian motion on [0,∞) absorbed upon reaching zero. By ∆

we represent the cemetery state, that is, for any test function, we have that f (∆) = 0.
Finally, by T0 we mean the hitting time of zero.

Definition 2.1. [Knight, 1981, page 153] A general Brownian motion on the positive
half-line is a diffusion process W on the set G := {∆}∪ [0,∞) such that the absorbed pro-
cess {W(t ∧ T0) : t ∧ T0 ≥ 0} on [0,∞) has the same distribution as B0(t) for any starting
point x ≥ 0.

It is important to note that the definition specifies the process behavior as an ab-
sorbed Brownian motion upon reaching zero. Beyond this point, the process ceases to
encode any meaningful information. In other words, once the process reaches this state,
its subsequent behavior becomes irrelevant, allowing it to follow any trajectory, includ-
ing vanishing entirely.

To gain a deeper understanding of the general Brownian motion, a characterization
of its properties was established by analyzing its behavior at certain boundaries, specif-
ically through the study of the generator associated to the process.

Theorem 2.1. [Knight, 1981, Theorem 6.2, page 157] Any general Brownian motion W
on [0,∞) has generator L := 1

2
d2

dx2 with corresponding domain

D
(
L2
)
:=

{
f ∈ C2

0(G) : f ′′ ∈ C0(G) and c1f (0)− c2f
′ (0) +

c3
2
f ′′ (0) = 0

}
(2.2.1)

for some ci ≥ 0 such that c1 + c2 + c3 = 1 and c1 ̸= 1.

We will now discuss the above process:

• The case c2 = 1 corresponds to the reflected Brownian motion which has the same
distribution as the modulus of a standard Brownian motion.

• On the other hand, c3 = 1 represents the absorbed Brownian motion, characterized
by the distribution of a standard Brownian motion stopped upon reaching zero.

• The case c1 = 1, represents the killed Brownian motion.

As indicated above, the scenario c1 = 1 is excluded from Feller’s Theorem 2.1, which
explicitly requires c1 ̸= 1. Indeed, this exclusion arises because, for c1 = 1 the domain
(2.2.1) is not a dense set in C0(G), where G = {∆}∪ [0,∞). Consequently, it cannot be the
domain of a generator. However, if we remove the origin, considering G0 = {∆} ∪ (0,∞)
instead, it does define a Feller process because now the set of test functions is assumed
to converge to zero at the origin (c.f. Definition 1.2 and refer to [Chung and Zhao, 1995,
Chapter 2] for details).

The killed BM can be interpreted as a process that jumps immediately to the ceme-
tery state ∆ upon “reaching the origin”. Actually, it never actually reaches the origin
but approaches it arbitrarily closely. This distinction explains why c1 = 1 is not included
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in Theorem 2.1: since the killed BM does not touch zero, it cannot satisfy the condition
of Definition 2.1.

Although the absorbed and killed Brownian motions are distinct processes, they
share similarities in their nature. For the sake of clarity and improved exposition, we
will treat the killed Brownian motion as a particular case of the general Brownian mo-
tion on the positive half-line.

el
as

tic
BM

c 3
=
0

sticky
BM

c
1
=
0

exponential holding BM
c2 = 0

mixed BM
c1, c2, c3 > 0

killed BM
c1 = 1

reflected BM
c2 = 1

absorbed BM
c3 = 1

Figure 2.1: Description of the general Brownian motion on the half-line according to the
chosen values of c1, c2, c3 ≥ 0 on the simplex c1 + c2 + c3 = 1. Note that the killed BM,
which formally corresponds to c1 = 1, is not rigorously a case of the general BM, as we
can see in Theorem 2.1.

• The case c1 = 0 corresponds to the sticky Brownian motion.

The sticky Brownian motion serves as an interpolation between the absorbed Brow-
nian motion and the reflected Brownian motion. It exhibits the property of spending
a positive Lebesgue measure of time at zero, but never remaining at zero for any non-
degenerate time interval. For a thorough and comprehensive overview, the reader is
encouraged to consult [Borodin, 1989, Warren, 1999].

• The case c3 = 0 corresponds to the elastic Brownian motion, also known as partially
reflected Brownian motion.

This process is a mixture of the reflected BM and killed BM. It can be also constructed
in terms of the local time at zero: we toss an exponential random variable τ whose
parameter is related to c1 and c2, and a path of the reflected BM. Once the local time at
zero of the reflected BM reaches the value τ , the process goes to the cemetery and stays
there forever (see [Lejay, 2016] and references therein).

• The case c2 = 0 corresponds to the exponential holding Brownian motion.

Its behavior is the following: once it visits zero, it stays there for an exponentially dis-
tributed amount of time and then is killed, that is, it jumps to the cemetery and stays
there forever. See [Knight, 1981] on the exponential holding BM. This case allows us to
interpret the case c1 = 1 as a kind of explosion: it is an extreme case of the exponential
holding BM, where the parameter of the exponential clock associated to jumps from the
origin to the cemetery is infinite, leading to an instantaneous jump.

• The case c1, c2, c3 > 0 is a mixture of these behaviours, and we will refer to any such
process as the mixed Brownian motion.
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Finally, it is instructive to mention that there are actually only two behaviours at zero.
Namely, how much the BM sticks at zero, and how much the BM is attracted to the
cemetery. This is in agreement with the fact that there are three parameters c1, c2 and
c3, but only two degrees of freedom, since these parameters are restricted to the simplex
c1 + c2 + c3 = 1. See Figure 2.1 for an illustration of the general BM in terms of the
choices of c1, c2 and c3.

Bearing in mind the general Brownian motion and the approximation Theorems 1.2,
and 1.3, we are interesteding showing a Donsker-type Theorem, that is, showing the
GBM as a continuous counterpart of some random walk with constraints defined on the
positive half-line and then, find a suitable basis to obtain a weak Berry-Esseen estimate.

1
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2

B

nβ
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nα

∆ 0
n

1
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2
n

3
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4
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5
n

6
n

7
n

...

Figure 2.2: Jump rates for the boundary random walk.

The boundary random walk is the Feller process depending on positive parameters
A,B, α and β defined on the state space Gn :=

(
1
n
N
)
∪ {∆} for n ∈ N, whose generator Ln

acts on functions f : Gn → R as follows:

Lnf (x) :=

{
1
2

[
f
(
x+1
n

)
− f

(
x
n

)]
+ 1

2

[
f
(
x−1
n

)
− f

(
x
n

)]
, x = 1

n
, 2
n
, · · ·

A
nαf (0) + B

nβ

[
f
(
1
n

)
− f (0)

]
, x = 0

n
,

The next theorem is our second main result, and as we will see follows from Theo-
rem 1.3. The cases stated below are illustrated in Figure 2.3 which characterizes phase
transitions depending on parameters A, B, α, and β.

Theorem 2.2 (Functional CLT for the boundary random walk). Fix u, t > 0. Let {Xn(t) :
t ≥ 0} be the boundary random walk of parameters α, β,A,B ≥ 0 sped up by n2 (that is,
whose generator is n2Ln), starting from the point ⌊un⌋

n
∈ Gn ⊂ G and denote by µn = µn(t)

the distribution of Xn at time t > 0. Recall the metric d defined in 1.3 and denote by
µ = µ(t) the distribution at time t > 0 of the limit process in each of following cases.
Then:

1. If α = β +1 and β ∈ [0, 1), then {Xn(t) : t ≥ 0} converges weakly to {Xebm(t) : t ≥ 0} in
the J1-Skorohod topology of DG[0,∞), where Xebm is the elastic BM on G = {∆} ∪R≥0

of parameters

c1 =
B

A+B
, c2 =

A

A+B
and c3 = 0

starting from the point u. Moreover,

(a) if β ∈ (0, 1), then d(µn, µ) ≲ max{n−β, nβ−1} ,

(b) if β = 0, then d(µn, µ) ≲ n−1 .
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2. If α ∈ (2,+∞] and β = 1, then {Xn(t) : t ≥ 0} converges weakly to {Xsbm(t) : t ≥
0} in the J1-Skorohod topology of DG[0,∞), where Xsbm is the sticky BM on R≥0 of
parameters

c1 = 0, c2 =
B

B + 1
, and c3 =

1

B + 1

starting from the point u. Moreover, in this case,

d(µn, µ) ≲ max{n2−α, n−1} .

3. If α = 2 and β ∈ (1,+∞], then {Xn(t) : t ≥ 0} converges weakly to {Xehbm(t) : t ≥ 0} in
the J1-Skorohod topology of DG[0,∞), where Xehbm is the exponential holding BM on
G = {∆} ∪ R≥0 of parameters

c1 =
A

1 + A
, c2 = 0 and c3 =

1

1 + A

starting from the point u. Moreover, for β ∈ (2,∞),

d(µn, µ) ≲ max{n2−β, n−1} .

4. If α > β + 1 and β ∈ [0, 1), then {Xn(t) : t ≥ 0} converges weakly to {Xrbm(t) : t ≥ 0}
in the J1-Skorohod topology of DR≥0

[0,∞), where Xrbm is the reflected BM on R≥0, of
parameters

c1 = 0, c2 = 1 and c3 = 0

starting from the point u. Moreover, for β ∈ (0, 1),

(a) if 1 + β < α < 2, then d(µn, µ) ≲ max{n−β, n−α+β+1, nα−2} ,
(b) if α = 2, then d(µn, µ) ≲ max{n−β, nβ−1} ,
(c) if α > 2, then d(µn, µ) ≲ max{n2−α, n−β, nβ−1} .

5. If α ∈ (2,∞] and β ∈ (1,+∞], then {Xn(t) : t ≥ 0} converges weakly to {Xabm(t) : t ≥ 0}
in the J1-Skorohod topology of DR≥0

[0,∞), where Xabm is the absorbed BM on R≥0, of
parameters

c1 = 0, c2 = 0 and c3 = 1

starting from the point u. Moreover, for α > 2 and β > 2,

d(µn, µ) ≲ max{n2−α, n2−β, n−1} .

6. If α = 2 and β = 1, then {Xn(t) : t ≥ 0} converges weakly to {Xmbm(t) : t ≥ 0} in the
J1-Skorohod topology of DG[0,∞), where Xmbm is the mixed BM on G = {∆} ∪ R≥0 of
parameters

c1 =
A

1 + A+B
, c2 =

B

1 + A+B
and c3 =

1

1 + A+B

starting from the point u. Moreover, d(µn, µ) ≲ n−1.

Since the natural state space of the killed BM is G = {∆} ∪ (0,∞), which does not
include the origin, we need a different setup to have the convergence of the boundary
random walk towards the killed BM. This is the content of the next result. Let τn : G →
G be the shift to the right of 1/n given by

τn(∆) = ∆ and τn(u) = u+ 1
n

for u ∈ [0,∞) .
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Absorbed BM
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Stick BM

Exp. Holding BM

Elastic BM

Figure 2.3: Possible limits for the boundary random walk according to the ranges of
α, β ∈ [0,∞]. Note that it includes the cases where α = ∞ or β = ∞, which correspond to
A = 0 and B = 0 respectively. Speed of convergence is provided for all choices of α and
β, except for the strip 1 < β < 2.

Theorem 2.3 (Convergence of the shifted boundary RW to the killed BM). If α < 1 + β
for β ∈ [0, 1], or β > 1, then {τnXn(t) : t ≥ 0} converges weakly to {Xkbm(t) : t ≥ 0}
in the J1-Skorohod topology of DG0 [0,∞), where in this case Xkbm is the killed BM on
G0 = {∆} ∪ (0,+∞), which is formally the general BM of parameters

c1 = 1, c2 = 0 and c3 = 0 .

2.3 Proof of the functional central limit Theorem for
the boundary random walk

This section is dedicated to proving Theorems 2.2 and 2.3 as well as the tools needed
for the proof.

Define
A≥0 :=

{
p(x)e−x2

: p : R≥0 → R is a polynomial
}
.

We claim that the linear vector space generated by A≥0 is dense in C0(R≥0). In order to
show that, consider the general space

A :=
{
p(x)e−x2

: p : R → R is a polynomial
}
.

Thus

Lemma 2.1. The set span(A) is dense in C0(R).

Proof. Suppose by contradiction that span(A) is not dense. Then, by the Hahn-Banach
Theorem, there exists a non-zero functional Λ : C0(R) → R such that Λ|span(A) ≡ 0. By the
Riesz-Markov Theorem, there exists a measure µ such that

Λ(f) :=

∫
f dµ
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for all f ∈ C0(R). By the Jordan decomposition theorem, there exist µ+, µ− positive
real-valued measures such that µ = µ+ − µ− where at least one of the two measures is
finite.

For any g ∈ span(A), it follows that g(x) = p(x)e−x2 for some polynomial p, and

0 = Λ(g) =

∫
g(x)dµ(x)

=

∫
p(x)e−x2

d(µ+(x)− µ−(x))

=

∫
p(x)e−x2

dµ+ −
∫

p(x)e−x2

dµ− ,

and hence, ∫
p(x)e−x2

dµ+ =

∫
p(x)e−x2

dµ− . (2.3.1)

Let ν+(A) =
∫
A
e−x2dµ+ and ν−(A) =

∫
A
e−x2dµ− be real-valued measures, and define

ρ+, ρ− : C → R through ρ±(z) :=
∫
ezxdν±(x). Observe that ρ± are well-defined since

|ρ+(z)| =
∣∣∣∣∫

R
ezx dν+(x)

∣∣∣∣
=

∣∣∣∣∫
R
ezxe−x2

dµ+(x)

∣∣∣∣
≤

∫
R

∣∣ezx−x2∣∣dµ+(x) .

and similarly for ρ−. Since the decay of e−x2 dominates the growth of ezx, we have that
|ρ±(z)| is finite for every z ∈ C once the integral converges absolutely, and then, is well-
defined. Writing the exponential in its power series, we have that

d

dz
ezt =

d

dz

∞∑
k=0

(zt)k

k!
=

∞∑
k=0

d

dz

(zt)k

k!
=

k(zt)k

k!

d

dz
(zt) =

∞∑
k=1

(zt)k

k!
t = tezt (2.3.2)

Thus, from equation (2.3.2) one can check that

d

dz
ρ±(z) =

d

dz

∫
R
eztdν±(t) =

∫
R

d

dz
eztdν±(t) =

∫
R
teztdν±(t) (2.3.3)

In view of (2.3.1) and (2.3.3), we have that

d(n)

dz(n)
ρ+(0) =

d(n)

dz(n)
ρ−(0)

We now make a comparison between the power series of ρ+ and ρ−

ρ+z(0) =
∞∑
n=0

d

dz
ρ+(0)zn =

∞∑
n=0

d

dz
ρ−(0)zn = ρ−(0) ,

and therefore, ρ+(z) = ρ−(z) for any z ∈ C.
Therefore, for all s ∈ R, ρ+(is) = ρ−(is) for all s ∈ R, and hence ν+ = ν−, which

guarantees that Λ ≡ 0, a contradiction. Hence span(A) must be dense in C0(R).

As an immediate consequence of Lemma 2.1, we have
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Corollary 2.1. The set span(A≥0) is dense in C0(R≥0).

Proof of Theorem 2.2. In order to prove Theorem 2.2, we must check the conditions (A1)
- (A3) and (B1) - (B4) and then apply Theorems 1.2 and 1.3.

We begin by verifying the hypotheses (B1) through (B4). Satisfying these conditions
entails constructing a basis for the metric d. Notably, this verification is sufficiently
general and does not require partitioning the analysis into distinct cases for each pa-
rameter α, β,A and B. Let f̃k : R≥0 → R be defined by f̃k(x) := xke−x2 for all k ≥ 0, which
are illustrated in Figure 2.4. By Corollary 2.1 we know that span({f̃k}k≥0) is dense in
C0(R≥0) and an elementary calculation gives that ∥f̃0∥ = 1 and ∥f̃k∥ =

(
k
2

) k
2 e−

k
2 , for all

k ≥ 1. Then, the family of functions defined by

fk :=
f̃k

∥f̃k∥
, ∀ k ≥ 0 , (2.3.4)

still has the property that its span is dense in C0(R≥0) and it satisfies (1.3.4).

1/e

1

1

0

f̃0

f̃1

f̃2

f̃3

f̃4

x

Figure 2.4: Illustration of the functions f̃k : R≥0 → R, f̃k(x) := xke−x2.

Our goal now is to find sequences fk,j ∈ D(L2) fulfilling hypotheses (B2) and (B3).
Note that the functions fk are smooth and, for k ≥ 5, the function itself and its first four
derivatives at zero are zero. Recalling (2.2.1), this property immediately ensures that
fk ∈ D(L2) for k ≥ 5. Accordingly, we define

fk,j := fk for k ≥ 5 .

To treat the case k ≤ 4, we define the shift operator τj by

τj(f)(x) = f
(
x− 4

j

)
1[x≥ 4

j ]
(x) .

Define now an extension of τj(fk) to the whole line through a reflection around the y-axis,
that is,

gk,j(x) :=

{
(τj)(fk)(x) , if x ≥ 0

(τj)(fk)(−x) , if x < 0
for k ∈ {1, 2, 3, 4} and j ≥ 0 ,

which are continuous, but not smooth at the point 4/j. To remedy this, consider the
C∞-approximation of identity φj : R → R given by

φj(x) :=


1

cj
exp

(
− 1

1− (jx)2

)
, if |jx| < 1

0 , otherwise
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where
cj :=

∫
R
exp

(
− 1

1− (jx)2

)
1{|jx|≤1}dx

is the normalizing constant. Note that φj(x) = jφ1(jx), which yields the following rela-
tion between the derivatives

d(i)

dx(i)
φj(x) = ji+1 d(i)

dx(i)
φ1(jx) , ∀ j > 0 . (2.3.5)

Define now
fk,j(x) := (gk,j ∗ φj)(x) for k ∈ {1, 2, 3, 4} and j ≥ 0 ,

which is smooth and a simple but tedious calculation shows that fk,j → fk uniformly
as j → ∞. Since the boundary conditions are satisfied for fj,k and Lfj,k, we obtain that
fk,j ∈ D(L2) for any k ∈ {1, 2, 3, 4} and any j ≥ 0.

Denote
∥∥∥ d(i)

dx(i)φ1

∥∥∥ = Ai for i ∈ N. Observe that

∣∣∣∣ d(i)dx(i)
fk,j(x)

∣∣∣∣ =

∣∣∣∣∣∣ d
(i)

dx(i)

∫ 1
j

−1
j

gk,j(x− y)φj(y) dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

j

−1
j

gk,j(x− y)
d(i)

dx(i)
φj(y)dy

∣∣∣∣∣∣
≤ 2ji ∥gk,j∥Ai ,

where we made use of the scaling relation (2.3.5) to obtain the last inequality. Since
∥gk,j∥ = ∥fk∥ = 1, we obtain that

∥Lfk,j∥ ≤ j2A2 and
∥∥L2fk,j∥∥ ≤ j4A4 , ∀ k ≥ 1, j ≥ 0 .

Now, it only remains to construct f0,j such that it verifies conditions (B2) and (B3).
To that end, let P : R≥0 → R be a polynomial such that both e−x2

+ P and (e−x2
+ P)′′

satisfy the boundary condition (2.2.1) and such that additionally P(0) = 0. To continue,
define the C∞-bump function b1 : R → R≥0 by

b1(t) = 1− ℓ(t2 − 1)

ℓ(t2 − 1) + ℓ(2− t2)

where

ℓ(t) =

{
e−

1
t , if t > 0

0, if t ≤ 0 ,

and for j ≥ 1 define bj(t) = b1(jt). The function 0 ≤ bj ≤ 1 is equal to one in an interval
of size 1/j around the origin and zero outside the interval [−

√
2/j,

√
2/j]. Finally, define

f0,j(x) := e−x2

+ (bjP)(x) .

The fact that f0,j vanishes for x ≥
√
2/j and that f0,j(0) = 1 together with its continuity

guarantee that f0,j → e−x2 as j → ∞ in the uniform topology. Since the polynomial
e−x2

+ P satisfies the aforementioned boundary condition, we also have f0,j ∈ D(L2) for
all positive integers j. Note that bj(x) = b1(jx), yielding for all i ≥ 0 and all j ≥ 1

d(i)

dx(i)
bj(x) = ji

d(i)

dx(i)
b1(jx) .
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Since the generator of the general Brownian motion on the half-line is given by 1
2
∆, it is

immediate that
Le−x2

≲ x2e−x2

and L2e−x2

≲ x4e−x2

. (2.3.6)

Now, since bj ≡ 0 outside the compact set [−
√
2
j
,
√
2
j
] and P is a polynomial, for all i ≥ 1

one has that
∥∥∥ d(i)

dx(i) bjP
∥∥∥ ≲ ji. Hence, using equation (2.3.6), the product rule and the

bound above, we can obtain upper bounds for the generator L and L2 norm ∥Lf0,j∥ ≲(
∥f2∥+ j2) ∥f0∥ ≲ j2 ∥f0∥ and ∥L2f0,j∥ ≲

(
∥f4∥+ j4

)
∥f0∥ ≲ j4 ∥f0∥, where we used that all

the fk’ s were normalized. Hence, we ensured that conditions (B2) and (B3) are met.
The Lipschitz hypothesis (B4) relies on the knowledge about the semigroup of the

limiting process. The limiting processes mentioned in Theorem 1.3 are, the reflected,
absorbed, mixed, sticky, elastic, exponential holding and killed Brownian motion. All
of them have explicit formulas for their semigroups (which are obtained from the semi-
group of the standard Brownian motion by simple modifications), which can be found in
the book [Borodin and Salminen, 2002, Appendix 1, starting at page 119]. From these
formulas it can be checked that (B4) holds for each one of those semigroups.

We will verify the condition (B4) only for the cornerstone processes on the simplex:
The reflected Brownian motion, the absorbed Brownian motion and killed Brownian
motion, the other cases will be omitted.

Lemma 2.2. The semigroup
{
Prbm(t) : t ≥ 0

}
of the reflected Brownian motion given by

Prbm(t)f (x) :=

∫ ∞

0

1√
2πt

[
e−

(x−y)2

2t + e−
(x+y)2

2t

]
f(y)dy, for x ∈ [0,∞)

associated to the generator Lrbm described by (2.1) where c2 = 1 is Lipschitz.

Proof. Denote by

pt(x, y) :=
1√
2πt

[
e−

(x−y)2

2t + e−
(x+y)2

2t

]
,

qt(x, y) :=
1√
2πt

e−
(x−y)2

2t ,

the transition semigroup of the reflected Brownian motion and an auxiliary function.
Observe that showing that Prbm(t) is Lipschitz is equivalent to ensuring that there exists
a positive constant K such that

|∂xPrbm(t)f(x)| ≤ K , ∀x ∈ R \ {0}, ∀t ≥ 0 . (2.3.7)

Thus

∂xP
rbm(t)f(x) =

∫ ∞

0

∂xpt(x, y)f(y)dy

=

∫ ∞

0

∂x[qt(x, y) + qt(x,−y)]f(y)dy

=

∫ ∞

0

[
(x− y)

t
qt(x, y) +

(x+ y)

t
qt(x,−y)

]
f(y)dy .
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Finally, note that ∣∣∣∣∫ ∞

0

(x− y)

t
qt(x, y)dy

∣∣∣∣ ≤
∫ ∞

0

|x− y|
t

qt(x, y)dy

=

∫ ∞

0

|x− y|
t

1√
2πt

e−
(x−y)2

2t dy

≤ 1

t

∫ ∞

−∞

1√
2πt

|y|e−
(y)2

2t dy

≤ 1

t
E[|Y |]

where Y has the same distribution as a Gaussian N (0, t). Thus, from a triangular in-
equality,

|∂xPrbm(t)f(x)| ≤ ∥f∥
∣∣∣∣∫ ∞

0

(x− y)

t
qt(x, y)dy

∣∣∣∣+ ∥f∥
∣∣∣∣∫ ∞

0

(x+ y)

t
qt(x,−y)dy

∣∣∣∣ ,
which shows that (2.3.7) holds, and the result follows finishing the proof.

Lemma 2.3. The semigroup
{
Pkbm(t) : t ≥ 0

}
of the killed Brownian motion over G0

given by

Pkbm(t)f (x) :=

∫ ∞

0

1√
2πt

[
e−

(x−y)2

2t − e−
(x+y)2

2t

]
f(y)dy, for x ∈ (0,∞)

associated to the generator Lkbm is Lipschitz.

Proof. The proof follows similarly to the one in 2.2.

Consider
Erf(z) := 2√

z

∫ z

0

e−u2

du

the error function and, by Erfc(z) := 1 − Erf(z) we denote the complementary error
function. The absorbed Brownian motion has the semigroup

{
Pabm(t) : t ≥ 0

}
given by

Pkbm(t)f (x) :=

∫ ∞

0

1√
2πt

[
e−

(x−y)2

2t − e−
(x+y)2

2t

]
f(y)dy, for x ∈ (0,∞)

and

Px(X
abm(t) = 0) :=

{
Erfc

(
x√
2t

)
, x > 0

1, x = 0 .

Since the semigroups
{
Pkbm(t) : t ≥ 0

}
and

{
Pabm(t) : t ≥ 0

}
are almost the same unless

by the boundary, Lemma 2.3 also implies that the semigroup
{
Pabm(t) : t ≥ 0

}
of the

absorbed Brownian motion, associated to the generator Labm described via (2.1) where
c3 = 1, is lipschitz.
Remark 2.1. Hypothesis (B4) has been used just once, in the proof of Theorem 1.3, and
its importance relies on the fact that the random walk and its limiting process may not
have the same starting point. For instance, in the setup of Theorem 2.2, the boundary
random walk starts from ⌊un⌋/n, whereas its Brownian counterpart starts from u > 0.
If we assume that the discrete process and the limiting process start from the same
point u ∈ S, hypothesis (B4) can be dropped from Theorem 1.3. This is possible in the
setup of Theorem 2.2, for instance, if we assume that the scaling parameter is given by
n = n(k) = 2k and the initial point u is a positive integer.
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It remains now, to verify the remaining conditions (A1) - (A3). We must find the
correction operator Ξn, which is very model dependent. Before we study each model
separately, we start with some generalities. We will always assume that (Ξnf)(∆) = 0,
and moreover all functions considered here satisfy f(∆) = 0. Thus, the generator of the
random walk with boundary conditions sped up by n2, applied to the function Φnf at
zero is given by

n2LnΦnf
(
0
n

)
= − A

nα−2f
(
0
n

)
+ B

nβ−2

[
f
(
1
n

)
− f

(
0
n

)]
− A

nα−2Ξnf (0) + B
nβ−2

[
Ξnf

(
1
n

)
− Ξnf (0)

]
.

(2.3.8)

Outside of zero, a Taylor expansion yields

f
(
x+1
n

)
− f

(
x
n

)
= 1

n
f ′ (x

n

)
+ 1

2n2f
′′ (x

n

)
+ 1

3!n3f
′′′ (x

n

)
+ 1

4!n4f
′′′′ (θ)

f
(
x−1
n

)
− f

(
x
n

)
= − 1

n
f ′ (x

n

)
+ 1

2n2f
′′ (x

n

)
− 1

3!n3f
′′′ (x

n

)
+ 1

4!n4f
′′′′ (η) , (2.3.9)

for some θ ∈ (x/n, (x+ 1)/n) and η ∈ ((x− 1)/n, x/n). Thus

n2LnΦnf
(
x
n

)
= n2

2

[
f
(
x+1
n

)
+ f

(
x−1
n

)
− 2f

(
x
n

)]
+ n2

2

[
Ξnf

(
x+1
n

)
+ Ξnf

(
x−1
n

)
− 2Ξnf

(
x
n

) ]
(2.3.9)
= 1

2
∆f

(
x
n

)
+ 1

2·4!n2

[
f

′′′′
(θ) + f

′′′′
(η)

]
+ n2LnΞnf

(
x
n

)
= 1

2
πn∆f

(
x
n

)
+
∥∥∆2f

∥∥ ·O( 1
n2 ) + n2LnΞnf

(
x
n

)
, (2.3.10)

As previously noted, the correction operator exhibits significant dependence on the model’s
parameters. Consequently, the proof will be organized into multiple cases based on these
parameters, with some cases further subdivided into subcases for clarity.

The elastic BM: the case β ∈ [0, 1), α = β + 1

Recall that in this case we set

c1 =
B

A+B
, c2 =

A

A+B
and c3 = 0 .

Denote the generator of the elastic Brownian motion by Lebm. Its domain is given by

D (Lebm) =
{
f ∈ C2

0(G) : A
A+B

f (0) − B
A+B

f ′(0) = 0
}
.

Let f ∈ D(L2ebm), which yields the boundary conditions Af (0) = Bf ′(0) and Af ′′(0) =
Bf ′′′(0). Using this together with α = 1 + β in Equation (2.3.8) in addition to a Taylor
expansion, yields that

n2LnΦnf
(
0
n

)
= − A

nα−2f
(
0
n

)
+ B

nβ−2

[
f ′(0)
n

+ f ′′(0)
2!n2 + f ′′′(0)

3!n3 + f ′′′′(η)
4!n4

]
− A

nα−2Ξnf (0) + B
nβ−2

[
Ξnf

(
1
n

)
− Ξnf (0)

]
= B

nβ

[
f ′′(0)
2!

+ A
B

f ′′(0)
3!n

+ f ′′′′(η)
4!n2

]
(2.3.11)

− A
nβ−1Ξnf (0) + B

nβ−2

[
Ξnf

(
1
n

)
− Ξnf (0)

]
(2.3.12)

for some 0 ≤ η ≤ 1/n.
Note that for β > 0 the parcel (2.3.11) is vanishing, and it is at this point where the

correction operator enters the game. Let us analyze it in cases:

• β ̸= 0 ,

• β = 0 .
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Subcase β ̸= 0

Assume first that β ̸= 0; we will discuss the situation β = 0 at the ending of this case.
Define

Ξnf
(
x
n

)
:= −

1
2
f ′′(0)

An1−β
(
1 + 1

n
g
(
x
n

)) , (2.3.13)

where g is some arbitrary nonnegative Lipschitz function of constant K > 0 satisfying
g(0) = 0 and g(u) → ∞ as u → ∞. Note that the condition on the growth of g is only
necessary to assure that Ξn belongs to the domain of Ln which is given by D(Ln) =

{
f :

{∆} ∪ 1
n
N → R such that limx

n
→∞ f

(
x
n

)
= 0 and f(∆) = 0

}
. We then have that

n2LnΦnf
(
0
n

)
= − A

nβ−1Ξnf (0) + B
nβ−2

[
Ξnf

(
1
n

)
− Ξnf (0)

]
= 1

2
f ′′(0) + Bn

A

[
1

1+
1
n
g
(
1
n

) − 1

]
1
2
f ′′(0)

= 1
2
f ′′(0) + Bn

A

[ 1
n
g
(
1
n

)
1+

1
n
g
(
1
n

)
]

1
2
f ′′(0)

= Lebmf (0) + BK
A
∥Lebmf∥ ·O( 1

n
)

because g(0) = 0 and g is K-Lipschitz. Plugging it into (2.3.11) – (2.3.12) yields∣∣(πnLebmf − n2LnΦnf
)
(0)

∣∣ ≲
(

1
nβ + 1

n
+ 1

n1+β

)
∥Lebmf∥+ 1

n2+β

∥∥L2ebmf
∥∥ . (2.3.14)

For x
n
∈ Gn\{0}, equation (2.3.10) indicates that we need to estimate

n2LnΞnf
(
x
n

)
= Lebmf(0)n2

An1−β

[ 1
n

(
g
(
x+1
n

)
−g(xn)

)
(
1+

1
n
g
(
x+1
n

))(
1+

1
n
g(xn)

) +
1
n

(
g
(
x−1
n

)
−g(xn)

)
(
1+

1
n
g
(
x−1
n

))(
1+

1
n
g(xn)

)
]

= K∥Lebm∥ ·O
(

1
n1−β

)
,

where we used again that g is K-Lipschitz. Plugging it into (2.3.10), we conclude that∣∣(πnLebmf − n2LnΦnf
) (

x
n

)∣∣ ≲ 1
n1−β ∥Lebmf∥+ 1

n2

∥∥L2ebmf
∥∥ (2.3.15)

uniformly in x
n
∈ Gn\{0}. Putting together (2.3.14) and (2.3.15), we infer that∥∥πnLebmf − n2LnΦnf

∥∥ ≲ max
{

1
nβ ,

1
n
, 1
n1−β

}
∥Lebmf∥

+max
{

1
n2 ,

1
n2+β

}∥∥L2ebmf
∥∥

= max
{

1
nβ ,

1
n1−β

}
∥Lebmf∥+ 1

n2

∥∥L2ebmf
∥∥ .

(2.3.16)

In view of (2.3.16), we have assured hypothesis (A2) and it is only missing to check (A3).
From (2.3.13), we immediately get that

∥Ξnf∥ ≲ 1
n1−β ∥Lebm∥ ,

showing that (H3) holds. Hence, Theorem 1.3 yields

d(µn, µ) ≲ max
{

1
nβ ,

1
n1−β ,

1
n
, 1
n2

}
= max

{
1
nβ ,

1
n1−β

}
and that {Xn(t) : t ≥ 0} weakly converges to {Xebm(t) : t ≥ 0} under the J1-Skorohod
topology of DG[0,∞). We thus can conclude this subcase.
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Subcase β = 0

We come to the case β = 0. In this subcase we define

Ξnf
(
x
n

)
:= −

(1−B)1
2
f ′′(0)

An
(
1 + 1

n
g
(
x
n

)) .
Analogous arguments as above yield that d(µn, µ) ≲ 1

n
. We omit the details.

The sticky BM: the case β = 1, α ∈ (2,∞)

Recall that in this case we set

c1 = 0, c2 =
B

B + 1
and c3 =

1

B + 1
.

We denote the generator of the sticky Brownian motion by Lsbm. Its domain is

D (Lsbm) =
{
f ∈ C2

0(G) : − B
B+1

f ′(0) + 1
2

1
B+1

f ′′(0) = 0
}
.

As we shall see in a moment, no correction will be necessary, and therefore we define
Ξn ≡ 0. Let f ∈ D(L2sbm), which yields the boundary conditions Bf ′(0) = 1

2
f ′′(0) and

Bf ′′′(0) = 1
2
f ′′′′(0). Keeping this conditions in mind and also that β = 1 and α ∈ (2,∞),

we obtain from Equation (2.3.8) and a Taylor expansion, for some 0 ≤ η ≤ 1/n, that

n2LnΦnf (0) = − A
nα−2f (0) +Bf ′(0) + B

2n
f ′′(0) + B

3!n2f
′′′(0) + B

4!n3f
′′′′
(η)

= − A
nα−2f (0) +

(
1
2
+ B

2n

)
f ′′(0) + 1

2·3!n2f
′′′′ (0) + B

4!n3f
′′′′
(η)

= Lsbmf(0) + ∥f∥ ·O
(

1
nα−2

)
+ ∥Lsbmf∥ ·O

(
1
n

)
+

∥∥L2sbmf
∥∥ ·O

(
1
n2

)
,

Thus,∣∣ (πnLsbmf − n2LnΦnf
)
(0)

∣∣ = ∥f∥ ·O
(

1
nα−2

)
+ ∥Lsbmf∥ ·O

(
1
n

)
+
∥∥L2sbmf

∥∥ ·O
(

1
n2

)
.

Recalling (2.3.10) and our choice of Ξn ≡ 0, it yields∥∥πnLsbmf − n2LnΦnf
∥∥ ≲ 1

nα−2 ∥f∥+ 1
n
∥Lsbmf∥+ 1

n2

∥∥L2sbmf
∥∥ . (2.3.17)

Thus, Theorem 1.3 shows that

d(µn, µ) ≲ max
{

1
nα−2 ,

1
n2 ,

1
n

}
= max

{
1

nα−2 ,
1
n

}
,

and also that {Xtn2 : t ≥ 0} converges weakly to {Xsbm(t) : t ≥ 0} under the J1-Skorohod
topology of DR≥0

[0,∞). Hence, we can conclude this case.

The exponential holding BM: the case α = 2 and β ∈ (1,∞]

Recall that in this case we set

c1 =
A

A+ 1
, c2 = 0 and c3 =

1

A+ 1

We denote by Lehbm the generator of the exponential holding Brownian motion. Its do-
main is given by

D (Lehbm) =
{
f ∈ C2(G) : A

A+1
f (0) + 1

2
1

A+1
f ′′(0) = 0

}
.

For α = 2 and β ∈ (1,∞), it is necessary to analyze the second parameter β across two
distinct regions: one where it is possible to achieve a rate of convergence, and another
where such rate of convergence cannot be attained. Again, the proof is divided into two
cases:
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• β > 2 ,

• β ∈ (1, 2] .

Subcase β > 2

Assume for now β > 2. Consider the correction operator identically null, that is,
Ξn ≡ 0. Let f ∈ D(L2ehbm), which yields the boundary conditions Af (0) = −1

2
f ′′(0) and

Af ′′(0) = −1
2
f ′′′′(0). Then,

n2LnΦnf (0) = −Af (0) + B
nβ−2

[
f
(
1
n

)
− f (0)

]
= 1

2
f ′′(0) + B

nβ−2

[
f
(
1
n

)
− f (0)

]
= Lehbmf(0) + ∥f∥ ·O

(
1

nβ−2

)
,

(2.3.18)

which implies
|
(
πnLehbmf − n2LnΦnf

)
(0)| ≤ 2

nβ−2 ∥f∥
and consequently taking (2.3.10) into account∥∥πnLehbmf − n2LnΦnf

∥∥ ≲ 1
nβ−2 ∥f∥+ 1

n2

∥∥L2ehbmf
∥∥ . (2.3.19)

Thus, Theorem 1.3 implies that

d(µ, µn) ≲ max
{

1
nβ−2 ,

1
n2 ,

1
n

}
= max

{
1

nβ−2 ,
1
n

}
,

and also that {Xtn2 : t ≥ 0} converges weakly to {Xehbm(t) : t ≥ 0} in the J1-Skorohod
topology of DG[0,∞).

Subcase β ∈ (1, 2]

We turn to the case β ∈ (1, 2]. Note that as a consequence of (2.3.18), we get∥∥πnLehbmf − n2Lnπnf
∥∥ → 0.

Applying mutatis mutandis [Ethier and Kurtz, 1986, Theorem 6.1, page 28] and also
[Ethier and Kurtz, 1986, Theorem 2.11, page 172] one can conclude the convergence to-
wards the exponential holding BM. However, since the rate of convergence relies on the
first derivative of f , we are not allowed to apply Theorem 1.3, and no speed of conver-
gence could be provided in this case.

The reflected BM: the case β ∈ [0, 1), α > β + 1

Denote by Lrbm the generator of the reflected Brownian motion, whose domain is

D(Lrbm) :=
{
f ∈ C2

0(G) : f ′(0) = 0
}
.

Let f ∈ D (L2rbm), then f ′(0) = f ′′′(0) = 0. Thus,

n2LnΦnf (0) = −An2−αf (0) + B
2nβ f

′′(0) + B
4!n2+β f

′′′′(η)

− A
nα−2Ξnf (0) + B

nβ−2

[
Ξnf

(
1
n

)
− Ξnf (0)

]
,

(2.3.20)

for some 0 ≤ η ≤ 1/n. Let β[0, 1), the analysis of the behavior of the correction above will
be systematically divided into three distinct subcases, namely:
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• 1 + β < α < 2 ,

• α = 2 ,

• α > 2 .

Each of them will be detailed in the following sections.

Subcase β ∈ [0, 1), β + 1 < α < 2

Assume the following subcase β ∈ [0, 1), β + 1 < α < 2. Let

Ξnf
(
x
n

)
:= Ξ̂nf

(
x
n

)
+ Ξ̃nf

(
x
n

)
,

where

Ξ̂nf
(
x
n

)
= − Af (0)

Bnα−β−1
h
(
x
n

)
and Ξ̃nf

(
x
n

)
= −

1
2
f ′′(0)

An2−α
(
1 + 1

n
g
(
x
n

)) ,
where it is assumed that h is a fixed smooth compactly supported function satisfying
h(0) = h′′(0) = 0, h′(0) = 1, while g is a fixed nonnegative smooth compact supported
function satisfying g(0) = 0.

As we shall see in a moment, n2LnΞ̂nf
(
0
n

)
plays the role of canceling the exploding

term −An2−α in (2.3.20), while n2LnΞ̃nf
(
0
n

)
converges to 1

2
f ′′(0) = Lrbm(0), thus “correct-

ing” the limit of the generator at zero. Furthermore, the discrete Laplacian of both
functions outside 0/n will be uniformly asymptotically null. First of all, note that

∥Ξnf∥ ≲ ∥f∥
nα−β−1 +

∥f ′′∥
n2−α (2.3.21)

which converges to zero since β + 1 < α < 2, verifying hypothesis (A3). Our goal now is
to check (A2). Since h(0) = 0, and it is smooth, it yields that

n2LnΞ̂nf
(
0
n

)
= − An2−αΞ̂nf (0) +Bn2−β

[
Ξ̂nf

(
1
n

)
− Ξ̂nf (0)

]
= Bn2−βΞ̂nf

(
1
n

)
− Af (0)n3−α

[
h(0) + h′(0) 1

n
+ h′′(0)

2!
1
n2 ++h′′′(θ)

3!
1
n3

]
,

for some θ ∈ [0, 1/n]. Since h(0) = h′′(0) = 0 and h′(0) = 1, we conclude that

n2LnΞ̂nf
(
0
n

)
= − Af (0)n2−α + ∥f∥ ·O( 1

nα ) .

On the other hand,

n2LnΞ̃nf
(
0
n

)
= − An2−αΞ̃nf (0) +Bn2−β

[
Ξ̃nf

(
1
n

)
− Ξ̃nf (0)

]
= 1

2
f ′′(0) + B

2A
nα−βf ′′(0)

1
n
g
(
1
n

)
1+

1
n
g
(
1
n

)
= Lrbmf (0) + ∥Lrbmf∥ ·O( 1

n2−α+β )

since g(0) = 0 and g is smooth. Therefore, recalling (2.3.20),

|πnLrbmf (0)− n2LnΦnf (0) |

≲ 1
nα∥f∥+

(
1

n2−α+β + 1
nβ

)
∥Lrbmf∥+ 1

n2+β ∥L2rbmf∥ .



26

Let us deal with the convergence outside zero. By the usual convergence of the discrete
Laplacian towards the continuous Laplacian, it is easy to check that, for x

n
∈ Gn\{0},∣∣n2LnΞ̂nf

(
x
n

) ∣∣ ≲
|f (0) |
nα−β−1

[
∥h′′∥+ ∥h′′′′∥

n2

]
≲

∥f∥
nα−β−1

.

On the other hand, also for for x
n
∈ Gn\{0}, we have

n2LnΞ̃nf
(
x
n

)
= −f ′′(0)nα

2A

[ 1
n

(
g(xn)−g

(
x+1
n

))
(
1+

1
n
g(xn)

)(
1+

1
n
g
(
x+1
n

)) +
1
n

(
g(xn)−g

(
x−1
n

))
(
1+

1
n
g(xn)

)(
1+

1
n
g
(
x−1
n

))
]

= ∥f ′′∥ ·O( 1
n2−α ) .

Putting together all those bounds with (2.3.20) and (2.3.10), we finally get∥∥πnLrbmf − n2LnΦnf
∥∥ ≲ max

{
1
nα ,

1
nα−β−1

}
∥f∥

+max
{

1
nβ ,

1
n2−α+β ,

1
n2−α

}
∥Lrbmf∥

+max
{

1
n2+β ,

1
n2

}∥∥L2rbmf
∥∥ .

(2.3.22)

In view of (2.3.22) and (2.3.21), we can apply Theorem 1.3, hence giving us that

d(µn, µ) ≲ max
{

1
n
, 1
nα ,

1
nβ ,

1
nα−β−1 ,

1
n2−α ,

1
n2+β ,

1
n2

}
= max

{
1
nβ ,

1
nα−β−1 ,

1
n2−α

}
and that {Xn(t) : t ≥} weakly converges to {Xrbm(t) : t ≥ 0} under the J1-Skorohod
topology on DR≥0

[0,∞), ending this subcase.

Subcase β ∈ [0, 1), α = 2

Let us start the subcase β ∈ [0, 1), α = 2. Unlike in the previous subcase, here the
parcel −An2−αf (0) coming from (2.3.20) does not explode, being a constant. In this
situation we define

Ξnf
(
x
n

)
:= −

(
1
2
f ′′(0) + Af (0)

)
Bn1−β

h
(
x
n

)
where h is a fixed smooth compactly supported function satisfying h(0) = h′′(0) = 0 and
h′(0) = 1. Note that

∥Ξnf∥ ≲ ∥f∥+∥f ′′∥
n1−β (2.3.23)

which converges to zero since β ∈ [0, 1). Moreover

n2LnΞnf
(
0
n

)
= − An2−αΞnf (0) +Bn2−β

[
Ξnf

(
1
n

)
− Ξnf (0)

]
=

(
1
2
f ′′(0) + Af (0)

)[
h′(0) + h′′(θ)

2!n

]
= 1

2
f ′′(0) + Af (0) + (∥f∥+ ∥f ′′∥) ·O( 1

n
) .

Plugging this bound into (2.3.20), we get∥∥πnLrbmf − n2LnΦnf
∥∥ ≲ max

{
1
n
, 1
n1−β

}
∥f∥

+max
{

1
nβ ,

1
n

}
∥Lrbmf∥

+max
{

1
n2+β ,

1
n2

}∥∥L2rbmf
∥∥ .

In view of the inequality above and (2.3.23), we can apply Theorem 1.3, hence giving us
that

d(µn, µ) ≲ max
{

1
n
, 1
nβ ,

1
n1−β ,

1
n2+β ,

1
n2

}
= max

{
1
nβ ,

1
n1−β

}
and {Xn(t) : t ≥ 0} weakly converges to {Xrbm(t) : t ≥ 0} under the J1-Skorohod topology
on DR≥0

[0,∞), ending this subcase.
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Subcase β ∈ [0, 1), α > 2

Here the parcel −An2−αf (0) = ∥f∥ · O(1/nα−2) coming from (2.3.20) vanishes as n
goes to infinity. We then define

Ξnf
(
x
n

)
:= −

1
2
f ′′(0)

Bn1−β h
(
x
n

)
where, as before, h is a fixed smooth, compactly supported function satisfying h(0) =
h′′(0) = 0 and h′(0) = 1. Analogously to what we did before in the previous subcases,

∥Ξnf∥ ≲ ∥f ′′∥
n1−β (2.3.24)

and
n2LnΞnf

(
0
n

)
= − An2−αΞnf (0) +Bn2−β

[
Ξnf

(
1
n

)
− Ξnf (0)

]
= 1

2
f ′′(0) + ∥f ′′∥ ·O( 1

n
) .

Plugging this bound into (2.3.20), we get∥∥πnLrbmf − n2LnΦnf
∥∥ ≲ 1

nα−2 ∥f∥
+max

{
1
nβ ,

1
n
, 1
n1−β

}
∥Lrbmf∥

+max
{

1
n2+β ,

1
n2

}∥∥L2rbmf
∥∥ .

Denote by µ the distribution of the reflected BM at time t > 0. In view of the inequality
above and (2.3.24), we can apply Theorem 1.3, hence giving us that

d(µn, µ) ≲ max
{

1
n
, 1
nα−2 ,

1
n1−β ,

1
nβ ,

1
n2+β ,

1
n2

}
= max

{
1

nα−2 ,
1

n1−β ,
1
nβ

}
and {Xn(t) : t ≥} weakly converges to {Xrbm(t) : t ≥ 0} under the J1-Skorohod topology
on DR≥0

[0,∞), ending this subcase and completing the case β ∈ [0, 1) and 1 + β < α.

The absorbed BM: the case β > 1, α > 2

Denote the generator of the absorbed Brownian motion by Labm. Its domain is

D (Labm) := {f ∈ C2
0(G) : f ′′(0) = 0} .

To rigorously address this case, it is necessary to analyze two distinct subcases, which
are outlined as follows:

• α > 2 and β > 2 ,

• α > 2 and β ∈ (1, 2] .

Subcase α > 2 and β > 2

Consider a null correction Ξn ≡ 0. Then

n2LnΦnf (0) = −Af(0)
nα−2 + B

nβ−2

[
f
(
1
n

)
− f (0)

]
,

thus combining this with (2.3.10)∥∥πnLabmf − n2LnΦnf
∥∥ ≲ max

{
1

nα−2 ,
1

nβ−2

}
∥f∥+ 1

n2

∥∥L2abmf
∥∥ . (2.3.25)

Denote by µ the probability measure of the absorbed BM at time t > 0. In view of
(2.3.25), we can apply Theorem 1.3, which gives us

d(µn, µ) ≲ max
{

1
n
, 1
nα−2 ,

1
nβ−2 ,

1
n2

}
= max

{
1
n
, 1
nα−2 ,

1
nβ−2

}
and {Xn(t) : t ≥ 0} weakly converges to

{
Xabm(t) : t ≥ 0

}
under the J1-Skorohod topology

of DR≥0
[0,∞).
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Subcase α > 2 and β ∈ (1, 2]

Similarly to what happened in the exponential holding BM in the strip 1 < β <
2, we can check that ∥πnLabmf − n2Lnπnf∥ → 0, so we can apply mutatis mutandis
[Ethier and Kurtz, 1986, Theorem 6.1, page 28] and [Ethier and Kurtz, 1986, Theorem
2.11, page 172] to deduce the convergence towards the Absorbed BM. However, since
the rate of convergence relies on the first derivative of f , we cannot apply Theorem 1.3,
hence no speed of convergence is provided in this case.

The mixed BM: the case α = 2 and β = 1

Consider

c1 =
A

1 + A+B
c2 =

B

1 + A+B
and c3 =

1

1 + A+B
.

Let Lmbm be the generator of the mixed Brownian motion, whose domain is given by

D (Lmbm) :=
{
f ∈ C2

0(G) : Af(0)
1+A+B

− Bf ′(0)
1+A+B

+
1
2
f ′′(0)

(1+A+B)
= 0

}
.

In this case, also no correction is needed, so define Ξn ≡ 0 to be the null operator. Since
f ∈ D(L2mbm), then we get the boundary conditions Bf ′(0) = Af (0)+ 1

2
f ′′(0) and Bf ′′′(0) =

Af ′′(0) + 1
2
f ′′′′(0). For α = 2 and β = 1, we have by applying the boundary conditions and

from (2.3.8), that

n2LnΦnf (0) = (Bf ′(0)− Af (0)) + B
2!n

f ′′(0) + B
3!n2f

′′′(0) + B
4!n3f

′′′′
(η)

= 1
2
f ′′ (0) +

(
A

3!n2 +
B
2!n

)
f ′′ (0) + 1

2·3!n2f
′′′′ (0) + B

4!n3f
′′′′
(η)

= Lmbmf(0) + ∥Lmbmf∥ ·O
(
1
n

)
+
∥∥L2mbmf

∥∥ ·O
(

1
n2

)
for some 0 ≤ η ≤ 1/n. Thus

|
(
πnLmbmf − n2LnΦnf

)
(0)| ≤ ∥Lmbmf∥ ·O( 1

n
) +

∥∥L2mbmf
∥∥ ·O

(
1
n2

)
.

By the above bound,∥∥πnLmbmf − n2LnΦnf
∥∥ ≲ 1

n
∥Lmbmf∥+ 1

n2

∥∥L2mbmf
∥∥ .

Denote by µ the probability measure of the mixed BM at time t > 0. Thus, by the
previous inequality we can invoke Theorem 1.3, concluding that

d(µn, µ) ≲ max
{

1
n
, 1
n2

}
= 1

n

and that {Xn(t) : t ≥ 0} weakly converges to {Xmbm(t) : t ≥ 0} under the J1-Skorohod
topology on DG[0,∞).

It now remains to prove Theorem 2.3. Before delving into the details we recall that
the topology is different here, because S = (0,∞). In this scenario, the functions in the
space C0(S) must converge to zero at zero, see Definition 1.2.

Since the topology is different from the previous setup, we need to check again hy-
pothesis (G2). Recall the definition of the functions fk in (2.3.4).

Proposition 2.1. Let B = {fi : i ≥ 1}. Then span(B) is dense on C0
(
(0,∞)

)
.

Proof. Immediate from Corollary 2.1 and the fact that fi(0) = 0 for any i ≥ 1.
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Figure 2.5: Jump rates for the shifted boundary random walk.

Proof of Theorem 2.3. The Proposition 2.1 ensures (G2). To ease arguments, note that
τnXn is the same as considering the boundary random walk Xn on the state space in
Figure 2.5. Denote by Xkbm the killed Brownian motion of coefficients c1 = 0, c2 = 1,
c3 = 0 and let Lkbm be its the generator, whose domain is given by

D (Lkbm) :=
{
f ∈ C2

0(G) : f(0) = 0
}
.

Let f ∈ D (Lkbm). By the definition of C0(G) and since Lkbmf ∈ C0(G), we infer that
f ′′(0) = 0. By doing Taylor expansions around zero and using that f(0) = f ′′(0) = 0, we
get

n2Lnf
(
1
n

)
= An2

nα

[
f(∆)− f

(
1
n

) ]
+ Bn2

nβ

[
f
(
2
n

)
− f

(
1
n

) ]
= −An2−α

[
f(0) + f ′(0) 1

n
+ f ′′(0)

2!
1
n2 +

f ′′′(θ1)
3!

1
n3

]
+Bn2−β

[
f ′(0) 2

n
+ f ′′(0)

2!

(
2
n

)2
+ f ′′′(θ2)

3!

(
2
n

)3 − f ′(0) 1
n
− f ′′(0)

2!
1
n2 − f ′′′(θ3)

3!
1
n3

]
= f ′ ( 0

n

) [
Bn1−β − An1−α

]
+O(max{ 1

n1+β ,
1

n1+α}) (2.3.26)

where θ1, θ2, θ3 ∈ [0, 1
n
]. On the other hand, if our correction Ξn is such that Ξnf(∆) = 0,

n2LnΞnf
(
1
n

)
= An2

nα

[
Ξnf(∆)− Ξnf

(
1
n

) ]
+ Bn2

nβ

[
Ξnf

(
2
n

)
− Ξnf

(
1
n

) ]
= −An2−αΞnf

(
1
n

)
+Bn2−β

[
Ξnf

(
2
n

)
− Ξnf

(
1
n

) ]
. (2.3.27)

Since Lkbmf(0) =
1
2
f ′′(0) = 0, our goal is to find a correction Ξn such that (2.3.27) cancels

the non-vanishing terms in (2.3.26).

Subcase β > 1

In this case, the term Bn1−β in (2.3.26) vanishes as n → ∞, and we only need to deal
with An1−α. Define

Ξnf
(
x
n

)
:= −f ′(0) · n−1

1 +
g
x−1
n
n

for x
n

≥ 1
n
, where g : G → R is a nonnegative compactly supported smooth function

such that g(0) = 0. It is now straightforward to check that ∥πnLkbmf − n2LnΦnf∥ →
0. Thus, applying mutatis mutandis [Ethier and Kurtz, 1986, Theorem 6.1, page 28]
and [Ethier and Kurtz, 1986, Theorem 2.11, page 172], we conclude that {Xn(t) : t ≥
0} weakly converges to {Xkbm(t) : t ≥ 0} under the J1-Skorohod topology on DG[0,∞).
Note that ∥Ξnf∥ = ∥f ′∥O(1/n), so we cannot apply our Theorem 1.2 and no speed of
convergence is provided.
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Subcase β ∈ [0, 1], α < 1 + β

In this scenario, the parcel Bn1−β does not vanish as n → ∞, and we need to define
an extra correction to deal with it. Define

Ξnf
(
x
n

)
:= − f ′(0) · n−1

1 +
g
(
x−1
n

)
n

+
B
A
f ′(0) · nα−β−1

1 +
g
(
x−1
n

)
n

for x
n
≥ 1

n
and let g be the same function as in the previous case. Note that the condition

α < 1 + β guarantees that the correction above goes to zero as n → ∞. It is now
straightforward to check that ∥πnLkbmf − n2LnΦnf∥ → 0, leading us to conclude that
{Xn(t) : t ≥ 0} weakly converges to {Xkbm(t) : t ≥ 0} under the J1-Skorohod topology on
DG[0,∞).

Remark 2.2. Note that the region corresponding to the parameters (β, α) for which the
shifted boundary random walk converges to the killed BM covers the white region in
the first quadrant of Figure 2.3 and also the regions related to the exponential holding
BM and absorbed BM. This is natural to interpret once we realize that in the killed BM
setting there is an equivalence between the origin and the cemetery ∆.



Chapter 3

Weak Berry-Esseen estimates for the
slow bond random walk

3.1 Introduction
Throughout this chapter, our goal is to construct the shifted 1-dimensional Snapping-

Out Brownian motion as the scaling limit of the slow bond random walk as well as to
exhibit a weak Berry Esseen estimate.

Rigorously, consider Xslow
t , the process having its exchange rates given by α/nβ when-

ever the particle tries to jump from the positive half-line to the negative one, and vice
versa, see the figure 3.1. We can define it as the Feller process whose generator Ln acts
on local functions f : Zn → R via

Lnf
(
x
n

)
= θnx,x+1∇n

x,x+1f
(
x
n

)
+ θnx,x−1∇n

x,x−1f
(
x
n

)
, (3.1.1)

where

θnx,x+1 = θnx+1,x =

{
α
nβ if x = −1

1 otherwise.

and ∇n
x,y : C0(Zn) → C0(Zn) is defined by

∇n
x,yf

(
x
n

)
:= f

(
y
n

)
− f

(
x
n

)

1 1

α

nβ

− 2
n

− 1
n

0
n

1
n

2
n

3
n

4
n

5
n

Figure 3.1: Jump rates for the slow bond random walk.

An important observation is that this random walk is the same as the one studied by
Erhard et al in [Erhard et al., 2021]. In their work, the authors showed that the slow
bond random walk weakly converges to the snapping-out Brownian motion and they
exhibit Berry-Esseen estimates. Now, let us briefly introduce the snapping-out Brownian
motion:

31
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The elastic (or partially reflected) Brownian motion on [0,∞) is a continuous stochas-
tic process that serves as an intermediate model between the absorbed Brownian mo-
tion and the reflected Brownian motion on [0,∞). This process can be described as a
reflected Brownian motion that is killed at a stopping time determined by an exponen-
tial distribution. Specifically, for a given positive parameter κ, we sample a random
variable Y ∼ exp(κ), which is independent of the reflected Brownian motion. The pro-
cess evolves until the local time of the reflected Brownian motion at zero reaches Y , at
which point it is killed (absorbed) at the origin. The process is associated to the Robin
boundary condition and it works as a "basic brick" for constructing the snapping-out
Brownian motion. For a broader discussion, including connections to the d-dimensional
setting, mixed boundary value problems, and Laplacian transport phenomena, we refer
to the reader the survey [Grebenkov, 2006] as well as [Feller, 1954] for a comprehensive
overview.

The snapping out Brownian motion (SNOB) process on G = (−∞, 0−] ∪ [0+,∞), with
parameter κ, is a Feller process recently constructed in [Lejay, 2016] by gluing pieces of
the elastic Brownian motion with parameter 2κ. When the 2κ-elastic Brownian motion
is killed at zero, the process is restarted at 0+ or 0− with equal probability 1/2. An
equivalent way to define this process is to consider the κ-elastic Brownian motion and,
upon being killed at 0+ (or equivalently at 0−), restart it on the opposite side, 0− (or 0+,
respectively).

Alternatively, the snapping-out Brownian motion (SNOB) can be formulated via its
resolvent operator, providing a rigorous analytical framework for describing the process.
A formal characterization of the SNOB has been established as follows:
Proposition 3.1. [Lejay, 2016, Proposition 1, page 7] The resolvent family (Gα)α>0 of
the SNOB is a solution to(

α− 1

2
∆

)
Gαf(x) = f(x), for x ∈ G (3.1.2)

with {
∇Gαf(0

+) = ∇Gαf(0
−) ,

∇Gαf(0) =
κ
2
(Gαf(0

+)−Gαf(0
−)) ,

(3.1.3)

for any bounded, continuous function f on G that vanishes at infinity.
It is noteworthy that this proposition allows us to identify the infinitesimal gener-

ator of the snapping-out Brownian motion. Furthermore, we can interpret the points
0+ and 0− as sides of a semi-permeable barrier which arises for example in diffusion
magnetic resonance imaging [Fieremans et al., 2010], or chemistry [Singer et al., 2008].
Additionally, the boundary conditions given by Equation (3.1.3) provide a mathematical
framework to describe the interaction of the process with the boundary, encapsulating
both reflection and killing effects.

As previously mentioned, [Erhard et al., 2021] has proved an explicit form for the
semigroup of the snapping-out Brownian motion as well as Berry-Esseen estimates for
the convergence under the dual bounded Lipschitz metric. The result can be stated as
follows:
Proposition 3.2. [Erhard et al., 2021, Proposition 2.3] Let (Psnob(t))t≥0 : C0(G) → C0(G)
be the semigroup of the SNOB with parameter κ. Then, for any f ∈ C0(G), we have that
PSNOB(t)f(u) is the solution of the partial differential equation

∂tv(t, u) =
1
2
∆v(t, u), u ̸= 0 ,

∂uv(t, o
+) = ∂uv(t, 0

−) = κ
2
[v(t, 0+)− v(t, 0−)] , t > 0

v(0, u) = f(u), u ∈ R .
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Moreover, the semigroup (Psnob(t))t≥0 : C0(G) → C0(G) is given by

Psnob(t)f(u) = 1√
2πt

∫
R
e−

(u−y)2

2t feven(y)dy

+ 1√
2πt

eκu
∫ ∞

u

e−κz

∫ ∞

0

[(
z−y+κt

2t

)
e−

(z−y)2

2t +
(

z+y+κt
2t

)
e−

(z+y)2

2t

]
fodd(y)dydz (3.1.4)

for u > 0 and

Psnob(t)f(u) = 1√
2πt

∫
R
e−

(u−y)2

2t feven(y)dy

− 1√
2πt

eκu
∫ ∞

u

e−κz

∫ ∞

0

[(
z−y+κt

2t

)
e−

(z−y)2

2t +
(

z+y+κt
2t

)
e−

(z+y)2

2t

]
fodd(y)dydz (3.1.5)

for u < 0, where feven(x) :=
1
2
(f (x) + f (−x)) and fodd(x) :=

1
2
(f (x)− f (−x)) are the even

and the odd parts of f , respectively.

The second result they proved has its foundation on the space of probability measures
equipped with a specific metric: The bounded Lipschitz functions BL(S) over a metric
space (S, ρ) is the set of real functions on S such that

∥f∥ := sup
u∈S

|f(u)| < ∞ and

∥f∥L := sup
u,v∈S
u̸=v

|f(u)− f(v)|
ρ(u, v)

< ∞ .

and BL(S) is a normed linear space with norm ∥f∥BL := ∥f∥ + ∥f∥L. The dual bounded
Lipschitz metric dBL is a metric over the set of probability measures P(S) given by

dBL(µ, ν) := sup
f∈BL(S)
∥f∥BL≤1

∣∣∣∣∫ fdµ−
∫

fdν
∣∣∣∣ .

Theorem 3.1. [Erhard et al., 2021, Berry-Esseen estimates, Theorem 2.4] Fix t > 0
and u ̸= 0. Denote by µslow

tn2 the probability measure on R induced by the slow bond
random walk n−1Xslow

tn2 starting from the site ⌊un⌋ ∈ Z. Denote by µsnob
t and µrbm

t the
probability measures on S = G induced by Snapping-Out Brownian motion Bsnob

t and
reflected Brownian motion Brbm

t , respectively, and denote by µt the probability measure
on S = R induced by the Brownian motion Bt. All the previous Brownian motions are
assumed to start from u. We have, for the bounded Lipschitz norm, that

• If β ∈ [0, 1), then
dBL(µ

slow
tn2 , µt) ≲ nβ−1 .

• If β = 1, then for any δ > 0,

dBL(µ
slow
tn2 , µsnob

t ) ≲ n−1/2+δ .

• If β ∈ (1,∞], then
dBL(µ

slow
tn2 , µrbm

t ) ≲ max{n−1, n1−β} .

Later on, we will briefly compare Theorem 3.1 for β = 1 with the convergence rate
derived using the methodology introduced in Chapter 1. We shall see that faster rates of
convergence can be established. However, this comes at the cost of working in a weaker
framework in terms of the topology where the process takes place.
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3.2 The 1-dimensional snapping-out Brownian motion
We will now use Proposition 3.1 to characterize the snapping-out Brownian motion

via its generator. Once this is done, we will be able to apply the method presented in
Chapter 1 to establish convergence and estimate its rate.

Lemma 3.1. The standard snapping-out Brownian motion over G has generator 1
2
∆ and

its domain is given by

D (L) :=
{
f ∈ C2

0(G) : f ′′ ∈ C0(G) , and ∇f
(
0+

)
= ∇f

(
0−

)
=

κ

2

[
f
(
0+

)
− f

(
0−

)]}
(3.2.1)

where κ = 2α.

Proof. The proof relies on the uniqueness of a solution of an ODE. Let Gα be given as
in Proposition 3.1. Since {Gα : α > 0} is the resolvent family, for any α, the map Gα :
C0(G) → D (L) ⊂ C0(G) is surjective.

In particular, let us fix α = 1 and g ∈ C0(G). From the surjectivity of G1, it follows that
there exists f ∈ D (L), such that f(x) = G1g(x) for every x ∈ G. Since Gα satisfies the
relations (3.1.3), one can see that f satisfies the desired boundary conditions. Indeed,{

f ′(0+) = (Gg)′(0+) = (G1g)
′(0−) = f ′(0−)

f ′(0) = (G1g)
′(0) = κ

2
[G1g(0

+)− G1g(0
−)] = κ

2
[f(0+)− f(0−)]

(3.2.2)

It remains to characterize the generator. Observe now that, from equation (3.1.2),

g(x) =
(
Id− 1

2
∆
)
G1g(x)

= f(x)− 1
2
f ′′(x) ∀x ∈ G ,

and since f satisfies the boundary conditions (3.2.2), from standard ODE theory, it has
unique solution. On the other hand, for every x ∈ G, we have that

1
2
f ′′(x) = f(x)− g(x)

= G1g(x)− g(x)

= [G1 − G−1
1 G1]g(x)

= [Id− (Id− L)]G1g(x)

= Lf(x) ,

concluding in this way that generator is 1
2
∆, fully characterizing the domain (3.2.1)

In what follows, we modify the standard Snapping Out Brownian motion by exchang-
ing the position of the process discontinuity. We exchanged the slow site, before living
over the sites −1 and 0, now to some middle point over the bond [−1, 0].

Consider p ∈ R fixed and define the set J := (−∞,−p−] ∪ [p+,∞). We will define the
toy model in this space.

Lemma 3.2. Let p ∈ R. Then, for every n ∈ N, there exists a linear operator τn : R → R
such that τn(p) ∈

(
− 1

n
, 0
n

)
.

Proof. A countability argument ensures that we can always define a family of linear
operators τn : R → R indexed in n, which maps p to the usual lattice via τn(p) := − p

n
∈(

− 1
n
, 0
)

and acts linearly on the other points.
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Let then {PJ(t) : t ≥ 0} denote the Feller semigroup of the snapping-out Brownian
motion Xsnob

J defined over J whose generator LJ is 1
2
∆ and whose domain is given by

D (LJ) :=
{
f ∈ C2

0(J) : f ′ (p±) =
κ

2

(
f
(
p+

)
− f

(
p−

))}
.

It remains to show that we can approximate this model using the same slow bond
random walk: For each n ∈ N, consider Xslow

n to be the simple random walk with a slow
bond whose trajectories are defined on the scaled space Jn := τn(R) ∩ Zn and whose
generator is defined via (3.1.1) and speeded up by n2. In addition, we restrict ourselves
to the regime in which β = 1.

Lemma 3.3. Fix u, t > 0. Consider the 1-dimensional snapping-out Brownian motion
Xsnob

J over J, by {PJ(t) : t ≥ 0} we mean its Feller semigroup and LJ its respective gen-
erator. For each n, let the slow bond random walk Xslow

n speeded up by n2 defined over
Jn, and consider {Tn(t) : t ≥ 0} to be its semigroup. Then, for each t ≥ 0 inside compact
intervals and for all f ∈ D

(
L2J
)

it holds that∥∥πnP
J(t)f − Tn(t)πnf

∥∥ =
(
∥f∥+ ∥∆f∥

)
·O

(
1
n

)
+
∥∥∆2f

∥∥ ·O
(

1
n2

)
.

Proof. For the sake of simplicity, define by πn : C0(J) → C0(Zn), the projection given by
πnf = f |Zn. The proof consists of checking the convergence at −1 as well as at the origin
0 since at other sites the random walk is homogeneous, by verifying hypotheses (A1) to
(A3) in order to apply Theorem 1.2.

Fix f ∈ D
(
L2J
)
. The boundary conditions of the process can be translated into the

following relations

f ′ (− p
n
+
)
= f ′ (− p

n
−) = α

[
f
(
− p

n
+
)
− f

(
− p

n
−) ](

1
2
∆f

)′(− p
n
+
)
=

(
1
2
∆f

)′(− p
n
−) = α

[
1
2
∆f

(
− p

n
+
)
− 1

2
∆f

(
− p

n
+
)]

.

Since the Snapping-Out Brownian motion has a discontinuity at − p
n
, we have that

n2Lnπnf
(
0
n

)
= n2 α

n
∇n

−1,0πnf
(
0
n

)
+ n2∇n

1,0πnf
(
0
n

)
= nα∇n

−1,−p−f
(
− p

n
−)+ n∇n

p−,p+f
(
p
n
+
)
− nα∇n

0,−p+f
(
− p

n
+
)
+ n2∇n

1,0f
(
0
n

)
= nα∇n

−1,−p−f
(
− p

n
−)− nf ′ (− p

n

)
− nα∇n

0,−p+f
(
− p

n
+
)

+ n2∇n
1,−p+f

(
− p

n
+
)
− n2∇0,−p+f

(
− p

n
+
)
. (3.2.3)

and

n2Lnπnf
(
− 1

n

)
= nα∇n

0,−1f
(
− 1

n

)
+ n2∇n

−2,−1f
(
− 1

n

)
= nα∇n

p+,0f
(
− p

n
−)+ nf ′ ( p

n

)
− nα∇n

−1,p+f
(
− p

n
+
)

+ n2∇−2,p−f
(
− p

n
−)− n2∇n

−1,p−f
(
− p

n
−) , (3.2.4)

We begin by analyzing the first equation (3.2.3). The second equation (3.2.4) can be
treated in a similar manner. By doing Taylor expansions around the discontinuities in
(3.2.3), and by applying the boundary conditions, we obtain:

∇n
1,−p+f

(
− p

n
+
)
= p+1

n
f ′ (− p

n

)
+ 1

2
(p+1

n
)2f ′′ (− p

n
−)+ ∥∆f∥ ·O

(
1
n3

)
+ ∥∆2f∥ ·O

(
1
n4

)
.

∇n
−1,p−f

(
− p

n
+
)
= p−1

n
f ′ (− p

n

)
+ 1

2
(p−1

n
)2f ′′ (− p

n
−)+ ∥∆f∥ ·O

(
1
n3

)
+ ∥∆2f∥ ·O

(
1
n4

)
.

∇0,−p+f
(
− p

n
+
)
= p

n
f ′ (− p

n

)
+ 1

2
( p
n
)2f ′′ (− p

n
−)+ ∥∆f∥ ·O

(
1
n3

)
+ ∥∆2f∥ ·O

(
1
n4

)
.

(3.2.5)
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The approximation arises from the boundary conditions imposed on the terms of orders
3 and 4, which introduce slight deviations.

Now, by substituting the relations from (3.2.5) into (3.2.3), and applying the same
procedure to equation (3.2.4), we obtain the following results

n2Lnπnf
(
− 1

n

)
= −αf ′ (− p

n

)
+ pf ′′ (− p

n
+
)

+1
2
f ′′ (0) + ∥∆f∥ ·O

(
1
n

)
+ ∥∆2f∥ ·O

(
1
n2

)
,

n2Lnπnf
(
0
n

)
= αf ′ (− p

n

)
+ (1− p)f ′′ (− p

n
−)

+1
2
f ′′ (− p

n
+
)
+ ∥∆f∥ ·O

(
1
n

)
+ ∥∆2f∥ ·O

(
1
n2

)
.

It is worth highlighting that the relation above holds as an equality, except for terms
that converge to zero depending on ∥∆f∥ and ∥∆2f∥. As we shall see later, we will
introduce operators designed to correct these constant terms, ensuring that only 1

2
∆ at

the point remains, alongside terms that vanish as they converge to zero.
Let us in the direction of obtaining the family of correction operators. Firstly, we

define auxiliary straight lines g1f and g2f as follows: For any fixed f ∈ D (L2) put

g1f
(
x
n

)
:= −

[
f ′ (− 1

n

)
− f ′ (− p

n

) ]
x+ f ′ (− p

n

)
,

g2f
(
x
n

)
:=

[
f ′ ( p

n

)
− f ′ ( 0

n

) ]
x− f ′ (− p

n

)
.

As we shall see, these straight lines play a crucial role in ensuring convergence near
the slow bonds by effectively “gluing" the behavior in these region.

For each n ∈ N fixed, let H : R → R be a function satisfying that H (0) = 0 and it is
Lipschitz. Additionally, for any polynomial p of degree 1, it holds

lim
|x|/n→∞

p
(
x
n

)
1 + 1

n
H
(
x
n

) = 0, ∀n ∈ N . (3.2.6)

For example, we could simple take H (x) = x2. Let then consider the family of linear
operators {ΞI

n : n ≥ 0}, acting over local functions Ξn : C0(J) → C0(Zn) via

ΞI
nf

(
x
n

)
:=



1
n

g1f

(
x+1
n

)
1+ 1

n
H
(
x+3
n

) , if x
n
≤ − 3

n
,

1
n
f ′ (− 1

n

)
, if x

n
= − 2

n
,

1
n
f ′ (− p

n

)
, if x

n
= − 1

n
,

− 1
n
f ′ (− p

n

)
, if x

n
= 0

n
,

− 1
n
f ′ ( 0

n

)
, if x

n
= 1

n
,

1
n

g2f(
x
n)

1+ 1
n

H
(
x−2
n

) , if x
n
≥ 2

n
.

As previously mentioned, the operator is well-defined, that is, the process is defined
over the space of continuous functions vanishing at infinity mapping Zn into R. Thus,
the hypothesis (A1) holds.

The boundary conditions in addition to f ∈ D (L2), yields that

n2LnΞnf
(
0
n

)
= nα

[
ΞIf

(
− 1

n

)
− ΞIf

(
0
n

)]
+ n2

[
ΞIf

(
1
n

)
− ΞIf

(
0
n

)]
= α

[
f ′ (− p

n

)
+ f ′ (− p

n

)]
− n

[
f ′ ( 0

n

)
− f ′ (− p

n

)]
= 2αf ′ (− p

n

)
+ n

[
p
n
f ′′ (− p

n
+
)
+ p2

2n2f
′′′ (− p

n
+
)
+ p3

3!n3f
′′′′ (η)

]
= 2αf ′ (− p

n

)
+ pf ′′ (− p

n
+
)
+ ∥∆f∥ ·O

(
1
n

)
+
∥∥∆2f

∥∥ ·O
(

1
n2

)
. (3.2.7)
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By an analogous computation, one can check that

n2LnΞ
I
nf

(
− 1

n

)
= −2αf ′ (− p

n

)
− (1− p)f ′′ (− p

n
−)+ ∥∆f∥ ·O

(
1
n

)
+
∥∥∆2f

∥∥ ·O
(

1
n2

)
, (3.2.8)

and therefore, we partially correct the constant terms. We now aim to prove that the
n2LnΞnf decay to zero as n → ∞ when evalute outside

{
− 1

n
, 0
n

}
. Observe that

n2LnΞ
If

(
− 2

n

)
= n2LnΞ

If
(
1
n

)
= 0 ≤ ∥f∥ ·O

(
1
n

)
Consider now, x

n
outside

{
− 2

n
,− 1

n
, 0
n
, 1
n

}
, and without loss of generality, suppose x

n
≥ 0

n
.

Thus

n2LnΞ
I
nf

(
x
n

)
= n2

[
ΞIf

(
x+1
n

)
+ ΞIf

(
x−1
n

)
− 2ΞI

nf
(
x
n

) ]
= n

[
g1f

(
x+1
n

)
1 + 1

n
H
(
x−1
n

) +
g1f

(
x−1
n

)
1 + 1

n
H
(
x−3
n

) − 2
g1f

(
x
n

)
1 + 1

n
H
(
x−2
n

)]

= g2f
(
x+1
n

) [ H
(
x−2
n

)
−H

(
x−1
n

)
(
1+

1
n

H
(
x−1
n

))(
1+

1
n

H
(
x−2
n

))
]
+

n

1 + 1
n
H
(
x−2
n

)[f ′ (− p
n

)
− f ′ ( 0

n

) ]
+ g2f

(
x−1
n

) [ H
(
x−2
n

)
−H

(
x−3
n

)
(
1+

1
n

H
(
x−3
n

))(
1+

1
n

H
(
x−2
n

))
]
− n

1 + 1
n
H
(
x−2
n

)[f ′ (− p
n

)
− f ′ ( 0

n

) ]
= ∥f∥ ·O

(
1
n

)
,

and the last inequality comes from the Lipschitz property of H as well the boundary con-
dition imposed to f . The same computations ensures the same rate for x

n
≤ 0

n
. Therefore,

it follows the following estimate

n2LnΞ
I
nf

(
x
n

)
= ∥f∥ ·O

(
1
n

)
.

It is important to highlight that the corrections (3.2.7) and (3.2.8) partially guarantee
the desired convergence. Specifically, with these adjustments, the terms involving the
first derivative do not vanish; more than that, their intensity is amplified. Consequently,
it becomes necessary to introduce a second operator to address this convergence issue.
Following a similar approach to our earlier considerations, let us define the following
straight lines

h1
f

(
x
n

)
:= −αf ′ (− p

n

)
x ,

h2
f

(
x
n

)
:= αf ′ (− p

n

)
x .

as well the operator ΞII
n : C0(J) → C0(Zn) given by

ΞII
n f

(
x
n

)
:=



1
n2

h1
f

(
x−2
n

)
1+ 1

n
H
(
x−2
n

) , if x
n
≥ 2

n

1
n2

αf ′
(
− p
n

)
1+

1
n

H(xn)
, if x

n
= 1

n

1
n22αf

′ (− p
n

)
, if x

n
= 0

n

− 1
n22αf

′ (− p
n

)
, if x

n
= − 1

n

− 1
n2

αf ′
(
− p
n

)
1+

1
n

H
(
x+1
n

) , if x
n
= − 2

n

1
n2

h2
f

(
x+3
n

)
1+ 1

n
H
(
x+3
n

) , if x
n
≤ − 3

n
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Similarly, ΞII
n f satisfies (A1), and therefore, defining Φn := πn + ΞI

n + ΞII
n it is immediate

this new operator also satisfies (A1). A similar computations guarantees that

n2LnΞ
II
n f

(
− 1

n

)
= −αf ′ (− p

n

)
+ ∥f∥ ·O

(
1
n

)
n2LnΞ

II
n f

(
0
n

)
= αf ′ (− p

n

)
+ ∥f∥ ·O

(
1
n

)
.

and, outside these sites, we also have that

n2LnΞ
II
n f

(
x
n

)
= ∥f∥ ·O

(
1
n

)
.

Thus, we are able to apply the Theorem 1.2. Then, for any t > 0 in a compact interval,
one can check that∥∥πnP

J(t)f − Tn(t)πnf
∥∥ = (∥f∥+ ∥∆f∥) ·O

(
1
n

)
+
∥∥∆2f

∥∥ ·O
(

1
n2

)
.

In order to establish convergence over the Skorohod space DJ[0,∞) as well to derive
the weak Berry-Esseen estimate, it remains to construct the basis for the topology under
consideration. Subsequently, with this basis, we will be able to compare the results ob-
tained through this approach via Lemma 3.3 against the ones presented in Theorem 3.1.
Lemma 3.4. There exists sequences {fk,j : k, j ≥ 0} ⊂ D

(
L2J
)

satisfying the hypotheses
(B2) and (B3).

The proof of Lemma 3.4 presented above closely mirrors the construction detailed in
Theorem 2.2.

Proof. Firstly, note that Lemma 2.1 ensures that span(A) is dense in C0(R). Consider
then fk precisely as in (2.3.4). Observe, in this particular case, that fk ∈ D

(
L2J
)

for k ≥ 4,
and hence, in this range of k, define fj,k := fk.

To finish the proof, for k ∈ {0, 1, 2, 3}, construct fj,k following the same procedure
detailed in the proof of Theorem 2.2.

The hypothesis (B1) is straightforwardly verified for this model. It remains to check
(B4).
Lemma 3.5. The semigroup PJ(t) of the snapping-out Brownian motion is Lipschitz.
Proof. For sake of simplicity, let us suppose that p = 0. From the Proposition 3.2, the
semigroup PJ(t) has an explicit form given by (3.1.4) and (3.1.5). We show by straightfor-
ward computation that the hypothesis (B4) holds. Initially, let us suppose that v > u > 0.
For sake of simplicity, define

Az,y := e−κz

∫ ∞

0

[(
z−y+κt

2t

)
e−

(z−y)2

2t +
(

z+y+κt
2t

)
e−

(z+y)2

2t

]
fodd(y)dy ,

and M(t) := |
√
2πt|−1. Observe that ∥feven∥ , ∥fodd∥ ≤ ∥f∥. From the triangle inequality,

for every t ≥ 0 we have that

|PJ(t)f(u)− PJ(t)f(v)| ≤ M(t)

∣∣∣∣∫
R
e−

(u−y)2

2t feven(y)dy −
∫
R
e−

(v−y)2

2t feven(y)dy
∣∣∣∣

+M(t)

∣∣∣∣eκu ∫ ∞

u

Az,ydz − eκv
∫ ∞

v

Az,ydz
∣∣∣∣

≤ M(t) ∥feven∥
∫
R

∣∣∣e− (u−y)2

2t − e−
(v−y)2

2t

∣∣∣dy +M(t)

∣∣∣∣(eκu − eκv
) ∫ ∞

u

Az,ydz + eκv
∫ v

u

Az,ydz
∣∣∣∣

≤ M(t)

[
∥f∥

∫
R

∣∣∣e− (u−y)2

2t − e−
(v−y)2

2t

∣∣∣dy + |eκu − eκv| ·
∫ ∞

0

|Az,y|dz + eκz
∫ v

u

|Az,y|dz
]
.

(3.2.9)
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Invoking the mean value theorem, we obtain∫
R

∣∣∣e− (u−y)2

2t − e−
(v−y)2

2t

∣∣∣dy ≤ |v − u|
∫
R

sup
ξ∈[u,v]

∣∣∣ d
dξ
e−

(ξ−y)2

2t

∣∣∣dy
= |v − u|

∫
R

sup
ξ∈[u,v]

∣∣∣ (ξ−y)
t

e−
(ξ−y)2

2t

∣∣∣dy
≤ |v − u|

∫
R

sup
ξ∈[u,v]

|ξ−y|
t

e−
(ξ−y)2

2t dy

≤ K|v − u| (3.2.10)

for some constant K > 0, and

|eκu − eκv| ≤ sup
ξ∈[u,v]

∣∣ d
dξ
eκξ

∣∣ · ∣∣v − u
∣∣ = sup

ξ∈[u,v]

∣∣∣κeκξ∣∣∣ · ∣∣v − u
∣∣ ≤ κeκv|v − u| . (3.2.11)

By replacing (3.2.10) and (3.2.11) into (3.2.9) we achieve that

|PJ(t)f(u)− PJ(t)f(v)| ≤ 2M(t) ∥f∥ · |u− v|+M(t)κeκv|v − u| ·
∫ ∞

0

|Az,y|dz

+ eκv
∫ v

u

|Az,y|d z . (3.2.12)

We claim now that ∫ ∞

0

|Az,y|dz ≤ ∥f∥
[
1
κ
+
√

πt
2

]
. (3.2.13)

Denote by

I1 :=

∫ ∞

0

∣∣ z−y+κt
2t

∣∣ e− (z−y)2

2t d y , and I2 :=

∫ ∞

0

∣∣ z+y+κt
2t

∣∣ e− (z+y)2

2t d y ,

Therefore, one can obtain the following upper bound

I1 ≤
∫ ∞

0

[
|z−y|
2t

+ κ
2

]
e−

(z−y)2

2t d y

=

∫ ∞

0

|z−y|
2t

e−
(z−y)2

2t d y +

∫ ∞

0

κ
2
e−

(z−y)2

2t d y

= 1
2
+ κ

2

√
πt
2

and similarly, the same upper bound holds for I2. From these upper bounds, it follows∫ ∞

0

|Az,y|d z ≤
∫ ∞

0

∣∣∣∣e−κz

∫ ∞

0

[(
z−y+κt

2t

)
e−

(z−y)2

2t +
(

z+y+κt
2t

)
e−

(z+y)2

2t

]
fodd(y)dy

∣∣∣∣d z

≤ ∥fodd∥
∣∣∣∣1 + κ

√
πt
2

∣∣∣∣ ∫ ∞

0

e−κzd z

≤ ∥f∥
[
1 + κ

√
πt
2

] ∫ ∞

0

e−κzd z

Finally, using the bound obtained, one can check that

eκv
∫ v

u

|Az,y|d z ≤ eκv ∥f∥

[
1 + κ

√
πt

2

]∫ v

u

e−κzd z

≤ eκ(v−u) ∥f∥

[
1 + κ

√
πt

2

]
(v − u) (3.2.14)
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which permits us to conclude the case v > u > 0. Observe now that the same argument
holds for v < u < 0. Therefore, replacing equations (3.2.13) and (3.2.14) in (3.2.12), one
can conclude that the semigroup PJ(t) is Lipschitz.

Observe that, as previously noted, by the right choice of the scale and starting points,
we can avoid the Lemma 3.5.

Theorem 3.2. Fix t > 0 and denote by µsnob
t and µslow

tn2 the probability distributions at
time t on J induced by Xsnob

J and n−1Xslow
tn2 respectively, starting from the points ⌊un⌋

n
∈ Zn

and u ∈ Z. Then
d(µsnob

t , µslow
tn2 ) ≲ n−1

and n−1Xslow
tn2 ⇒ Xsnob

J in the J1-Skorohod topology of DJ[0,∞).

In Theorem 3.1, a significantly slower rate of convergence was obtained, despite our
employing a finer topology. This highlights an important topological distinction: conver-
gence in the bounded Lipschitz metric implies convergence in the weaker metric d, but
the converse does not hold. Nevertheless, establishing convergence under the metric d
ensures convergence in the Skorohod topology, thereby fully characterizing the associ-
ated Feller processes.

In contrast, the model presented here, although structurally simpler than the frame-
work in [Erhard et al., 2021], achieves a substantially faster convergence rate. It is
noteworthy that we do not require a stronger topology or explicit semigroup construc-
tions if we choose the starting point as well the scale in which the discrete processes lie
in the right way. The result emphasizes the simplicity and elegance of the method here
employed, which, while not robust in a broader semigroup context, proves sufficient to
guarantee convergence in the Skorohod topology.



Chapter 4

Open Problem

Throughout this chapter, we aim to outline the future milestones. We strive to
present a comprehensive roadmap about the conjecture and the possible key challenges.
By delving into these future objectives, we aim to provide a clear vision of the steps
required to prove the conjectures.

The conjecture here presented was inspired by the papers [Franco et al., 2011] and
[Franco and Tavares, 2019] as well from the stochastic process studied by Lejay in his
work [Lejay, 2016].

4.1 The d-dimensional Snapping-out Brownian motion
Let Ω be a simply connected region inside Rd of codimension 0, and consider Ω ⊂ Rd

having smooth boundary ∂Ω. By {e1, . . . , ed} we mean the canonical basis of Rd, and we
consider the natural partition of Rd via Ω, that is, the partition given by the disjoint sets
int (Ω), ext (Ω) and ∂Ω that are, respectively, the interior of the region Ω, the exterior,
and the boundary of that region Ω. Let then

G := int (Ω) ∪ ∂Ω ∪ ext (Ω) .

For each n ∈ N, consider Zd
n := Zn × · · · × Zn representing d copies of the lattice

Zn := 1
n
Z. Fix a random point x/n ∈ Rd

n and observe that, if the bond [x/n, (x+ ej)/n] has
vertices in each of regions int (Ω) and ext (Ω), say for example (x + ej)/n ∈ int (Ω) and
x/n ∈ ext (Ω), then there exists

u
n
∈ [x/n, (x+ ej)/n] ∩ ∂Ω .

Denote by
−→
ζ (u) the unitary exterior normal vector to the smooth surface ∂Ω in this point

u
n
∈ ∂Ω.

Let Xn be a random walk over Zd
n and equipp it with the following dynamic: When-

ever the process X attempts to cross the boundary ∂Ω, it will be constrained to remain
within its current region until a specific condition is met: For instance, consider the
bond [x

n
,
x+ej
n

] where j denotes some direction on Rd, and one vertex, for example x
n
, lies

inside the region Ω while the other one x+ej
n

lies outside Ω. For such bonds, the exchange
rate of the random walk X is given by n−1 times the absolute value of the inner product
between the vector field

−→
ζ (u) and ej. For all other edges of the lattice– Specifically, those

where both bonds are either entirely inside or outside the region Ω– the transition rate
is equal to 1. We refer to Xn as the n-th rescaling of the slow bond random walk, and
the boundary ∂Ω can be understood as a permeable membrane. See figure 4.1.

41



42

Ω

Ω∁

Xn
t

Figure 4.1: The region in green represents the smooth surface Ω over R2, and in the
region white, its complement Ω∁. In red we represent the slow rate of the SRW and in
blue the standard rate.

The continuous counterpart, which we conjecture to be the SNOB in higher dimen-
sions, should appear to exhibit dynamics closely resembling those of the 1-dimensional
snapping-out Brownian motion.

A possible dynamic would be the following: Consider {Bt : t ≥ 0}, a Brownian motion
over int (Ω) ∪ ext (Ω), and, without loss of generality, let us assume the process begins
inside the membrane, in ext (Ω). We sample an exponential random vector Z =

∏
u∈∂Ω Zu

independent of B. Each time the Brownian motion B hits the slow membrane in u ∈ ∂Ω

the particle is reflected in a direction determined by the vector
−→
ζ (u), and its local time,

here defined by Lut increases. Denote by

Lt =
∏
u∈∂Ω

Lut

the local time of the boundary ∂Ω. When any coordinate, say u ∈ ∂Ω reache the value
Zu, the Brownian motion is killed. Then, the particle is reborn: upon rebirth, a fair coin
is tossed to determine in which region the particle restarts its motion. It is noteworthy
that this dynamic is close to the one 1-dimensional, and it generalizes the 1-dimensional
case.

Let us first observe that, once considered the lattice Zd
n, we can homogenize the type

of the points of discontinuity in the sense of letting every discontinuity over bonds in-
stead sites, justifying this way the toy model.

Main Goals:

• Existence: It is necessary to ensure that there exists a Feller semigroup associated
to the desired stochastic process .

• Uniqueness: It is necessary to guarantee that the stochastic process is unique and
it is rigorously well-defined .

• Rate of convergence: Estimate a weak Berry-Esseen estimate for the convergence
that comes from uniqueness.

In the first condition, somehow inspired by works of Franco et al., we conjecture that
the higher dimensional SNOB is a diffusion having as generator 1

2
∆ subjected to the
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following conditions: For every f in the domain of the generator, it should hold that

∇f
(
u+

)
= ∇f

(
u−) ,

∇f (u) =
[
f
(
u+

)
− f

(
u−) ] · −→ζ (u) ,

for any u ∈ ∂Ω. Observe the second condition, which generalizes the problem to higher
dimensions, building upon the case in one dimension. This generalization comes from
the fact that the exterior unit normal vector encodes all the necessary geometric infor-
mation about the boundary’s orientation.

The primary goal, therefore, is to establish a Hille-Yosida type theorem for this gen-
erator, which will ensure the existence of the strongly continuous contraction semigroup
for the higher-dimensional SNOB. To address this, we consider the operator LΩ := 1

2
∆

which domain is described via

D (LΩ) :=
{
f ∈ C2

0(G) : ∇2f ∈ C0(G) and ∇f (u) =
[
f
(
u+

)
− f

(
u−) ] · −→ζ (u)

}
(4.1.1)

Conjecture 4.1. Consider the linear operator LΩ : D (LΩ) → C2(G). Then

1. D (LΩ) is dense in C2(G) ,

2. LΩ is dissipative ,

3. For some λ0 > 0, we have that LΩ − λ0I is surjective, where by I we mean the
identity operator .

It is noteworthy that the model above is a highly dependent model on the connected
region Ω, and from this dependence several challenges may arise.

The second objective lies in showing uniqueness, what we believe is possible by using
the method presented in Chapter 1. To address it, we consider then the slow bond
random walk whose generator Ln acts on local functions f : Zd

n → Zd
n as follows

Lnf
(
x
n

)
:=

d∑
i=1

[
θnx,x+ei

∇n
x,x+ei

f
(
x
n

)
+ θnx,x−ei

∇n
x,x−ei

f
(
x
n

) ]
(4.1.2)

where

θnx,x+ei
:=


|
−−→
ζx,i·ei|

n
, if x

n
∈ int (Ω) and x+ei

n
∈ ext (Ω)

or x+ei
n

∈ int (Ω) and x
n
∈ ext (Ω)

1, otherwise.

and
−→
ζx,i denotes the vector

−→
ζ (u), where u ∈

[
x
n
, x+ei

n

]
∩ ∂Ω. This dynamic is the same as

in [Franco and Tavares, 2019].
From the random walk above, we expect the following

Conjecture 4.2. For each n ∈ N, consider the operators LΩ whose domain is given
by (4.1.1) and Ln defined as in (4.1.2).

• The operator LΩ can be approximated by Ln in the sense of (A2) and (A3).

• There exist functions {fk,j : k, j ≥ 0} ∈ D (L2Ω) satisfying (B2) and (B3).

Key challenges:
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As previously mentioned, the process given by LΩ is a highly dependent model on the
region Ω. Thus, the first approach that one can consider is choosing Ω to be a hyper-
plane or a (d− 1)-dimensional sphere. In the second case, the primary challenge lies in
identifying a function f that solves the following harmonic boundary value problem:

1. The Laplace operator applied to f safisfies ,

∆f (x) = 0, ∀x ∈ Rd \ Sd−1 .

2. On the bounday, f(x) matches a given continuous function φ(x) vanishing at infin-
ity ,

f (x) = φ(x), ∀x ∈ Sd−1 .

3. The functions φ belongs to the domain D (L) ,

∇φ(x) =
[
φ(x+)− φ(x−)

]
·
−→
ζ (x) , ∀x ∈ Sd−1 .

It is noteworthy that f will play the role as the correction operator for the conditions
(A2) and (A3) ensuring the convergence of semigroups.
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