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Abstract

In this master’s dissertation, we characterize the most general one-dimensional
Brownian motion under some Markovian behavior at zero via the study of its infinitesi-
mal generators. The class of processes here considered is defined as the class of diffusion
processes that behave as the absorbed Brownian Motion up to the hitting time of zero,
and at zero the process has some (Markovian) behavior, which includes jumping to an
extra absorbing point A called cemetery. Carefully adapting techniques of Knight’s book
[2] we obtain two new results.

Our first main result consists on proving that the most general Brownian motion
on the state space RU{A} coincides with the Skew Sticky Killed Brownian Motion, whose
infinitesimal generator can be found in Borodin’s book [1].

Our second main result consists on the characterization of the most general
Brownian motion on the state space (—oo,0—] U [0+, c0) U {A}. We conclude that that
class of processes obtained includes, as a particular case, the Snapping Out Brownian
Motion, a Brownian motion on (—oo,0—]U [0+, co) recently constructed in Lejay’s paper
[4]. Moreover, the class of processes here obtained includes a Brownian-type process
not known in the literature, which we call a Skew Sticky Killed Snapping Out Brownian

motion.

Keywords: Brownian motion; Markov processes; Infinitesimal generator.
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Chapter 1
Introduction

The Brownian motion was first observed as the erratic movement of particles
suspended in a fluid. This discovery is commonly attributed to the botanist Robert
Brown, who, in 1827, noticed the jittery motion of pollen grains immersed in water
under a microscope. The modern explanation of this motion lies in atomic theory: the
fluid is composed of molecules in constant motion, and their collisions with the sus-
pended particles result in the observed random trajectories. Later, mathematicians such
as Norbert Wiener provided a rigorous mathematical formulation of this phenomenon
in terms of a stochastic process.

From a mathematical perspective, the Brownian motion is a stochastic process
characterized by stationary and independent Gaussian increments and continuous sam-
ple paths. It is also a strong Markov process, and its transition semigroup is the funda-
mental solution of the heat equation — a key partial differential equation in mathemati-
cal physics.

In a more general context, we will examine a class of Brownian-type processes
with specific boundary conditions at 0. At this point, the process may be absorbed,
killed, or continue to follow a Markovian behavior. More formally, we study strong
Markov processes with continuous paths up to a random lifetime, after which the pro-
cess remains at an isolated point known as the cemetery state. In addition, these pro-
cesses coincide with the standard Brownian motion up to the hitting time of zero.

Moreover, considering two disjoint half-lines, we construct a similar process
on the state space (—oo,0—] U [0+, 00). This work provides the characterization of the
infinitesimal generator of such processes, giving the exact boundary conditions of their
domains, for both processes on R and on (—oo,0—| U [0+, 00).

In Chapter 2, we review some fundamental definitions and properties of the
standard Brownian motion, specially the strong Markov property. Our main reference

is [3] Brownian motion, Martingales, and Stochastic Calculus by Jean-Francois Le Gall,
1



2 Chapter 1. Introduction

where the reader can find detailed proofs of the results presented. Chapter 3 introduces
the analytical setup used in this work, including Feller processes and infinitesimal gen-
erators, as well as probabilistic tools from the theory of Markov processes. Alongside Le
Gall’s text, we refer to [5] Continuous Martingales and Brownian Motion by Revuz and
Yor for results related to Markov processes.

Chapter 4 and Chapter 5 constitute the core of this study, where we define
the class of Brownian processes under consideration and provide a complete character-
ization of their generator and domain. In Chapter 4 we prove that the most general
Brownian motion on R coincides with the Skew Sticky Killed Brownian Motion described
in Handbook of Brownian motion - Facts and Formulae by Borodin and Paavo [1, page
127, Section 13, Appendix 1]. In Chapter 5, we characterize the most general Brown-
ian motion on (—oo,0—] U [0+, c0), from where we recover the Snapping out Brownian
Motion, constructed in the recent paper of A. Lejay [4], and furthermore obtain a new
Brownian type process, which we call Skew Sticky Killed Snapping Out Brownian motion.

Finally, it is important to mention that many techniques applied in Chapter 4
and Chapter 5 are careful adaptations of results about the most general Brownian mo-
tion on the half-line [0, o) from Frank B. Knight’s book Essentials of Brownian motion
and diffusion [2, Chapter 6], which, in its turn, has roots on earlier works of William
Feller.



Chapter 2
Brownian motion

Let (Q2,.7, P) be a probability space. Given o > 0, u € R, we say that a random
variable X is Gaussian with A (p, 0?)-distribution if X has

2

px(z) = \/%exp{ — %}

as its density. Moreover, if 1 = 0, we say that X is a centered Gaussian variable.

If w = 0,0 =1, then X is called a standard Gaussian or normal variable. Finally, by
extension, we set that X = p a.s. is Gaussian with .4"(u, 0)-distribution.

Let E be a d-dimensional space with (-, -) as an inner product. A random vari-
able X with values in £ is called a Gaussian vector if (X, u) is a real Gaussian variable,
for every u € E. When these Gaussian variables are centered, we say that X is a cen-
tered Gaussian vector. For instance, considering £ = R? with the usual inner product,
and X1, ..., X, independent Gaussian variables, then the random vector (X7, ..., X;) is
a Gaussian vector.

We define a (centered) Gaussian space as a linear subspace of L*((2,.7, P) con-
taining only centered Gaussian variables. For example, if X = (X3,..., X,) is a centered
Gaussian vector in RY, then the subspace spanned by {X, ..., X,} is a Gaussian space.

Let (F,&) be a measurable space, and let 7" be an arbitrary index set. The
collection (X;);cr of random variables valued in £ is called a stochastic process with
values in E. Besides the fact that the functions 2 5 w — X;(w) are measurable for every
t € T, we are mostly interested in the sample paths, that is, the mappings T’ € t — X, (w),
fixed w € Q). Note that the sample paths form a collection of mappings from 7" into F,
indexed by w € Q.

In particular, we will consider the following type of real-valued stochastic pro-

Cess.



4 Chapter 2. Brownian motion

Definition 2.1. A real-valued stochastic process (X;);er is a (centered) Gaussian Process

if any finite linear combination of the variables X;,t € T, is a centered Gaussian.

It follows from this definition that the linear subspace of L? spanned by the
variables X;,t € T, is a Gaussian space, which is called the Gaussian space generated
by the process X. Similarly, for every choice of the distinct indices ¢,...,%, in T, the
random vector (X, ,...,X; ) is a Gaussian vector in R? whose law is called a finite-
dimensional marginal distribution of the process (X;)i 7.

If (Xy)ier is a centered Gaussian process, the covariance function of X is the
function I' : 7" x T" — R defined by I'(s,t) = cov(Xs, X;) = E[X,X;], recalling that the
variables are centered Gaussian. It is possible to show that this function determines
the finite-dimensional distributions of the process (X};);c7, which in turn determine the

process itself.

2.1 Brownian motion

Definition 2.2. Let (E, &) be a measurable space, and let ;1 be a o-finite measure on
(E,&). An isometry G from L*(E,&, ) into a centered Gaussian space 7 is called a

Gaussian white noise with intensity .

Note that if f,g € L*(E, &, 1), the covariance of G(f),G(g) is

E(G()G(g)] = (G(£). G(0))r = (f, g2y = / fodu, 2.1)

since G is an isometry.

Definition 2.3. Consider R, endowed with its Borel o-field, and let G be a Gaussian white

noise whose intensity is the Lebesgue measure. The stochastic process (B;);> defined by
Bt - G(]-[O,t])
is called a pre-Brownian motion.

In particular, a pre-Brownian motion is a centered Gaussian Process. Also, by

equation (2.1), it is easy to check the next proposition.
Proposition 2.4. A pre-Brownian motion is a centered Gaussian Process with covariance
K(s,t) = min{s,t} := s At.

The preceding proposition is actually an equivalence. Moreover, there are an-

other ways to characterize a pre-Brownian motion.
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Proposition 2.5. Let (B;);>o be a stochastic process. The following are equivalent:
* (B:):>0 1s a pre-Brownian motion;
* (Bi)i>0 1s a centered Gaussian Process with covariance K (s,t) = s A t;

* By = 0 as., and, for every 0 < s < t, the variable B, — B, is independent of
o(X,,r < s) and follows the .4 (0,t — s)-distribution.

* By = 0 as., and, for every choice of 0 = ¢, < t; < --- < t,, the variables
By, — By, ,,1 < i < p are independent, and B;, — B, , follows the .4 (0,t; — t;_1)-
distribution, for every 1 <i < p.

The last item of the above proposition allows us to compute the finite-dimensional

distributions of a pre-Brownian motion.

Corollary 2.6. Let (B,);>o be a pre-Brownian motion. Then, for every choice of 0 = t, <

ty < --- < tp, the distribution of the vector (By,, ..., B,,) has density
1 u ($z - 1'2'_1)2
p(1,...,x,) = exp{— —},
' (2m)2\/(t1(ta — t1) ... (b — tn1) 2 2t — tiz1)

where xo = 0.
A pre-Brownian motion has the following useful properties.
Proposition 2.7. If B = (B;);>¢ is a pre-Brownian motion, then:
* — B is a pre-Brownian motion (Ssymmetry property);

* For every \ > 0, the process B} = %Bm is a pre-Brownian motion (invariance under

scaling);

» For every s > 0, the process Bf = Bs.; — B; is a pre-Brownian motion and it is

independent of o(B,,r < s) (simple Markov property).

We define the Brownian motion now only by asking for an essential condition

on the sample paths of a pre-Brownian motion.

Definition 2.8. A Brownian motion is a pre-Brownian motion whose sample paths are all

continuous.

Furthermore, starting from a pre-Brownian motion B, it is possible to modify
B slightly to obtain a Brownian motion. To state this, we consider more generally ¥
a metric space equipped with its Borel o-field, and X = (X;)ier, X = (X} )ier two

stochastic processes on E.



6 Chapter 2. Brownian motion

Definition 2.9. The process X is said to be a modification of X if
VteT, P(X,=X,) = 1.

In other words, for each ¢ € T, the random variables X, and X, are equal a.s.,
in particular X has the same finite-dimensional distributions as X. Thus, if X is a pre-
Brownian motion, X is also a pre-Brownian motion. However, the sample paths of X

may be very different from those of X. We consider then a stronger notion.

Definition 2.10. The process X is said to be indistinguishable from X if there exists a
negligible subset N of (2 such that

VweQ\NVteT, X,(w)=X,(w).

If the set {X;, = X,V t € T} is measurable, this definition is equivalent to
saying that P(X, = X,,Vt € T) = 1, then the sample paths of indistinguishable process
are equal almost surely. Moreover, it is easy to see that if X is indistinguishable from X,
then X is a modification of X. In this way, we identify two indistinguishable process as
the same.

Suppose that T is an interval of R. If the sample paths of both X and X are
continuous (except possibly on a negligible set of (2), we can show also that if X is a
modification of X, then X is indistinguishable from X. Indeed, we note that X, and X,
are equal almost surely at rational times ¢, and then we use the continuity to extend the
a.s. equality for all times ¢ > 0. Hence, for a continuous path process, it is enough to
consider its modifications, which will be unique up to indistinguishability.

We are ready now to state Kolmogorov’s lemma, which gives a condition to
obtain a modification of a stochastic process with sample paths having better continuity

properties.

Theorem 2.11 (Kolmogorov’s lemma). Let I be a bounded interval of R, let (E,d) be
a complete metric space, and let X = (X;)ic; be a stochastic process with values in E.

Suppose that there exist three real numbers q,c,C > 0 such that, for every s,t € I,
Eld(X,, X;)7] < Cls — t|'*=.

Then, there is a modification X of X whose sample paths are Holder continuous with
exponent «, for each a € (0, 3) In particular, X is a modification of X with continuous
sample paths, and such a modification is unique up to indistinguishability.

Remark 1. If I is unbounded, we can apply the previous lemma for bounded subintervals
of I and we get that X has a modification whose sample paths are locally Hélder continuous

with exponent a, for each a € (0, ).
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The next corollary applies Kolmogorov’s lemma to a pre-Brownian motion B =
(B)t>o in order to obtain a Brownian motion. At least intuitively, we might already
expect that sample paths of B would be locally Holder continuous with exponent close

to 1. Indeed, for s < ¢,
E[|Bi— By]’) =t — s = |B,— B>’ ~t—s=|B, — B,| |t — s|2.

Corollary 2.12. Let B = (B;);>o be a pre-Brownian motion. The process B has a modi-
fication whose sample paths are locally Holder continuous with exponent 5 — 6, for each
6 € (0,3)

2.2 The Strong Markov Property of Brownian motion

Let (£, .#, P) be a probability space. To state the strong Markov property for
Brownian motion, we need some definitions and results that will be useful throughout
this text.

Definition 2.13. A collection (%;)o<t<co Of sub-o-fields of .# such that F; C %,V 0 <
s < t < oo is called a filtration on (2, . %, P). Also, we call (2,.7,(.%;), P) a filtered
probability space.

Let (%) be a filtration. We define
’-gt+ = m gsu
s>t

fort > 0, and Z.., = %. Note that (.%,,) is also a filtration. It is easy to see that

Fy C Fyy, for all t € [0, oo]. Moreover, when
yt == fH,Vt 2 O,

we say that (.%;) is a right-continuous filtration. The filtration (.%,. ) is right-continuous.
Given any stochastic process (X;)i>o, we construct a filtration (.%;")o<;<co by
setting #X = 0(X,,0<s<t)forall0 <t < oo, and FL = o(X,, s > 0). This is called

the canonical filtration of X.

Definition 2.14. We say that a stochastic process (X;):>o is adapted with respect to the
filtration (%) if X, is %#,-measurable, for all t > 0.

In particular, any stochastic process is adapted with respect to its canonical

filtration.

Definition 2.15. A random variable T : Q) — [0, 00| is a stopping time of the filtration
(), If{T <t} € %, forevery t > 0.
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If T' is a stopping time, we also have {T' < t} € .%, for each ¢t > 0, since

r<ty= U {r=<q.

q€[0,)NQ]

Moreover, the set
Fr={Ac Fy :Vt>0,AN{T <t} € %}

is a o-field, called the o-field of the past before T', and T is .#r-measurable.

Given a stochastic process (X;);>0, we are usually interested in the hitting times
T4 =1inf{t > 0: X, € A}, (2.2)

for some A, a measurable set. When A = {a}, we simply write 7,. The hitting times are
stopping times under some topological conditions of the sets A and continuity properties

of the sample paths of X, as it is stated in the next result.

Proposition 2.16. Let (X;);>o be an adapted stochastic process with respect to (:#;), taking

values in a metric space E.

* If X has right-continuous sample paths and O is an open subset of E, then the hitting

time 1o is a stopping time of (%, );

* If X has continuous sample paths and F is a closed subset of E, then the hitting time
Tr 1S a stopping time of (%;).

For the remainder of this chapter, we fix a Brownian motion B = (B;);>. Let

T be a stopping time of the canonical filtration of B. We define the random variable

1¢r<o0} Br by

BT(UJ) (w) if T(OJ) < 00,

1yrcony Br(w) =
0 if T'(w) = 0.

which is .%p-measurable.

Theorem 2.17 (strong Markov property). If T is a stopping time, and P(T < oco) > 0,
then the process (Bt(T))tZO given by

BLST) = 1{T<oo}(BT+t - BT)
is a Brownian motion independent of %1, under the probability measure P(- | T' < o).

One interesting application of the strong Markov property is the “reflection prin-
ciple”.
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Theorem 2.18. For every t > 0, let S; = sup,, Bs. Then, if a > 0 and b < a, we have
P(St Za,Bt §b):P(Bt22a—b)
In particular, S; has the same distribution as | By|.

Now, we briefly consider some properties of the hitting times for Brownian
Motion. Let a € R. By Proposition 2.16, 7, is indeed a stopping time, and it is well
known that 7, < oo almost surely. Also, one can see by the continuity of the paths that
1{7, <00} B, = a almost surely.

Moreover, by Theorem 2.18, the distributions of S; and | B;| are equal, allowing

us to compute easily the distribution of 7, for every a € R. Indeed,

P(1, <t) = P(S; > a) = P(|By| > a) = P(B} > a®) = P(tB} > a°) = P(Z— <),

where, before the last equality, we have used that B, ~ .47(0,t), then B, 4 V1tB;.

This proves the following corollary.
Corollary 2.19. For every a € R, 7, has the same distribution as ;—22.

Another useful property concerning now the hitting times 7y, ), fora < 0 < b,

is the distribution of 1, .. <o} Br, ;-

Proposition 2.20. For a < 0 < b, we have

—a b
P(Tb<7_a>:b_aa P<Ta<7—b):b_a
Or equivalently,
b —a b
P(Bryyy =) = 5= P(Br,, =a)=7—

We finish by defining the Brownian motion not starting at 0.

Definition 2.21. Let Z be a random variable. A stochastic process (X;):>o is a Brownian
motion started from Z, if we can write X; = Z + B;, where B is a Brownian motion started
from 0 and is independent of Z.

We will frequently consider the Brownian motion starting at x € R, choosing
then 7 = .
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Chapter 3

Markov processes, Feller semigroups

and generators

3.1 Analytic Setup

Let (E, &) be a measurable space.

Definition 3.1. A function Q) : E x & — [0, 1] is a Markovian transition kernel, if it satis-

fies the following conditions:
1. For every x € E, the mapping & > A+ Q(x, A) is a probability measure on (E,&);
2. For every A € &, the mapping E > x — Q(z, A) is measurable with respect to &.

Let B(FE) be the vector space of all bounded measurable functions f : £ — R,
and equip it with the norm || f| = sup {|f(z)| : * € E}. Throughout this text, the
notation || - || will always refer to the supremum norm. A Markovian transition kernel @)

defines a linear operator on B(E) by

Qf(x) = / Qe dy) (1),

for each x € F. Indeed, it is clear that () f is bounded, moreover it is a contraction on
B(E). And, for f = 1,4 with A € &, we have by definition that

z= Qf(r) = Qx, A)

is measurable, thus we conclude the general case by standard approximation argu-
ments.
Given a collection (Q););>o of transition kernels on £, we would like to obtain a

semigroup on B(FE).
11
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Definition 3.2. A collection (Q;):>o of transition kernels on E is a transition semigroup if

the following properties hold:
1. Forevery x € E, Qo(z,dy) = 6,(dy);

2. Foreveryt,s>0and A € &,

Q) = [ Qi) Quly. ),
which is called the Chapman-Kolmogorov identity;

3. Forevery A € &, the mapping R, x ' 5 (t,x) — Q.(z, A) is measurable with respect

By the first item of Definition 3.2, we have Qyf = f for every f € B(F), and

the second one ensures that the equation

Qt(st) = Qt—f—sf

is satisfied for indicator functions, so the general case follows again by approximation
arguments. Hence, the family {Q;,¢ > 0} forms a semigroup, as desired.

In the same way, we get that the functions (¢, z) — Q. f(x) are measurable with
respect to Z(R,) ® &. This allows us to define another important linear operator on
B(E).

Definition 3.3. Given A\ > 0, the A\-resolvent R, : B(E) — B(FE) of a transition semigroup
(Q:t)t>0 on E is a linear operator defined by

Rof(x) = / T M) di

0
forevery f € B(E),x € E.

Proposition 3.4. The resolvent satisfies the following properties:

* MIRASI < [If] for each f € B(E),A > 0;
e For A\, u > 0, the resolvent equation holds:
Ry, — Ru + ()\ — LL)R)\RH = 0.

From now on, we assume that E is a metrizable locally compact topological
space, and also that F is countable at infinity, i.e. £ is a countable union of compact
sets. We consider the Borel o-field of F.

We say that a function f : £ — R tends to 0 at infinity if, for every ¢ > 0, there
exists a compact subset X' C E such that |f(z)| < ¢, forallz € E'\ K. We denote Cy(E)
the set of all continuous functions f : £ — R tending to O at infinity. It is clear that

Co(E) C B(FE), and we would like to restrict the previous operators to the space Cy(E).
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Definition 3.5. A transition semigroup (Q;):>o is a Feller semigroup if for every f € Cy(E),

we have

* Qif € Co(E);
* ||Qif — fIl — Oast — 0.

Remark 2. [t is known that the second item can be replaced by the weaker condition
VfeCyE),VreE|Quf(x)— flx))] — 0ast — 0.

If f € Cy(E), one can show that R,f € Cy(E), so the resolvent R, is a linear
operator on Cy(E). Moreover, the range of R, in Cy(F) plays a fundamental role in the

theory of Feller semigroups.

Proposition 3.6. Let A\ > 0. The set Z = {R,f : [ € Cy(F)} does not depend on the
choice of A > 0. Also, Z is a dense subspace of Cy(E).

We now define the object that we will be concerned about throughout this work.

Definition 3.7. Let (Q;):>o be a Feller semigroup. A function f € Cy(E) belongs to the
domain 2(L) of the infinitesimal generator L of Q, if the limit

. Qf = f
Lf=tm—

exists in Cy(E).
In particular, the domain 2(L) is a subspace of Cy(E), and the infinitesimal gen-
erator L : 9(L) — Cy(E) is a linear operator.

There is a close relationship between the infinitesimal generator and the resol-

vent operators R,. In fact, we can determine the domain Z(L) in terms of R,.
Proposition 3.8. Let A > 0.

e Forall g € Cy(FE), we have Ryg € Z(L) and (A — L)Ryg = g;

e Forall f € 2(L), we have Ry(A— L)f = f.

Consequently, (L) = %, and the operators Ry : Co(E) = Zand A — L : (L) — Cy(E)

are the inverse of each other.

Furthermore, Proposition 3.8 implies the next theorem, which shows the im-

portance of the infinitesimal operator in the Feller semigroups theory.
Theorem 3.9. A Feller semigroup (Q;):>o is determined by its infinitesimal generator L.

We emphasize that the definition of infinitesimal generator L deeply relies on
its domain Z(L). Process with the same expression for the generator (Laplacian, for

instance), but under different domains can have totally different behaviors.
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3.2 Probabilistic Setup

Let (E, &) be a measurable space and (X;);>¢ a stochastic process with values
in £. We now introduce the theory of Markov processes.

Intuitively, we say that X is a Markov process when, given the present state of
X at time s, the past up to time s is irrelevant to predict the future of X after time s.
More precisely, the information of X until time s is given by the o-field #X = o(X,,0 <
r < s). Thus, if X is a Markov process, for each choice of ¢ > s and A € &, the
conditional probability

PX; € A|o(X,,0<r<s)]

is just a function of X,. Namely, there exists £ 3 x — Q;.(x, A) a measurable function
such that
PX; € A|o(X,,0<r <s)] =Q+(Xs,A). (3.1)

It is also reasonable that the conditional probability is indeed the probability of
X; belongs to A, which implies that & 5 A — Q.(z, A) is a probability measure on
(£, &). In this way, )5, will be a family of Markovian transition kernels.

We will be interested in the case when (), ; does not depend specifically on the

instants s < ¢, but only on the increment ¢ — s. Thus, we can rewrite (3.1) by
PX; e A|o(X,,0 <r <s)]=Qis(Xs, A), (3.2)

for every ¢t > s. This means that the process evolves homogeneously in time, so it is
called a homogeneous Markov process.
As usual, by standard approximation arguments, the equation (3.2) can be gen-

eralized for any f € B(FE) rather than indicator functions, so we get
E[f(Xs-i—t) | O-(Xry 0 S r S 3)] = Qtf(Xs) (33)

for any ¢,s > 0.
Recalling conditional expectation properties and applying (3.3) twice, we get,
for every t,s > 0,
ElX,p € Al 0(Xo)] = E[E[X,p € A | 0(X,,0 < 7 < 5)] | 0(Xo)]
= B[Qi(Xs, A) | o(Xo)]
= Qs(Qi(Xo, A))

_ / Qs(Xo, dy) Qu(y, A),

also in the last equality we used the definition of the operator ) f. On the other hand,
we should have that
E[Xs € A 0(Xo)] = Qsrt(Xo, A).
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Thus,
@H@wﬂz/Qi%dw@@A%

so the kernels @; must satisfy the Chapman-Kolmogorov equation.

This motivates the following definition.

Definition 3.10. Let (2,.%, (%), P) be a filtered probability space and let (Q;);>o be a
transition semigroup on E. An adapted process (X;):>o with values in E is a (homoge-
neous) Markov process with respect to (#;):>0, and transition semigroup (Q:):>o if for
every f € B(E)andt,s > 0,

E[f<Xs+t) | L975] = Qtf(Xs)

It is easy to see that if (X};);>( is a Markov process with respect to (.#;);>0, then
it is also a Markov process with respect to the canonical filtration (.%;*);>o. If a Markov
process is mentioned without specifying the filtration, we are implicitly referring to the
canonical one.

We know that a process is determined by its finite-dimensional distribution,
so the following proposition says that in order to understand a Markov process it is

sufficient to know its transition semigroup and its initial distribution.

Proposition 3.11. A process (X;)i>o is a Markov process with respect to (F;%)>o with
transition semigroup (Q:):>o0, and initial distribution p if and only if for any 0 =ty < t; <
- <t,and fo,..., f, € B(E),

MM%mmwmnmm:/mmmm@/%@mmﬁm>

x/@mumﬂmmuam/@W%x%Awmn@»
(3.9)

Furthermore, the converse gives a way to construct a Markov process given a
transition semigroup (Q;);>o and an initial distribution p, only asking for some topolog-
ical conditions on E.

For that, let F be a Polish space, that is, a topological space that can be metrized
by a complete metric and has a countable dense subset, and let & be its Borel o-field. We
will consider ) = E®+, the set of all mappings w : R, — F, eqquiped with .#% = &%+,
the o-field generated by the coordinate maps €2 > w — w(t), for each ¢t > 0. Moreover,
(X¢)e>0 will be the canonical process on (2, i.e. for each ¢t > 0, X;(w) = w(t), for all
w € Q. Under this setting, the following proposition can be proved by Kolmogorov’s

extension theorem.
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Proposition 3.12. Given a transition semigroup (Q;);>o on E, for any probability measure
p on E, there exists a unique probability measure P, on (€2,.%) under which (X,);>¢ is a

Markov process with transition semigroup (Q:):>o, and the law of X is f.

Given a random variable Z, we denote E,[Z] for the expectation of Z under F,,.
When p = 6, for some x € E, we simply write P, and E,[Z].
By (3.4), forany ¢t > 0 and f € B(FE), we get

&U@MZ/@@@VMZQJM, 3.5)

that is, the semigroup of a Markov process of a function f at the point z is the expec-
tation of the process started at x composed with f. In particular, taking f/ = 1, for any
A € &, we have

P.(X; € A) = Qi(z, A),

so the transition semigroup gives the probability that the process started at z is in A at
time ¢, as we desired in the introduction of this section.

Moreover, £ > = — P,(X; € A) is a measurable function. By a standard
monotone class argument, we obtain that £ 5 = — FE,[Z] is measurable, for any random

variable Z. Also, we have that

B7) = [ ude) E.(2].

This enables us to write the Markov property in a handy form. For that, we

consider for each s > 0 an operator 6, such that for every ¢ > 0,
Yo 95 = Y;ersa

where Y, is any stochastic process. By this definition, it is immediate that 6, is measur-
able with respect to o(Y;,¢ > 0). Note also that 6, takes away the path of Y before time

s and shifts the rest to the initial time, so we call 6, a shift operator.
Proposition 3.13. For every random variable Z positive or bounded and s > 0,
E,Z 00 | F| = Ex,[Z].

The right-hand side of this equation is the composition of w — X (w) with = —
E.[Z], so it is .#,-measurable by our previous observations. Notice that for Z = 1;x,c 4,

the above formula gives
PM[XHS €A | 3?8] = PXS(Xt € A) = Qt(stA)a

which is exactly the definition of the Markov process, so the reader can expect that this

proposition follows from applying a monotone class argument.
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We briefly observe that under some topological conditions on £ (metrizable,
locally compact, and countable at infinity), and for a Feller semigroup (Q:):>o, if (Xt)t>0
is a Markov process with respect to (.%;):>o, with Feller semigroup (Q:):>0, we can obtain
(Xt)tzo a modification of (X;);>o with cadlag sample paths. This modification is still a
Markov process with respect to the same transition semigroup ((Q;):>o, but with respect
to a right-continuous filtration (.%,);>o.

Finally, we set this entire construction as our standard definition of a Markov

process.

Definition 3.14. Let (.%#,):>¢ be a right-continuous filtration on (2,.%) and (X;):>o be an
adapted process with values in E with right-continuous sample paths. For each x € E, let
P, be a probability measure on %, such that E > x — P,(S) is measurable, for every
S € F.. Given a probability measure pon (E, &), let P, = [ p(dx) P,.

Then (X}):;>o is a normal Markov process with respect to (.%;):>, if

* P,(Xo=x) =1 (in particular, 1 is the initial distribution under P,);

* E,[Z0o0;| F] = Ex,|Z], forall s > 0, and any .% 2 -measurable function Z.
This particular version of the Markov process has a important property.

Proposition 3.15. Let € E and o, = inf{t > 0 : X; # x}. There exists \(x) € [0, ]

such that o, is exponentially distributed with parameter \(x) under P,.

With this proposition, we have a classification of points. If A(z) = oo, then
P.(o, = 0) = 1, which means that the process leaves = immediately. If A\(z) = 0, then
P,(0, = o0) = 1 or equivalently P,(X; = x,V t) = 1, so the process never leaves z,
and we call = a trap or an absorbing point. Finally, if 0 < A(z) < oo, then ¢, has an
exponential law with parameter A\(x), and we say that x is a holding point or that the
process stays in z for an exponential holding time. This characterization will be crucial
in the following chapters.

We are interested in a stronger version of Definition 3.14, where we also can

do shifts at random times, specifically using stopping times.

Definition 3.16. Let (X;):>o be a normal Markov process with respect to (%;)i>o. We
say that (X,);>o is a strong Markov process if for every (.#;)-stopping time T, and any p

probability measure on &, we have
EM[Z o 9T | ﬁT] = EXT[ZL

for every ZX-measurable function Z.
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Letz € E, 0, = inf{t > 0: X; # «}, and A\(x) as in Proposition 3.15. The next

result ensures that a strong Markov process only leaves holding points by a jump.

Proposition 3.17. Let (X;);>o be a strong Markov process. If 0 < A(z) < oo, then
P.(X,, #x) =1

Strong Markov processes have a more probabilistic way to compute their in-
finitesimal generator, given by Dynkin’s Formula. We will consider process (X;):>o tak-

ing values on R?. Recall the definition of 74 from (2.2).

Theorem 3.18 (Dynkin’s Formula). Let (X;):>o be a strong Markov process taking values
on R? with respect to (%;)>o and with Feller semigroup (Q;);>o. For f € 2(L) and x not

being an absorbing point, we have

Lf(.%) o lim E:E[f(XTAC)] - f(ZL’)’ (36)

|A|S0,A32 E.[7ac]

where |A| denotes the maximum diameter of a Borel set A, restricted by E,[T4c] > 0.
We apply now this framework to Brownian motion.

Proposition 3.19. A Brownian motion is a strong Markov process with Feller semigroup

e @%) ay

Moreover, its infinitesimal generator is given by Lf = 5 f” and its domain is the set Z(L) =

{feC*R): f, " € Cy(R)}.

Qt(xv dy) =

In the next example, we compute Dynkin’s formula for the Brownian motion,

since it does not have absorbing points.

Example 1. Let (B;):>o be a Brownian motion starting from x € R. Consider A =
(x — hi,z + he) with hy,hy N\, 0. Since z € A and B, starts at x under P,, by the
continuity of the paths, B, cannot jump out of the interval A, but it must exit precisely

at one of its endpoints, then 74c = Tz_p, z4h,}. Thus,
Ex[f(BTAC)] = f(z — hl)Px(BT{thl,erhQ} =z —hi)+ flz+ h2)P1’(BT{th1,z+h2} =z + hy).
Using Markov property and Proposition 2.20, we get

E[f(Brye)l = f(o — m)Po(Br_, ., = —h1) + f(z + ha) Po(B

_ flx—=hy)ho + f(o 4 ho)hy
= D . (3.7)

= hz)

T{—h1,ho}

We now claim that £, [7(,_s, 24h,1] = h1ho, for every x € R. Indeed, by homo-

geneity of the Brownian motion in space, it suffices to show that Ey[7;_p, 1,1] = hiho.
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Now, by Proposition 3.19, if f € (L), then f € C*(R), so we can use Taylor’s theorem

o we F() — ) 1 (0 (1)
- o+ Lo o TB) e i T
- :f(0)+2f (0)h + b Wlth}lbli% R
for f € 2(L). Substituting —h; and h; in this equation, one can see that
1 " . . f<_h1) — f(O) f(h2) — f(O) -1
§f (0) = hl\%%\o ( » + I (h1 + ho)
b f(=h1)hs + f(h2) Py 4
- h1\%(l),r}112\0 ( hg + hl B f(()) (hth)

On the other hand, if we consider equation (3.7) with x = 0, and the generator’s

value stated in Proposition 3.19, then Dynkin’s Formula yields the equality:

Lo o f(=hi)ho + f(ha)ly 1
3770 =, i (LERE LR ) (Bl
Thus,
mh

1m —_———
h1\0,h2\0 E() [T{—h1,h2}]
Finally, to obtain the equality without taking the limit, we use the scaling prop-

erty of Brownian Motion: /cB; 4 B, for every ¢ > 0 (see Proposition 2.7). Conse-

d
quently, T{—\/chi\/cha} = CT{—hy,ha} and

. Chl hg hl hg
1 =1lim = ,
N0 Fy [T{—\ﬁhl,ﬁhz}] Eo [T{*hl,/w}]
so the claim is proved.
Therefore, we get Dynkin’s formula for the generator of a Brownian motion:

f(x = hy)ho + f(x + ha) Iy
hs + hy

Lf(x) B h1\%¥£12\0 (

— f(a;)) (hihy) ™t (3.8)
Remark 3. It is possible to show that the limit in (3.8) is uniform in .

We finish this section by defining the type of processes we will examine from
now on. Let D C R be an interval, we add to D an isolated and absorbing point A,

called the cemetery.

Definition 3.20. A diffusion process (W;):>o on D C R is any strong Markov process with
values in D U A with respect to (%)} ) whose sample paths are continuous for 0 < t < 7a,
and equal to A for t > Ta, where To = inf{t > 0: X; = A}.

We will often use the continuity of the paths to guarantee that a diffusion started
at z cannot reach y without hitting all the points between = and y. We recall from (2.2)
the definition of the hitting times

T, =inf{t > 0: W, = x},
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for every x € D U A. By Proposition 2.16, 7., x € D, are stopping times, and might also
be oo, if the process is killed first. Moreover, we observe that the right-continuity of the

paths on D U A is enough to ensure that W, =z on {7, < co}.



Chapter 4
The most general BM on R

From now on, we will consider our state space £ = R with the usual topology.
It is easy to see that the set Cj)(R) coincides with the subspace of continuous functions
f : R — R having zero limit as + — +o00. Also, since f € Cy(R) is uniformly continuous
on compact subsets and decays to infinity, one can see that f is uniformly continuous.
Furthermore, we will add to R an isolated point A called the cemetery, and consider
C5(R) the set of functions in Cy(R) extended to value 0 at A.

Definition 4.1. A stochastic process (W;);>o on R is called a general Brownian motion on

R with boundary conditions at the origin if it satisfies the following properties:

* (Wi)i>o is a strong Markov process with values in R U {A} and it has cadlag trajec-

tories.

* The sample paths of (W;):>o are continuous on the set {t > 0: lim,_ - Wor W, ¢

{0,A}}.
* The point A, called the cemetery, is an absorbing state.

e Let 7o = inf{t > 0 : W, = 0} be the hitting time of 0. For every initial point = € R,
the law of the process (Win-, ): coincides with the law of a standard Brownian motion
on R absorbed at 0.

Recalling Definition 3.20, note that a general Brownian motion on R is a dif-
fusion. Also, the above definition ensures that ¥, behaves like a standard Brownian
motion until it hits 0, so let us investigate what happens afterwards. First, from the prop-
erties of the Brownian motion, we know that 7, < oo a.s., and by the right-continuity
of the paths, we have W, = 0. Thus, since A is an absorbing point, it follows that W,

cannot reach A before 0.

21
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Now, by Proposition 3.15, we have that 7' = inf{t > 0 : W, # 0} is exponentially
distributed with parameter A € [0, oo] under . We distinguish three cases depending

on the value of ).

e Case1: 0 < A< @

Due to Proposition 3.17, the process leaves 0 by a jump, so the continuity of the

paths on R forces W to jump to A. Hence, W; = A for all ¢ > T in this case.

e Case 2: A\ = 0

Here, P,(T = 0) = 1, so the process leaves 0 at once. Since Py(W, = 0) = 1 and
the paths are right-continuous, the process cannot exit immediately from 0 to A,
otherwise this would be a jump and the process would be continuous to the left,

not to the right.

e Case3: A\ =10

In this situation, we have 7' = oo a.s., which means that 0 is a trap.

We now prove that a general Brownian motion on R with boundary conditions
at 0 is a Feller process on CZ(R). In the proof, we will use the notation W; ¢ R meaning
that W, = A. This will apply to more general settings where the process takes values in
a partitioned state space F = A; U A, and it is allowed to exit one of the sets A; without
being killed, what will be very useful in the next chapter.

In the present case, the proof could be simplified noting that f € C5(R) van-
ishes on the sets {IW; ¢ R}, but we avoid this in view of the results in Chapter 5.

Proposition 4.2. Every general Brownian motion on R with boundary conditions at the

origin has a Feller semigroup on C&(R).

Proof. To prove the result, we need to verify whether the semigroup satisfies Definition
3.5. Recall from equation (3.5) that the semigroup is given by Q. f(x) = E.[f(W})], for
each t > 0 and x € RU A. Thus, we have to show the uniform convergence,

|1Qif — fI| — Oast — 0,

and the stability of C5*(R) for the process semigroup, that is, if f € C5*(R), then Q,f €
C8(R). Hence, for f € C5&(R), we shall prove that E,[f(W,)] is continuous in z €
{A} UR and tends to 0 at infinity,

lim E,[f(W;)] = 0.

T—00

Also, @, f(z) must vanish at A, but this is trivial, since A is an absorbing point
and f(A) =0, hence EA[f(W;)] =0, for all ¢ > 0.
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We begin by proving the uniform convergence. By Remark 2, this comes from

the pointwise convergence. Then, it suffices to show that
|Ex[f(Wy)] = f(2)] — Oast — 0, (4.1)

forall f € C&(R) and # € RUA. For z = A, this is immediate since both f and
E,[f(W;)] vanish at A. So, fix r € R and f € C5*(R). For any ¢t > 0, we have

|Eo[f(W)] = f(2)] < Eullf (W) = f(@)|Liwiery] + Eollf (W) = f(2) [ Liwigry]. (4.2)

We now prove separately that these two terms from the right-hand side of (4.2)
goto 0 ast — 0, hence we get (4.1). Since f is bounded, for the second term on the
right hand side of (4.2) it is sufficient to show that

1151_1301 P, (W; ¢ R) =0, (4.3)
Since P,(Wy = z) = 1, then P,(7a > 0) = 1. Consequently,
lim 1y, ¢my = 0

P,-almost surely and we get (4.3).
Now, for the first term on the right hand side of (4.2) , recall that f is uniformly

continuous, so for every ¢ > 0, we can find a § = d(¢) such that

B[ fWh) = f(@)[1gw,ery]
= EL[lfWy) — [(2) | 1qwi—al<singwiery) + Eol| f(We) — f(2) 1w, —a|>63n(wier}]
< e+ 2f|P(W; — 2| > 6, W, € R).

Again, it is enough to prove that for all § > 0,
t—0 t—0

which follows from the continuity of the paths, since for every § > 0, it holds that
Lgw,—wo|>syn{w.cr} = 0 whenever ¢ is sufficiently close to 0.

We proceed by verifying that C5*(R) is stable for the process semigroup. First,
fixed some f € C§(R) and ¢t > 0, we will show that

lim E,[f(W;)] = 0.

T—r00

Indeed, given ¢ > 0 there exists M > 0 such that |f(x)| < € for z > M. Thus,

| EL[f (W]
< Bl fW) 1w, s amyngwiery] + Exll f (W) 1w, <anyngwiery] + Ex [l f (W) 1w, ¢ry ]|
<e+ |fIP(Wy < M, W, € R) + || f|| P.(W; ¢ R).
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So, we want to show that for every ¢t > 0 and M > 0,

lim P,(W, < M,W,€R)=0 and lim P,(W, ¢ R) = 0. (4.4)
T—r 00

T—r0o0

To do so, let y € R and (B;);>o be a standard Brownian motion, we denote
7, = inf{t > 0: W, =y} and 7] = inf{t > 0 : B; = y}. Let = > M, starting from z,
W, cannot reach zero without passing through M, thus by the continuity of the paths,
we have that P,(7y > 75y) = 1. In particular, the definition of W, implies that 7, 4 8.
Also, if W; < M then W, has already hit M by time ¢, so 75 < ¢ under P,, whose
probability we can estimate using the proof of Corollary 2.19. Thus,

P,(W, < M, W, € R) < P,(15 <t)
= P0<TffM < t)

= 2Py (B, >z — M)
2

o 1
:2/ exp(—y—>dy—>0asx—>oo.
x—M 2rt 2t

We will also use this to achieve the second limit in (4.4). Since the process

does not exit R without passing through 0 and it is equal in distribution to a Brownian

motion in time [0, 7o), we have
P.(W, ¢ R) < P(18 <t) — 0 asx — o0,

as before. By symmetry of the Brownian motion, the same argument holds to prove that
E.[f(W})] goes to 0 as © — —oo.

Finally, we will show that F,[f(W})] is continuous in z € {A} UR, fixed some
f € C&(R) and t > 0. Since the cemetery is an isolated point, we can assume r € R.
Let us construct a coupling of all processes W}/ starting from any y € R. Let (B,);> be a
Brownian motion starting from 0 independent of W}, a general Brownian motion with

boundary conditions at the origin, also starting from zero. We define

: B .
W - y+ By, if0<t <77
WtO_TB , ift> T_By.

-y
In this way, before the time 77, (when B, first hits —y so that W first hits 0),
the processes W}/ follow the same Brownian motion, but each one starting from y. After
78 , the processes W} are coupled with ).
Without loss of generality, we can suppose that = € [0, c0), since the other case

is symmetric. First, fixed x € (0,00) and ¢ > 0, we have for any y € R that
[ELf(WE)] = E[f (W]
< E[|[f(W) - f(th)‘l{t<fr§y/\sz}] + E[|f(WY) — f(th)ll{t2T§yAT§I}]
< E[lf(y+ Be) = f(z+ Bl + E[l[f (W) = FWVI) Linrs prm -
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By the uniform continuity of f, we have F||f(y+B;)— f(z+B;)|] — 0asy — z.
For the remaining part, without loss of generality, we can suppose that 0 < =z < y
(otherwise, we can choose 0 < y < z, and the proof is totally symmetric). Thus,

B B
5, <717, and

EHf(Wty) - f(th)|1{t2T§yAT§I}]
= E[lf(W)) = fW) 1z cocrmpy] + ENF (W) = F(W) 12 <]
<2fIP(E <t <78) + Ef(W 5 ) = FV 5 ) [1(s, <]

B _ _B
y = Tz

Due to the limit lim,,_,, 7 a.s., the sequence of sets {77, <t < T_By} decreases to

{78 =t} as y decreases to z. Thus,

li%n P(T_By <t<7tB)=P(rE =t)=0,
ytz

where the last equality follows from the fact that 72, is a continuous random variable
(see Corollary 2.19).
Now, denoting 78 = inf{t > 0: W2 = A} = inf{t > 0: W ¢ R}, note that

EHf(WtO_Tfy) - f(Wto_Tf’z)‘]‘{ngy<t}]
= E[|f (Wto,ff_ey) —f (Wt(),7_3$)|1{T§z+Tg:t}1{T§y<t}]

+ EHf(WtO_Tgy) - f(WtO_ng)\1{T_Bz+rg¢t}1{7_3y<t}]-

Since P(78, + 7% = t) = 0 (see Remark 4 below), the first term vanishes. It
remains to analyze the second term. Note that the only discontinuity allowed on the
paths of the process is when it jumps from 0 to the cemetery, which occurs for W) when
WtO_Tigy = WTOg’ that is {7” + 7R = ¢}. Observe that on the event {77, + 7% # ¢}, we
can choose y sufficiently close to « such that 7 + 78 # t. On this set, the paths W} are
continuous, then

Wt[lT_By — W) s asy—u

almost surely. Since f is continuous and bounded, the Dominated Convergence Theo-

rem yields
E[|f(WtO_T§y) - f(Wt(lT§z)‘1{T§w+727ét}1{7_3y<t}] — 0 asy—uwx.
Therefore, we conclude that
[ELfWI] = E[f(WS)]l — 0 asy —

for x > 0.
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For z = 0, we have that 7% = 0 a.s. under P, and W coincides with 2. For

any y € R, note that
|E[f(WP)] = E[f(W7)]]
< E[|f(y+ B:) — f(WtO)|1{T§y>t}] + E[|f(WtO,T§y) - f(m0)|1{7§ygt}]
<2 1P, > 1) + BIFVY 5 ) — FOVY 0 )L pn <o)

For the first term in the right-hand side of the equation, we use the limit

lim,_,o 75, = 75’ = 0 a.s. to obtain
: B
Zl/lrr(l) P(r2,>t) = P(2) =0.

For the second term, we argue as before, using the continuity of the sample
paths and the function f, and the Dominated Convergence Theorem. This completes

the proof of the continuity of Q; f(x) in x, and the lemma follows. O

Remark 4. The claim P(72, + 7% = t) = 0 follows from the fact that if X,Y are in-
dependent random variables and X is continuous (i.e. its distribution function F is
continuous), then X + Y is continuous.

Indeed, for t € R, 6 > 0, note that

P(X+Y =t) < Ely_sexiv<n)
= E[E[1y-s-vx<i-vy|Y]]
= Elg(Y)],

where g(y) = E[ly—s—y<x<i—y}), using the substitution rule (see [? , Example 5.1.5]),

since X, Y are independent. On the other hand, for all y € R and ¢ > 0,
Elg—s—y<x<i-pp] = Fx(t —y) = Fx(t =6 —y) <¢,

choosing § = §(¢) > 0 small enough. In fact, F'y is uniformly continuous, because it is
continuous, lim, ., Fix(z) = 1 and lim,_, ., Fx(z) = 0. Since ¢ > 0 was arbitrary, we

can conclude.

Since each Brownian motion on R with boundary conditions at the origin is
a Feller process, we are naturally led to the problem of computing its infinitesimal

generator.

Proposition 4.3. For f in the domain %y (L) of a general Brownian motion W, on R with

boundary conditions at the origin, the infinitesimal generator values
1
Lf(e) = 5 f"(a),
at x # 0 and Lf(A) = 0. Moreover, 2y (L) is contained in the space of functions whose

second derivative on R \ {0} extends to an element of C5*(R).
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Proof. Let © # 0, then z is not a trap and we can apply the Dynkin’s formula given in
Theorem 3.18. Suppose that x > 0 and consider A = (z — hy,z + hy) with hy, hy N\ 0.
For h, sufficiently small and starting from point z, for W, to reach 0 it must exit the set
A. Therefore, W, behaves like a Brownian motion in A, and their Dynkin’s formulas are

the same. Thus, as in Example 1, we have

_ f(x —hi)he + f(x + ho)ly .
Lf@ﬁ——mggi\o( s <—f@Q)(th)
_ flx—h)—flx)  flz+h)— f(x) 1
hl\lcl)rl?g\o ( hy + hy ) (h1 + ho) (4.5)

Since h; and h, go to 0 independently, we can take first the limit on h, and we

Lf(z) = lim (f i ’”23 —f@) I flx+ h;lz -/ <"”‘”) (), (46)

flz+ha)—f(x)
ho

get

so that the limit limj,\ exists, which is precisely f’ (x) the right derivative

of f at x. Similarly, the limit limj, W

f"(z) denotes the left derivative of f. Moreover, for the limit in (4.6) to be finite, the

exists and it is equal to — f’ (x), where

numerator must necessarily approach zero, implying that f’ (z) = f! (z). This ensures
the existence of the derivative f'(x) for x > 0. A completely analogous argument shows
that f'(x) also exists for = < 0.

Now, we will compute the second derivative. Fix 0 < ¢ < x, we apply (4.5) to
the points ¢ < y < x with h; = hy = h,, = ==, for each n € N, so

1(f@—hm—f@)+f@+hm—f@0'

Lf(y) = li
f(y) = lim . I

n—oo 2,

By Remark 3, the above limit is uniform in ¢ < y < x, so we may exchange the
limit and the integral below:
v 1 — hy) — hy) —
/ . (ﬂy )= fy)  fly+ha) ﬂw)dy

Lity) dy = lim _ 2h, B B,

Observe that

1 (fly=ha) = fly) | fly+ha) = fy)
[ %,( hon * i )dy

2hQ(/fy hy) dy — /"f @+/pfywzdyt/f )
m(/ i [ swi) g ([ 1w [ rwa)
=5 (/E_hnf(y)dy—/gc_hnf(y)dy) +% (/ - [ 1) ).
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Define g(z) = [ f(y) dy for = > 0. Since f is differentiable on (0, c0), we have
that g is twice differentiable and ¢” = f’ for x > 0. We can rewrite the above expression

in terms of ¢ as follows:

5%2 (j£x+mlf(y)dy__ xihnf(y)dy) __5%25<;£f+hnf(y)dy-—uZihany)dy)

1 (gl +h,) —gx)  glx—h,)—g(z)
2m< I, + I )

1 (g(e+h,)—g(e) | gle =h,) —gle)
_2m< I, + I, >’

and applying Taylor’s theorem (similarly as we did in Example 1), we obtain

. 1 g(x—i—hn)—g(x) g<x_hn)_g(x> 1 " 1 /
i gy, (R ) < S =)
and
.1 (gle4hy) —gle)  gle —hy) —gle) L,
7£&2m1< hn + Ty )::§f@)

Thus, combing all these expressions, we have

/mLf@)@r:%Qf@)—f%@%

and the Fundamental Theorem of Calculus implies that f’ is differentiable and

1

L) = 5f"(@),

for x > ¢ > 0. Since ¢ € (0, x) was arbitrary, this identity extends to all z > 0. The proof
for x < 0 is analogous.
Now, to compute the generator at A, using that it is an absorbing state, we

obtain trivially [ |
Exlf(W)] = f(A)

t—0+ t
Therefore, for f € Py (L), we have by definition that Lf € C(R), and we have
compute that

= 0.

Lf(x)= f"(x) forz # 0 and Lf(A) = 0.

Since L f is continuous and A is isolated, there exists a natural extension of f”

to 0 and A, given by

lim f"(x) = lim f"(x) =2Lf(0),

z—0t z—0~

F1(A) = 2LF(A) = 0.

In particular, this extension will belong to C5*(R). This completes the proof. ]
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Now, in order to fully characterize the general Brownian motion on R (with
boundary conditions at the origin), we must determine the domain of its infinitesimal
generator. Thus, by Theorem 3.9, we will determine all such processes. Naturally, we
expect that the domain of our general Brownian motion will have certain restrictions
at 0. The next lemma confirms our expectations by showing that the domain %y, (L) is
determined by a condition in the neighborhood of x = 0. Moreover, we will see later

that this boundary condition depends on the behavior of the process when it hits 0.

Lemma 4.4. If f; € 9w (L) and f, € CH(R) is such that f} exists in R\ {0}, admits an

extension to an element of C8(R), and f, = fyin (—¢,¢), for some e > 0, then f, € Dy (L).

Proof. We need to show that the limit

lim Qi fo(r) — fa(z) — lim

t—0+ t t—0+

E[fo(Wy)] = fol)
t

exists and it is uniform in x. We will consider two cases: |z| > ¢/2 and |z| < /2.
Let |x| > ¢/2. Since the process W, is equal in distribution to B, until the hitting
time of zero, we can compare the quotient in the generator limit for both process. Let

(BY);>0 be an absorbed Brownian motion at 0 starting from z, then

E[(W)] = fo(x) — Eu[fo(BY)] = fo(x)

t t
_ ’Ez[f2(B?)1{m>t}] + B[ e(W)ln<yy] — o(x)  Eu[fo(B))] = fo(2)
t t
_ ’Ex[f2<wt)]—{7—o<t}] — B[ fo(BY) 1 {ry<t)] ‘
t
<o) 22D,

Now, by the proof of Corollary 2.19, the hitting time 7, for a Brownian motion
is such that

PI(T() <t) :P()(Tm <t) :QP()(Bt Z[E)
2

:2/xw\/%exp<—g—t>dy

2
exp{ _ W th) }dy =o(t") ast — 07, (4.7)

< 1
=2
/0 v 27t
for any n € N and |z| > ¢, for all € > 0. Therefore, choosing n = 1, we conclude that

the uniform limits

i Bl VOl = h(@) . Bulfa(BY)] - fale)
t

t—0+ t "0+

must to be equal for |z| > ¢/2 whenever they exist.
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Now, we have that f, € Cy(R) and is twice differentiable in R\ {0} with second
derivative extending to an element of C;*(R). Since we are considering only z away

from the origin, we get

i ZeLR(BO = o) _ Ly

t—0t+ t 2 2

finishing the argument.
It remains to prove that the same limit extends uniformly near to x = 0. Since

fi= foon (—¢,e), we have for —e < x < ¢

'Ex[fg(Wt)] — folw)  EL[i(Wy)] — filx)

t t

_ ‘Ex[f2(Wt)1{|Wt|>€}] — E[[i(W) 1wy >e)
t .

Since the process started at —¢ < x < ¢, if |W;| > ¢, then W has already hit
e or —¢ by time ¢t. Thus, setting 7. = 7{_..}, we have T, < t. Observing also that
|fo(x) — fi(2)] < maxy>c | f2(x) — fi(z)| which is finite, we get

‘Ex[fz(Wt)] — fa(x)  E[L(Wy)] — fi(x)
t t

< max|fo(a) — i) 2EE=D)

T z>e t

We now estimate this hitting probability and aim to find a uniform upper bound.
Considering —¢/2 < x < ¢/2, we have P,(T./, < T;) = 1 by continuity of the paths (note
that this also includes the case when 7. = oo when the process is killed before hitting
—e or £). Now, recall that the shift operators 6, removes the portion of a path before
time s and shift the remaining path at time zero. Thus, if W reaches —¢ or ¢ before time

t, then the shifted process W o r, , also reaches —¢ or ¢ before time ¢. That is,
Li.<ty < Ym<ty 0 01, .
So an application of the strong Markov property yields
P:E(Ts < t) < Ex[]-{TE<t} © QTE/Q]

= Eu[Bwy, 1z <n]]
= Bollwr, e o Beeppllin<pll + Eulliwy, .y Bepa[Lircnl]
= P,(Wr,,, = —/2)P_po(T. < t) + Po(Wr,,, = €/2) P.po(T. < 1)
< P_€/2(T5 < Zf) + P€/2(TE < t).

Now, we compare this to the Brownian motion hitting time. Let T} = inf{t >
0: W, e{—e,0,e}} and T{%E} =inf{t > 0: B, € {—¢,0,e}}, where (B;)>o is a standard
Brownian motion. Observe that
P.o(T. <t) < Ppo(T. < t, Ty < t)
< Popp(Tiey < t)
= s/z(T{%g} <t),
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using that 1V, is equal in distribution to a Brownian motion in [0,7}o.;|. Similarly,

P_p(T. <t) < P_S/Q(T{%E} < t). Also, as we did in (4.7), we have

P_5/2<T{%,5} <t)= Pe/z(T{%,e} <t)=o(t") ast— 0"

for all n > 0.
So putting all this together, we get
ElfoWy)] — foz) — E[A(Wy)] — f1(x)
t t
Poopp(Tf oy <t)+ Pp(Th 4 <)
t

< max| fo(x) - fi(e)

which goes to 0 independently of x, as t — 0. Therefore, both expressions have the
same limit. Recalling that f, € Zy,(L), we obtain that

EL[fo(W)] — fa(z) E[fl(W)] — filx) 1,

li = 1li =
i t A / /1)
uniformly in |z| < £/2. This completes the proof. O

From now on, we denote g(0+) = lim, o+ g(z) and ¢(0—) = lim, - g(z), when
these limits exist. For f € Zy,(L), we claim that
f/(0+) = f(0) and f'(0—) = f.(0).

Indeed, let f € Zy/(L). We have seen that f is twice differentiable on R \
{0}, and the second derivative f” extends to an element of C4(R), in particular f” is

bounded. Thus, for any sequence ¢, | 0, we have

l:f () dx

for n, m large enough. This proves that the limit lim._,o+ f’(c) exists.

< Hf"H|Cn — Cm| — 0,

[/ (en) = f'(cm)| =

Now, for any ~ > 0, we have that f is continuous on [0, 4] and differentiable on

(0, h), so using the Mean Value Theorem, we can found a ¢ = ¢(h) € (0, k) such that

h)— f(0
Fo = 1010
In particular, since ¢(h) — 0 as h — 0, it follows that
710) = tim IO ) < o), (48)

as desired. The other limit can be computed similarly.
We will deduce the expression for the domain %y (L) of a general Brownian
motion on R from a expression in terms of some measures on (—oo,0) and (0, c0). We

start with the following lemma.
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Lemma 4.5. There exist constants c;,c, ,cy ,c3 > 0 and measures v~ (dx) and v*(dx) on
(—00,0) and (0, c0), respectively, satisfying

0
cl+c2‘+c;+c3+/

(LA —z)v™ (dx) + / (AAz)vT(de) =1, (4.9)
—o0 0
so that f belongs to Zyw (L) if and only if: f belongs to C§(R), it is twice differentiable in

R \ {0} with second derivative extending to an element of C§(R), and the equation
e1f(0) + 3 £(0-) = cf £/(04) + Z£(04)

:/(_ 0)(f(x)—f(0))1f(dx)+/ (f(z) — £(0)) v (dx) (4.10)

(0,00)

holds.

To prove the previous lemma we need the next result concerning weak conver-

gence of measures.

Proposition 4.6. Let (u.).~o be a family of measures on (0, 00) such that u.((0,00)) <1
for all e > 0, and let C[0, 00| be the space of continuous functions on [0, c0]. Then, there

exist a subsequence ¢,, \, 0 and a measure (. on [0, oo such that

im [ f@)p(de)= [ f(2)p(da), (4.11)

%0 J(0,00) [0,00]

for every f € C[0, .

Proof of Proposition 4.6. Considering Alexandroff compactification, [0, oc] is compact,
so the space ([0, 00| has a countable dense subset in the supremum norm, which we
denote by { fi}2,. We will show first that there exists a subsequence ¢,, \, 0 such that
the limit

lim fr(x) pie, (dx)

n—oo (0,00)

exists, for all £ € N. We will proceed via a diagonal argument. Letting £ = 1, we have
/(0 )fl<37) pe(d) < [ f1llpe((0, 00)) < [ f1l;

for all ¢ > 0. Thus, we can find a sequence ¢, ™\, 0 such that [  fi(z) p; (dz) con-

verges as n — oo. Also, for k = 2, we have
/( )b (@) < 11,
0,00

for all e}, > 0, then we can extract a subsequence (¢2) of (c,) such that [ fo(x) p.2 (dz)
converges as n — oo with €2 N\, 0. Applying this successively, we will have found for

each k a sequence (gf) C (e5~') \, 0 such that [° fi(z) pix (dx) converges as n — oc.
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Thus, fixing k£ and taking the diagonal sequence ¢,, = ¢!, we obtain

[ s = [ aw g —o

(0,00)

as n — oo, since for n sufficiently large, we have (") C (¢*) and the second integral
converges. This completes the diagonal argument.

Next, we can extend this limit for all f € C]0, oo] using the density of {fi}3;.
In fact, for every function f € C[0, co], there exists a subsequence ( f, ). of { fx}3>, such
that f,, — f as n — oo in the supremum norm. Then, for all ¢ > 0, we can choose n

large enough such that || fx, — f|l-o < €. Hence,

\ / Do) — [ (@) e (@) < i — Fllo < <.

(0,00)

and the limit lim,, o [, f(2) p1c, (dz) exists for every f € C[0, oc], for the same sequence
En \¢ 0.

Now, we may define the operator C[0,00] > [ — lim, o [ f(2) e, (dz),
which is positive linear. Also, since C|0, oo consists of bounded continuous functions
on a compact space, Riesz Representation Theorem ensures that there exists a measure
p(dzx) on [0, c0] such that

lim [ f@)pde)= [ f(2)p(da),
720 J(0,00) [0,00]
for all f € C[0, oo], which completes the proof. O

Remark 5. Note that the same result holds when considering a family (ji.).~o of measures
on (—o0,0) with p.((—00,0)) < 1, for all € > 0, and the space C[—o0, 0].

Now, we come back to the proof of the Lemma 4.5.

Proof of Lemma 4.5. First, recall that T = inf{¢t > 0 : W, # 0} is exponentially dis-
tributed with parameter A € [0, oc] under Fy. We will split the proof into three cases:
A=0,0< )\ <o0,and \ = oo.

Case A\ = 0:

Here, T = oo a.s. and 0 is a trap, so the process W; must coincide with the

absorbed Brownian motion at 0. Also, since 0 is absorbing, we have

LF(0) = Tim Eo[f<th)] —f0) _ 0

t—0t

for any f € %y (L). Thus, f”(0—) = f”(0+) = 0, and choosing ¢; = ¢, =c5 =0, c3 =1,
and v~ = vt = 0, the lemma holds trivially.
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Case ) < )\ < o0t

We will show that £ f”(0+) = —\f(0) is the boundary condition for f € Zy (L).
Recall from Proposition 3.17 that for exponential holding points, the process leaves 0

jumping to the cemetery, so for f € C5(R), we get

Eolf(Wy)] = Eo[f (W) Lireny]) + Eolf(We)1irsy]
= Eo[f(A)1ireny] + Eo[f(0)1irsy]
— FO)R(T > 1
= f(0) exp(—At)
Thus, for f € 2w (L),
£5(0) = tim PIOVIZIO ) gy SPENZL_ )

which implies that §”(0+) = —Af(0), as desired. With this boundary condition, it is

enough to choose ¢; = u%w ¢3 = 15, €3 = ¢5 = 0,and v~ = v+ = 0 to obtain the result.

Case )\ = oc.

In this situation, 7" = 0 a.s., so the process leaves 0 at once, then 0 is not a trap,
so we can compute the generator at x = 0 via the Dynkin formula (see Theorem 3.18).
Thus, let A = (—¢,¢) with € N\, 0. Starting from 0, W exits A at —e,e or A. Setting

T. = 7_. A 7. A Tp, the Dynkin formula becomes

L£(0) = lim 2o/ (W )] = f(0)

e\,0 EO[TE] ’
for f € 2w (L). Note that
Eolf(Wr)] _ 1
EO [Ta] - / EO [Ts] f(WTE) dPO

1 1
= [ 1@ g PV, € di) = /R @) oy W, € o)

where in the last equality we used that f vanishes at A.

Consider the finite measure v.(dz) = 77 (Wr. € dz) on RU{A}. Noticing
that v.(RU{A}) = ﬁ, we can express the generator in terms of v, via
Lf(0)= li\r‘% {[/(f(x) — f(O))yg(d:c)} — f(O)uE(A)}. (4.12)
g R

In order to obtain our normalized constants, let

0
K5=1—|—VE(A)+/

—00

(1A —2)v.(dx) + /000(1 A ) ve(dx).
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Note that 1 < K, < oo, so (4.12) implies

5 SO+ %

- [ (@ - rop 5 ~o. (4.13)

To construct our desired measures, we now investigate some weak measure limits (in
the sense of (4.11)). Consider the measures

po (A) = /A(l A —x) % on (—o0,0) and

(A = /A (1Az) ”ﬁx) on (0, 00).

Observe that i (dz) < 1 for all € > 0, so Proposition 4.6 assures that there is a
measure ;" (dz) on [0, o] and a subsequence ¢,, \, 0 such that
lim [ )l (de) = [ ) ut(de), 4.14)
"0 J(0,00) [0,00]
forall f € C[0, 0c]. In view of Remark 5, applying the same argument to y_ and passing
to a further subsequence if necessary, we get a measure p~ (dx) on [—oo, 0] such that
tw [ @) = [ e (@),
(=00,0) [—00,0]
for every f € C[—o0,0].
We are ready now to return to the equation (4.13). Note that 0 < ”E;;—e(f) <1
1

and 0 < z— < 1, for all n € N, so passing to a subsequence once more if required, we

&n

may assume
. U, (A)
lim —=~—2

n—00 Ken

=p; and lim

— 00

= P2,

En

with 0 < p,ps < 1.

Let f € 9w (L). Since f € CH(R), we have that the function W is con-

tinuous on (0, 00) and lim, ., L2910 — _£(0) < co. Also, we know that f is differ-

1Nz
f(=)—f(0)

s = limg ot w = f'(0+) < oco. In that way, we can

entiable, so lim,_,o+
extend W continuously to [0, co].
Thus, using equation (4.14) with the function %j:(o) € C[0, 0] and observing

that 1 Az is the Radon-Nikodym derivative of 1.} (dx) with respect to ., (dz), we get

f(x) — 1(0) . f(z) - £(0)
A = [ o
o f(x) — £(0)
= T an (A v (d)
1
= lim z)— f(0 Ve, (dx
fiw (@) = 10) g (o)
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where in the last equation we simply used that f(z) — f(0) vanishes at 0, recalling that

L., (dz) is a measure on R U A.

Ke,
Similarly, £ ("’”) (0) is continuous on (—o0,0), limm_mw = —f(0) < o0,
and lim,_,o- % = limm_m ! (””) —f(0—) < cc. Thus,

/[_ O]Mﬂd@: i [ (f(@) = F(0) v, (da).

1N —2x n—00 (—00,0) K€n
Substituting these limits into equation (4.13), we obtain

s O +parso) - [ LD gy [ LI g o

[—00,0] 1N —2x [0,00] 1/\.7)

flx)—£(0 f@)—f
Also, considering the limits of 3/~ z( ) and £ i Am( ), we get

(P14 17 (=00) + p7(00)) £(0) + 1~ (0)£'(0—) — 17 (0).f'(0+) + p2L.f(0)
(—00,0) (0,00)

1N —x 1Az

Defining the measures v~ (A) = [, i—p " (dz) on (—o0, 0), v (A) = *(dx)

et (
n (0’ OO)’ and setting L =p1+p <_ ) + p ( )1 Cy = M7(0)7 C; = M+(O)’ C3 = P2
yields

e f(0) + ¢ f/(0=) = &5 /(0+) + 5 1"(04)
- / (f(2) — F(0)) v~ (da) + / (f(x) — £(0) v (do),
(—00,0) (0,00)

which is our result missing only to check (4.9). To see this, note that integrating against
the constant function equals to 1, we have ;= ([—00,0]) = lim, . pz ((—00,0)) and
p ([0, 00]) = limy, 00 g1 ((0, 00)). Thus,

P14 pa +p ([=00,0]) + p* ([0, 00])
= tim S (200,00 4 4 (0.0
Ve (A) + 1+ [° (1A —2) v, (do) + [F(1 A z) v, (dx)

n—00 K,

)

n

and we finally get

0 0o
c1+c2+c2++c3+/ (1A —2) / (1A x)vt(dz)
0

—0o0

=46 +c§ e+ p((—00,0) + (( 00))
= p1+ P2+ ([—00,0]) + 17 ([0, o0]) =

Now, we will show the converse. Let &’ be the set of functions satisfying equa-

tion (4.10) for f belonging to C5(R) and having second derivatives in R \ {0} which
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admit an extension to an element of C5*(R). We will show that 2’ C Zy(L). Indeed,

consider the following equation on R \ {0}

851" =g, (4.15)

for § > 0 and g € Cy(R). This equation has a solution in %y, (L). In fact, by Proposi-
tion 3.8 we have that Rzg € Zy (L) for g € Cy(R). Also, the operator R is the inverse
of 5 — L. Thus, taking f = Rgg, we have

81 —5I"=(B-1)f =

on R\ {0}, as desired.

Now, let f € 2'. Observing that f € Cy(R), f” € Cy(—00,0),Cy(0,00) and
f"(0+) = f"(0—), there will exist a function g € Cy(R) such that (4.15) holds for that
f. Assuming that f does not belong to %y, (L), since we proved that 7y, (L) C &', there

will exist two functions f;, fo € &’ satisfying the same equation. Thus,

B(fi—f2) — (1 — f3) =0, (4.16)

for x # 0. But we know that the solution for (4.16) is given by

fi(z) = fo(x) = dy exp( \/_x +d2€Xp\/_[)3

for some constants d;, d, € R. However, f; — f, also goes to 0 at infinity, then d; = 0 for
x < 0and dy = 0 for z > 0. Thus,

fi(z) = fo(z) = {d2 exp(—v/2B2), %fx > 0;
dy exp(v/2Bz), ifx <0.

Moreover, the continuity of fi, f, forces d; = ds = d and f;(0) — f2(0) = d. Also,
d # 0 because fi, f, are supposed to be different.
Since fi, fo € &', we get

& (A(0) — £20) + 65 ((0-) — 0-)) = e (A04) — F5(04)) + LealF(04) — F(04))
- / (1) = fal)) — (£1(0) — ful(0)) v~ (da)
n / T (@) — fal@)) — (A1(0) — F2(0)) v (da).

Computing the limits at 0 for the side derivatives of f; — f, and dividing both
sides by d, we obtain

¢4 V26(c; + ) +esB
~ [ (ew(/20) ~ )y (dn) + [ (expl=v/25) 1)
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which is a contradiction, since both integrands are non positive whereas ¢y, ¢, , c5 , c3 >
0. Moreover, these constants and measures can not be 0 at the same time, otherwise the

constants would have to sum 1. Therefore, f € /(L) and we can conclude. O

We are now ready to determine the domain of the infinitesimal generator for

any general Brownian motion on R.

Theorem 4.7. For every general Brownian motion W on R with boundary conditions at

the origin, its infinitesimal generator is given by
Lf(r) = 5 "(@) for &« # 0 and Lf(0) = 5 1(0-) =  f'(0+),
with domain
Iw(L) ={f € Cg'(R) : Lf € C§(R), e f(0) + ¢ f'(0=) = f(0+) + 563f”(0+) =0},
for some constants ¢y, ¢y ,cg,c3 > 0with ¢y +c¢; +¢f +c3=1,and ¢; # 1.

Remark 6. We observe that ¢, # 1, otherwise the domain’s equation simplifies to f(0) = 0,
but this set of functions does not define a dense subset, so it cannot be a domain of a

generator.

Proof. By Lemma 4.5, it suffices to prove that v~ = v = 0 what we really obtained for
0 < X\ < co. Arguing by contradiction, suppose that v~ (—o0, —¢),v"(g,00) > 0 for some
e > 0. Then, choosing any f; € %y (L), we can slightly modify it to obtain f, = f; on
[—e,¢], but fa(z) < fi(z) for |z| > ¢ so that f; still belongs to C&*(R), f4 exists in R\ {0}
and can be extended to an element of C5*(R). Thus, according to Lemma 4.4, we have

fo € Zw(L). However, since fi, f» and its derivatives coincide at 0, Lemma 4.5 yields

| @) - pe) )+ [ (o) - fo)rt(dn) =0
(=00,0)

(0,00)

1(x) — falx)) v (dzx) = — () — fol2)) v(de).
> [ @y == [ (fi) ) v
Since both integrand are positive, this implies that
| (@ = he)r @) = [ (file) = o) v ) =0
(=00,0)

(0,00)

= (fi = [2)1{(—ooe)y = 0 v -a.e. and (fi — f2)1{00y = 0 vF-ae.,

which is not possible since both f; — f, and v~ are positive on (—oo, €), and both f; — f5
and v are positive on (&, c0).
Therefore, v~ (—o00, —¢) = vt (e,00) = 0, for all ¢ > 0. Letting ¢ \, 0 we get

v~ (—00,0) = v7(0,00) = 0, and the theorem is proved. O
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Consider a general Brownian motion on R such that its constants cj,c;, , 5, c3
are positive. Dividing the domain’s equation by ¢, + c;, we get

+

C1 C; / Co / 3 "
0) + 0—) — 0+) + ———f"(0+) =0.
c;+c;f() c;+c2+f( ) c;+c2+f( ) 2(c;+c;)f( )
Setting v = =%+, 8 = 2] = —% _ we have

= — CcC = =
Co +02+ ’ Co +02+ ? 2(cy +CQ+)

cf"(04) = Bf'(0+) = (1 = B)f'(0—) = 7f(0),

which corresponds exactly to the domain’s boundary condition of the Brownian Motion
skew at 0, sticky at 0 and killed elastically at 0, given without proof in Borodin’s book [1,
page 127, Section 13, Appendix 1]. Hence, we have proved that the general Brownian
motion on R with boundary conditions at the origin coincides with a Skew Sticky Killed

Brownian Motion at 0.
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Chapter 4. The most general BM on R



Chapter 5

The most general BM on
(—OO, O_] U [O—l_a OO>

We will now consider our state space £ = (—oo,0—] U [0+, 00). That is, we
split the line R into two disjoint half-lines, the positive and the negative one, with 0
corresponding to both 0— and 0+, but seen as distinct points. Also, each half-line has
the topology of the usual one. As in the previous chapter, the set Cy(E) coincides with
the subspace of continuous functions f : £ — R having zero limit as x — +o00. Also, we
will add to E the cemetery A, and consider C$(E) the set of functions in Cy(E) with
f(A) = 0. Note that A is an isolated point.

Definition 5.1. A stochastic process (W,;);>o on E = (—o0, 0—]U[0+, 00) is called a general
Brownian motion on E with boundary conditions at the origin if it satisfies the following

properties:

* (Wy)i>o is a strong Markov process with values in E'U {A} and it has cadlag trajec-

tories.

* The sample paths of (W,);>o are continuous on the set {t > 0 : lim,_,,- W, or W, ¢
{0+,0—,A}}.

* The point A, called the cemetery, is an absorbing state.

e Let 7o, = inf{t > 0 : W, = 0+} be the hitting time of 0+. For every initial point
x € [0+,00), the law of the process (Wip,, )¢ coincides with the law of a standard
Brownian motion on [0, c0) absorbed at 0, where we are identifying 0+ with 0. Simi-
larly, for every starting point x € (—o0,0—], the law of (W;a,,_): coincides with that
of a Brownian motion on (—oo, 0] absorbed at 0, where we are identifying 0— with 0
and 7o_ = inf{t > 0 : W} = 0—} is the hitting time of 0—.

41
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Since each half-line (—oo0,0—] and [0+, c0) can be identified with the standard
negative and positive half-lines, respectively, some results from Chapter 4 apply directly
to this setting. We will state them now.

First, the hitting time of 0 for Brownian motion is finite almost surely, yet A is
an absorbing point, then IV, cannot reach A before 0— or 0-+. Also, the Proposition 3.15
says us that 7', = inf{t > 0: W, # 0+} and 7_ = inf{t > 0 : W, # 0+} are exponentially
distributed under the probabilities P,., P,_, with parameters A, and \_, respectively.
We distinguish the following cases depending on the value of \,. The situation for \_

is analogous.

* Casel: 0 <\ <0

In this case, by Proposition 3.17, the process leaves 0+ via a jump, and the second
condition in Definition 5.1 enables W only to jump to 0— or to A. Hence, at time

T, the process is killed or arises on the opposite half-line.

e Case 2: \, =

Here, Py, (T, = 0) = 1 and the process leaves 0+ at once. Since the process starts
at 0+ under Py, and the process is cadlag, thus right continuous, the process
cannot go immediately from 0+ to A or 0—, since this would be a jump and the

process would be continuous to the left.

e Case3: \, =0

Here, we have 7', = oo a.s. and 0+ is an absorbing point.

Moreover, by the observations before Proposition 4.2, we can give the same
proof to show that the general Brownian motion on E is a Feller process (considering
for example = € [0, 00) and checking if the process has already left [0, c0) or not). The
reader could also notice that Proposition 4.3 was proved considering = € [0,00) or
x € (—o0, 0] separately and was based mostly in analytic arguments, so it adapts easily
to Brownian motion on the state space £ = (—oo,0—] U [0+, 00). Indeed, in this case,

We can say even more.

Proposition 5.2. Let f € 2y (L), the domain of a general Brownian motion on E with

boundary conditions at the origin. Then, f” € C§(E) and infinitesimal generator values

1

Lf(z) = 51"(2), (5.)

for x € E. Also, Lf(A) = 0.
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Proof. In view of our previous observations, it remains only to prove that
1 1
LFO+) = 5£/(04), Lf(0-) = 3 f"(0-)
for f € 2w (L), where the second and first derivatives at 0+ and 0— are interpreted as
the right-hand derivative and left-hand derivatives, respectively.
To prove that, we give a completely analytic argument. First, we identify

[0+, co] with the interval [0, co|, and apply the mean value theorem to obtain

f(h) = f(0)

/ 1 1 /
as was done in the context of (4.8) in Chapter 4.
Returning to the notation [0+, o], we have
. f(h) = f(0+) .
/ _ _ /
Fo+) = hl{[r& h 61{131 fe),

which shows that f’ is continuous at 0+.
We now apply the same reasoning again. We have that f’ is continuous on [0, A
and differentiable on (0, ), so we can find ¢ = ¢(h) € (0, k) such that

'(h) — f'(O
i = L0110
We already know that lim. o f”(c) = 2L f(0), so we deduce that
y . f'(h) = f(0
£(0) = Jim M = 2Lf(0),
that is,
'(h) — f'(0

An identical argument applied to the interval (—oo, 0—] shows similarly that

f'(0=) =2Lf(0-).
O

We now set up that for a function to belong to the domain %y, (L), it is sufficient
to know its behavior in a neighborhood of 0+ and 0—. The proof is almost identical to

that of Lemma 4.4, and is therefore omitted.

Lemma 5.3. If f; € Qw(L), fo, f§ € C&(E), and f, = fy in (—¢,0—] U [0+, ), for some
e >0, then fy € Py (L).

To obtain the domain’s boundary conditions at 0+ and 0—, we proceed similarly
as we did for the general Brownian Motion on R, expressing them first in terms of
measures on (—oo,0—] and [0+, o). The proof is close to the one for general Brownian

motion on R, but we do some suitable adaptations.
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Lemma 5.4. There exists nonnegative constants a™,a™, c; ,c;, i = 1,2, 3 and measures uf
on (04, c0), v; on (—oo,0—), j = 1,2 for which

]
cf+a++c;+c3++/ (1A z) v (dz) + vy ((—o00,0-)) =1, (5.2)
(0+,00)
cl+a+02+c3—|—/( )(1/\—:5') vy (dx) + vi ((0+,00)) = 1, (5.3)
—00,0—

such that f belongs to 2w (L) if and only if f, f" € C5(E), and it satisfies
+
¢ F(0+) + @™ (F(04) = F(0-)) = & £/(04) + 2 £(04)

= /(0+ )(f(x) — f(0+)) vy (dx) —|—/ (f(x) — F0+) vy (dz), (5.4)

(_0070_)

and
i £(0-) +a” (F(0-) = F(0+)) + ¢ /(0-) + - £(0-)
[ @ reprn) s [ (@ - f0) ). 6.9
(0+,00) (—00,0—-)
Proof. Recall from Proposition 3.15 that 7', = inf{t > 0: W, # 0+} and T_ = inf{t >

0 : Wy # 0—} are exponentially distributed with parameters A\, and \_, under the

probabilities Py, P,_, respectively. We examine the following cases, supposing first
that f € Iy (L).

Case A\, =0or A_ =0.

If A\, = 0, then 0+ is an absorbing point, so f”(0+) = Lf(0+) = 0, and we may
choose ¢ =a* =c¢f =0,cy =1, and v; = v;" = 0. The case A\_ = 0 is analogous.

Case 0 < Ay <ooor0 < A_ <oo:

Again we will consider only 0 < A, < oo. In this case, the process waits an
exponential time at 0+, then it jumps to 0— or A. In particular, 0+ is not a trap under
Py, so we may apply Theorem 3.18.

Let A = [0+,¢) with ¢ N\, 0. Starting from 0+, the process exits A precisely
when it jumps from 0+ to the points 0— or A. Thus,

. Eoy [f(Wr,)] = f(0+)
Lo =g =g, .m,
= A [f(0=) Py W, = 0—) + f(A) Por (Wr, = A) — f(0+)].

Recalling that f vanishes at A, we rewrite the equation as follows

Lf(04) = A Lo (Wr, = 0=)(f(0=) = f(0+)) = A (1 = Por (Wr, = 0-)) f(0+)
= A Bor (Wr, = 0=)(f(0=) = f(04)) = Ay Por (W, = A) f(0+).
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Since Lf(0+) = 1 f"(0+), we get

%f”(0+> + A P (Wr, = A) f(0+) + A P (Wr, = 0—-)(f(0+) — f(0—)) = 0. (5.6)

Ay Por(Wpy =4) | A Por(Wp, =0-)
1+/\+ > a - 1+/\+
vit = 0, the lemma follows.

Setting ¢/ = , e =0,c

Note also that we can see the equation (5.6) as
1 n
—f7(0
2f (0+)
1

— _Eg+[T+] [Poy Wr, = A)(f(0+) = f(A)) + Por (We, =0-)(f(0+) — f(0-))].

Case A\, = ocoor A\_ = oo.

If \; = oo, then the process leaves 0+ immediately, so we can apply Theo-
rem 3.18 again. Let A = [0+, ¢) with £ N\, 0. Starting from 0+, the process can leave A
only at £, A, 0—. Then considering 7. = 7. A 7a A 79_, by Dynkin Formula, we have

v Eor[f(Wr )] = f(0+)
Loy ==—"5m

We rewrite this equation in terms of the pull-back measure v.(dzx) =

mPM(WTE € dr) on £ U A. Thus,

Lf(0+) = lim [ (f(x) = F(04)) vi(de) — FOH)(A).

eNO J g
We consider K. = 1 + v.(A U (—o0,0—]) + f(o+ so) (LA ) ve(dz), so the above
equation implies

Lf(0+)

fo) + O / (f(x) — £(04) —0, 5.7)

. V€<A)
1 N7
o K.

e\0 K e

since 1 < K. < co. We now look at the measures

pt(A) = /A(l A ) Vs;?j) on (0+,00) and

- (4) = V‘}((jj) on (—oo,0—].

Identifying [0+, c0) with [0,00) and noticing that pf ((0+,00)) < 1, we use

Proposition 4.6 to obtain a sequence (¢,),, and a measure p*(dz) on [0+, oo such that

im [ ful ) = [ pa)utds),

=% J(0+4,00) [04,00]

for all f € C[0+, o0]..
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Applying the same reasoning and Remark 5, we also obtain a measure p~(dx)

on [—o0, 0—] such that, possibly after refining the sequence, we have

lim f@ye ) = [ fa)u(da),

N0 J(—00,0—] [—00,0-]
forall f € C[—o00,0—].

Now, we use these limits with appropriated functions. For f € 2y (L), the

H@-J08) s continuous on (04, 00) and lim, o L2200 — _ f(04) < oo,

1Nz
H@TOH) — Jim,, 0, {92108 — £/(04) < oo. Thus, taking its extension to

function
Also, lim, o
[0+, 00|, we get

[T gy < i [ SISO
0+0c)  IAT e Jore) 1A ’
s fz) = f(0+) 1
= (0+,00) T A AN K_enysn(dm)
= lim (f(x) — f(0+)) ; ve, (dr)
n—00 (0+,oo) En
i [ (@)~ F(04) v (),
n—oo [O+,OO) En

where we have used that 1 A z is the Radon-Nikodym derivative of nf (dx) with respect

to =—v., (dx).

&n

Similarly, one can see that

/[ 0,](f(x) — f(04)) ™ (dz) = lim (f(z) — f(0+)) 1 v, (d),

n—oo (700’07} Kgn

for all f € 2w (L).

Moreover, the sequences ven(B) and -1 are bounded, so we may assume
K., K.,
. Ve (A .
lim M =p; and lim = pa,
n—00 n—0o0

En En

passing to a further subsequence, if necessary. Applying all these limits, equation (5.7)

simplifies to
p1f(0+) + p2Lf(0+)

_ / F@) = FOH) i 4 / (F(x) — F(0+)) i (da).
[0+4,00] [—00,0—]

1Nz

Hence,

(1 + 17(00) + 1™ (=00)) £(04)
17 (0=) (F(04) = F(0-)) = i (0+)F (04) + Z£(04)

:/ Mu*(dxH/ (f(z) — F04)) p~(dx).
(0+4,00) (—00,0-)

1Az
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Setting the constants

cf =p1+ pt(00) + p(—00),

at =pu (0-),
e = pt(04),
C;’_ = P2,

and considering the measures

v (A) = / L (dr) on (0+,00),

v (A) = i~ (A) on (=00, 0-)
yields the desired equation (5.4). It is only missing to check (5.2). This follows from

pr+p2+ - ([00,0=]) + p ([0, 00])

. Ve (A)
— 1 n
b K. T K.

Ve, (A) + 14 v ((—00,0—]) + f(0+7oo)(1 A z) v, (dx)

+ LL;L((—OO, 0_]) + Mjn((o—i_? OO))

= lim =1.
n—00 Kgn
For the case A\_ = oo, the argument is analogous. We just emphasizes that,

following this procedure, we will obtain an equation taking the form

p1f(0—) + p2Lf(0-)

— / Mﬂ_(dx) —|—/ (f(x) = f(0=)) p* (dx).
[=00,0-] [0+,00)]

1AN—2z

Now, since limgo_ % = limgqo- Lﬁ(o*) = —f'(0—), this leads to the sign

change in the coefficient of ¢, , as compared to cj in the statement of the lemma.

For the converse, let 2’ be the set of functions f, f” € C5(E) satisfying the
equations (5.4) and (5.5). We want to show that ' C Zy,(L). In fact, as in the proof

of Lemma 4.5, we have that the equation

8- 3f" =g 5.8

for 5 > 0 and g € Cy(E), has a solution in Zy,(L).
Let f € &'. Since f satisfy (5.8) for some 5 > 0 and g € Cy(F), and Py (L) C
7', it f does not belong to %y, (L), then there exist two different functions f, fo € 2’

satisfying the same equation. Consequently;,

8= f2) = 3~ #£) = 0on B. (5.9
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Now, considering the known solution of (5.9) and the fact that f; — f, decays

to 0 at infinity, we obtain

dtexp(—+/2Bx), if z € [0+, 00);
d~ exp(v/28z), if z € (—o0,0-],

fi(z) = falx) =

for some d*,d~ € R, defining naturally exp(0+) = exp(0—) = 1. Also, since f; and f;
are distinct, then d*, d~ cannot be both equal to 0.
Since f1, fo € &', subtracting the equations (5.4) derived from f; and f,, and

computing f; — f, and its derivatives at 0+ or 0— results in
cfdt +atd™ —atd + cfd /28 + cid* B

= / Flexp(—+/28z) — 1] v{ (dx) + / [d™ exp(y/2Bx) — dT] v (dx). (5.10)
(0+,00) (—00,0—)
Now, doing analogous computations using equation (5.5), we obtain
cid +ad —adt+ceyd /28 +czd B
= / *exp(—+/287) S (dr) + / d~ [exp(+/28x) — 1] vy (dz). (5.11)
(O+,oo) (—00,0—)

We will show that these equations cannot be both true. Indeed, suppose that
d™ =0, then d~ # 0, so (5.11) simplifies to

i +a” +c\/28+ ¢
:/ (—=1) vy (dz) +/ (exp(v/282) — 1) v (da),
(0+4,00) (—00,0—)

since both integrands are negative, whereas the constants ¢;,a™,¢c;,c; are all non-
negative, the only possibility for the equation to hold is that all these constants and
measures are simultaneously zero. However, (5.3) must hold, leading to a contradic-
tion.

For d~ = 0 the argument is similar, so we can assume d*,d~ # 0. Without loss

of generality suppose d~ < d*, then (5.10) implies

cf +at( 1—— +e3\/28+ 58

:/ lexp(—+/28z) — 1] v{ (dz) + / {—exp V208z) — 1| vy (dz),
(0+,00) (—00,0—)

and we have the problem that the left-hand side of the equation is nonnegative, whereas
the right side is non positive, giving the same contradiction as before.

Therefore, f € 2y (L) and the proof is complete. N
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Combining Lemmas 5.3 and 5.4, we found the domain of any general Brownian

motion on (—oo,0—] U [0+, co) with boundary conditions at the origin.

Theorem 5.5. For each general Brownian motion on (—oo,0—| U [0+, co) with boundary

conditions at the origin, there correspond nonnegative constants a*,a~,c/,c;, i = 1,2,3

I A

such that the domain Zy (L) consists of functions with " € C{(E) that satisfy
+
¢ F(04) + a* (£(0+) = f(0-)) = & F(04) + f"(0+) =0 and

_ — — r/ Ci 1
e f(0=) +a (f(0=) = f(0+)) + ¢ f/(0—) + 731‘ (0—=) =0.
Proof. We want to show that the measures y;r, v, for j = 1,2, in Lemma 5.4 are
identically zero, what was true for A\, A\_ # oo. To illustrate the argument, let j = 1.
We assume that v; (g, 00), v, (—o0, —¢) > 0, for some ¢ > 0. Take any f, € Zy (L) and
adjust it to obtain f, = f; on [—¢,0—] U [0+, ¢], but fo(z) < fi(x) for |x| > ¢ in such a
way that f, also belongs to C5(E) and f” € C&(E). Thus, by Lemma 5.3, we also have
fo € 9w (L) and Lemma 5.4 applies to both f, fo. Since they agree in a neighborhood
of 0+ and 0—, equation (5.4) reduces to
[ (@ = heyri@) s [ (fle) = ) v (d) =0
(0+,00) (—00,0-)
which implies
| @ =gyt == [ (5 ) i)
Since both integrands are positive, this leads to
) = seywin = [ ()~ )i ) =0

implying that

(fi = f2)1{(eo0y = 0 vf-ace. and (f1 — f2)1{(—oo,—e)} = 0 17 -ace.,

which is not possible since both the measures and the functions are positive on each
of their respective intervals. Hence, vi"(¢,00) = v; (—o0, —¢) = 0. Since ¢ > 0 was

arbitrary, it follows that " = 0, v; = 0, as desired. O

Remark 7. Let us do some final observations. As consequence of [4, Proposition 1],
which characterizes the resolvent family of the Snapping Brownian Motion , it is pos-
sible to check the infinitesimal generator of the Snapping Brownian Motion on E =
(—00,0—] U [0+, 00) is given by Lf = 1 f” whose the domain %(L) consists of functions
such that f” € C$(E) and

F1(0+) = F/(0-) = Z(f(0+) — f(0-))

[\]
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where k is a positive constant. This is a particular case of the class of processes obtained
in our Theorem 5.5, by taking a™ =a™ = /2, =c; =land ¢f =¢; =c§ =c; =0.

The coefficients appearing in the definition of the %, (L) in the statement of
Theorem 5.5 can be interpreted as follows.

The coefficient ¢ (respectively c;) is related to the rate at which the process
jumps from 0+ (respectively 0—) to the cemetery; that is, it is a rate of “killing”.

The coefficient a™ (respectively ) is related to the rate at which the process
jumps from 0+ to 0— (respectively from 0— to 0-+); that is, it is the rate at each the
process switch of half-line. The original Snapping Out Brownian Motion of Lejay is
symmetric, that is, a* = a~. Here we allow the case a™ # a~, which can be understood
as a Skew Snapping Out BM.

The coefficient ¢j (respectively c,) is related to the reflection strength at 0+
(respectively 0—); and the coefficient c5 (respectively c;) is related to stickiness of the
process at 0+ (respectively 0—). Note that the equations defining the domain of the
generator in the Theorem 5.5 are homogeneous, so they can be normalized. This is
important when thinking about the fact that stickiness at 0+ and reflection at 0+ are
not independent: they compete.

The discussion above, thus inspires us to call the class of processes obtained
in Theorem 5.5 of Skew Sticky Killed Snapping Out Brownian Motion, which is a new
Brownian type process and, as proved here, is the most general Brownian motion on
the state space (—oo, 0—] U [0+, 00).
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