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Abstract

In this master’s dissertation, we characterize the most general one-dimensional

Brownian motion under some Markovian behavior at zero via the study of its infinitesi-

mal generators. The class of processes here considered is defined as the class of diffusion

processes that behave as the absorbed Brownian Motion up to the hitting time of zero,

and at zero the process has some (Markovian) behavior, which includes jumping to an

extra absorbing point ∆ called cemetery. Carefully adapting techniques of Knight’s book

[2] we obtain two new results.

Our first main result consists on proving that the most general Brownian motion

on the state space R∪{∆} coincides with the Skew Sticky Killed Brownian Motion, whose

infinitesimal generator can be found in Borodin’s book [1].

Our second main result consists on the characterization of the most general

Brownian motion on the state space (−∞, 0−] ∪ [0+,∞) ∪ {∆}. We conclude that that

class of processes obtained includes, as a particular case, the Snapping Out Brownian

Motion, a Brownian motion on (−∞, 0−]∪ [0+,∞) recently constructed in Lejay’s paper

[4]. Moreover, the class of processes here obtained includes a Brownian-type process

not known in the literature, which we call a Skew Sticky Killed Snapping Out Brownian

motion.

Keywords: Brownian motion; Markov processes; Infinitesimal generator.
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Chapter 1

Introduction

The Brownian motion was first observed as the erratic movement of particles

suspended in a fluid. This discovery is commonly attributed to the botanist Robert

Brown, who, in 1827, noticed the jittery motion of pollen grains immersed in water

under a microscope. The modern explanation of this motion lies in atomic theory: the

fluid is composed of molecules in constant motion, and their collisions with the sus-

pended particles result in the observed random trajectories. Later, mathematicians such

as Norbert Wiener provided a rigorous mathematical formulation of this phenomenon

in terms of a stochastic process.

From a mathematical perspective, the Brownian motion is a stochastic process

characterized by stationary and independent Gaussian increments and continuous sam-

ple paths. It is also a strong Markov process, and its transition semigroup is the funda-

mental solution of the heat equation – a key partial differential equation in mathemati-

cal physics.

In a more general context, we will examine a class of Brownian-type processes

with specific boundary conditions at 0. At this point, the process may be absorbed,

killed, or continue to follow a Markovian behavior. More formally, we study strong

Markov processes with continuous paths up to a random lifetime, after which the pro-

cess remains at an isolated point known as the cemetery state. In addition, these pro-

cesses coincide with the standard Brownian motion up to the hitting time of zero.

Moreover, considering two disjoint half-lines, we construct a similar process

on the state space (−∞, 0−] ∪ [0+,∞). This work provides the characterization of the

infinitesimal generator of such processes, giving the exact boundary conditions of their

domains, for both processes on R and on (−∞, 0−] ∪ [0+,∞).

In Chapter 2, we review some fundamental definitions and properties of the

standard Brownian motion, specially the strong Markov property. Our main reference

is [3] Brownian motion, Martingales, and Stochastic Calculus by Jean-François Le Gall,
1



2 Chapter 1. Introduction

where the reader can find detailed proofs of the results presented. Chapter 3 introduces

the analytical setup used in this work, including Feller processes and infinitesimal gen-

erators, as well as probabilistic tools from the theory of Markov processes. Alongside Le

Gall’s text, we refer to [5] Continuous Martingales and Brownian Motion by Revuz and

Yor for results related to Markov processes.

Chapter 4 and Chapter 5 constitute the core of this study, where we define

the class of Brownian processes under consideration and provide a complete character-

ization of their generator and domain. In Chapter 4 we prove that the most general

Brownian motion on R coincides with the Skew Sticky Killed Brownian Motion described

in Handbook of Brownian motion - Facts and Formulae by Borodin and Paavo [1, page

127, Section 13, Appendix 1]. In Chapter 5, we characterize the most general Brown-

ian motion on (−∞, 0−] ∪ [0+,∞), from where we recover the Snapping out Brownian

Motion, constructed in the recent paper of A. Lejay [4], and furthermore obtain a new

Brownian type process, which we call Skew Sticky Killed Snapping Out Brownian motion.

Finally, it is important to mention that many techniques applied in Chapter 4

and Chapter 5 are careful adaptations of results about the most general Brownian mo-

tion on the half-line [0,∞) from Frank B. Knight’s book Essentials of Brownian motion

and diffusion [2, Chapter 6], which, in its turn, has roots on earlier works of William

Feller.



Chapter 2

Brownian motion

Let (Ω,F , P ) be a probability space. Given σ > 0, µ ∈ R, we say that a random

variable X is Gaussian with N (µ, σ2)-distribution if X has

pX(x) =
1√
2πσ2

exp
{
− (x− µ)2

2σ2

}
as its density. Moreover, if µ = 0, we say that X is a centered Gaussian variable.

If µ = 0, σ = 1, then X is called a standard Gaussian or normal variable. Finally, by

extension, we set that X = µ a.s. is Gaussian with N (µ, 0)-distribution.

Let E be a d-dimensional space with ⟨·, ·⟩ as an inner product. A random vari-

able X with values in E is called a Gaussian vector if ⟨X, u⟩ is a real Gaussian variable,

for every u ∈ E. When these Gaussian variables are centered, we say that X is a cen-

tered Gaussian vector. For instance, considering E = Rd with the usual inner product,

and X1, . . . , Xd independent Gaussian variables, then the random vector (X1, . . . , Xd) is

a Gaussian vector.

We define a (centered) Gaussian space as a linear subspace of L2(Ω,F , P ) con-

taining only centered Gaussian variables. For example, if X = (X1, . . . , Xd) is a centered

Gaussian vector in Rd, then the subspace spanned by {X1, . . . , Xd} is a Gaussian space.

Let (E,E ) be a measurable space, and let T be an arbitrary index set. The

collection (Xt)t∈T of random variables valued in E is called a stochastic process with

values in E. Besides the fact that the functions Ω ∋ ω 7→ Xt(ω) are measurable for every

t ∈ T , we are mostly interested in the sample paths, that is, the mappings T ∈ t 7→ Xt(ω),

fixed ω ∈ Ω. Note that the sample paths form a collection of mappings from T into E,

indexed by ω ∈ Ω.

In particular, we will consider the following type of real-valued stochastic pro-

cess.

3



4 Chapter 2. Brownian motion

Definition 2.1. A real-valued stochastic process (Xt)t∈T is a (centered) Gaussian Process

if any finite linear combination of the variables Xt, t ∈ T , is a centered Gaussian.

It follows from this definition that the linear subspace of L2 spanned by the

variables Xt, t ∈ T , is a Gaussian space, which is called the Gaussian space generated

by the process X. Similarly, for every choice of the distinct indices t1, . . . , tp in T , the

random vector (Xt1 , . . . , Xtp) is a Gaussian vector in Rp whose law is called a finite-

dimensional marginal distribution of the process (Xt)t∈T .

If (Xt)t∈T is a centered Gaussian process, the covariance function of X is the

function Γ : T × T → R defined by Γ(s, t) = cov(Xs, Xt) = E[XsXt], recalling that the

variables are centered Gaussian. It is possible to show that this function determines

the finite-dimensional distributions of the process (Xt)t∈T , which in turn determine the

process itself.

2.1 Brownian motion

Definition 2.2. Let (E,E ) be a measurable space, and let µ be a σ-finite measure on

(E,E ). An isometry G from L2(E,E , µ) into a centered Gaussian space H is called a

Gaussian white noise with intensity µ.

Note that if f, g ∈ L2(E,E , µ), the covariance of G(f), G(g) is

E[G(f)G(g)] = ⟨G(f), G(g)⟩H = ⟨f, g⟩L2(E,E ,µ) =

∫
fg dµ, (2.1)

since G is an isometry.

Definition 2.3. Consider R+ endowed with its Borel σ-field, and let G be a Gaussian white

noise whose intensity is the Lebesgue measure. The stochastic process (Bt)t≥0 defined by

Bt = G(1[0,t])

is called a pre-Brownian motion.

In particular, a pre-Brownian motion is a centered Gaussian Process. Also, by

equation (2.1), it is easy to check the next proposition.

Proposition 2.4. A pre-Brownian motion is a centered Gaussian Process with covariance

K(s, t) = min{s, t} := s ∧ t.

The preceding proposition is actually an equivalence. Moreover, there are an-

other ways to characterize a pre-Brownian motion.
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Proposition 2.5. Let (Bt)t≥0 be a stochastic process. The following are equivalent:

• (Bt)t≥0 is a pre-Brownian motion;

• (Bt)t≥0 is a centered Gaussian Process with covariance K(s, t) = s ∧ t;

• B0 = 0 a.s., and, for every 0 ≤ s < t, the variable Bt − Bs is independent of

σ(Xr, r ≤ s) and follows the N (0, t− s)-distribution.

• B0 = 0 a.s., and, for every choice of 0 = t0 < t1 < · · · < tp, the variables

Bti − Bti−1
, 1 ≤ i ≤ p are independent, and Bti − Bti−1

follows the N (0, ti − ti−1)-

distribution, for every 1 ≤ i ≤ p.

The last item of the above proposition allows us to compute the finite-dimensional

distributions of a pre-Brownian motion.

Corollary 2.6. Let (Bt)t≥0 be a pre-Brownian motion. Then, for every choice of 0 = t0 <

t1 < · · · < tp, the distribution of the vector (Bt1 , . . . , Btp) has density

p(x1, . . . , xn) =
1

(2π)n/2
√

(t1(t2 − t1) . . . (tn − tn−1)
exp

{
−

n∑
i=1

(xi − xi−1)
2

2(ti − ti−1)

}
,

where x0 = 0.

A pre-Brownian motion has the following useful properties.

Proposition 2.7. If B = (Bt)t≥0 is a pre-Brownian motion, then:

• −B is a pre-Brownian motion (symmetry property);

• For every λ > 0, the process Bλ
t = 1

λ
Bλ2t is a pre-Brownian motion (invariance under

scaling);

• For every s ≥ 0, the process Bs
t = Bs+t − Bs is a pre-Brownian motion and it is

independent of σ(Br, r ≤ s) (simple Markov property).

We define the Brownian motion now only by asking for an essential condition

on the sample paths of a pre-Brownian motion.

Definition 2.8. A Brownian motion is a pre-Brownian motion whose sample paths are all

continuous.

Furthermore, starting from a pre-Brownian motion B, it is possible to modify

B slightly to obtain a Brownian motion. To state this, we consider more generally E

a metric space equipped with its Borel σ-field, and X = (Xt)t∈T , X̃ = (X̃t)t∈T two

stochastic processes on E.
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Definition 2.9. The process X̃ is said to be a modification of X if

∀ t ∈ T, P (X̃t = Xt) = 1.

In other words, for each t ∈ T , the random variables X̃t and Xt are equal a.s.,

in particular X̃ has the same finite-dimensional distributions as X. Thus, if X is a pre-

Brownian motion, X̃ is also a pre-Brownian motion. However, the sample paths of X̃

may be very different from those of X. We consider then a stronger notion.

Definition 2.10. The process X̃ is said to be indistinguishable from X if there exists a

negligible subset N of Ω such that

∀ω ∈ Ω \N,∀ t ∈ T, X̃t(ω) = Xt(ω).

If the set {X̃t = Xt,∀ t ∈ T} is measurable, this definition is equivalent to

saying that P (X̃t = Xt,∀ t ∈ T ) = 1, then the sample paths of indistinguishable process

are equal almost surely. Moreover, it is easy to see that if X̃ is indistinguishable from X,

then X̃ is a modification of X. In this way, we identify two indistinguishable process as

the same.

Suppose that T is an interval of R. If the sample paths of both X and X̃ are

continuous (except possibly on a negligible set of Ω), we can show also that if X̃ is a

modification of X, then X̃ is indistinguishable from X. Indeed, we note that X̃t and Xt

are equal almost surely at rational times t, and then we use the continuity to extend the

a.s. equality for all times t ≥ 0. Hence, for a continuous path process, it is enough to

consider its modifications, which will be unique up to indistinguishability.

We are ready now to state Kolmogorov’s lemma, which gives a condition to

obtain a modification of a stochastic process with sample paths having better continuity

properties.

Theorem 2.11 (Kolmogorov’s lemma). Let I be a bounded interval of R, let (E, d) be

a complete metric space, and let X = (Xt)t∈I be a stochastic process with values in E.

Suppose that there exist three real numbers q, ε, C > 0 such that, for every s, t ∈ I,

E[d(Xs, Xt)
q] ≤ C|s− t|1+ε.

Then, there is a modification X̃ of X whose sample paths are Hölder continuous with

exponent α, for each α ∈ (0, ε
q
). In particular, X̃ is a modification of X with continuous

sample paths, and such a modification is unique up to indistinguishability.

Remark 1. If I is unbounded, we can apply the previous lemma for bounded subintervals

of I and we get that X has a modification whose sample paths are locally Hölder continuous

with exponent α, for each α ∈ (0, ε
q
).
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The next corollary applies Kolmogorov’s lemma to a pre-Brownian motion B =

(Bt)t≥0 in order to obtain a Brownian motion. At least intuitively, we might already

expect that sample paths of B would be locally Hölder continuous with exponent close

to 1
2
. Indeed, for s < t,

E[|Bt −Bs|2] = t− s ⇒ |Bt −Bs|2 ≈ t− s ⇒ |Bt −Bs| ≈ |t− s|
1
2 .

Corollary 2.12. Let B = (Bt)t≥0 be a pre-Brownian motion. The process B has a modi-

fication whose sample paths are locally Hölder continuous with exponent 1
2
− δ, for each

δ ∈ (0, 1
2
).

2.2 The Strong Markov Property of Brownian motion

Let (Ω,F , P ) be a probability space. To state the strong Markov property for

Brownian motion, we need some definitions and results that will be useful throughout

this text.

Definition 2.13. A collection (Ft)0≤t≤∞ of sub-σ-fields of F such that Fs ⊆ Ft,∀ 0 ≤
s < t ≤ ∞ is called a filtration on (Ω,F , P ). Also, we call (Ω,F , (Ft), P ) a filtered

probability space.

Let (Ft) be a filtration. We define

Ft+ =
⋂
s>t

Fs,

for t ≥ 0, and F∞+ = F∞. Note that (Ft+) is also a filtration. It is easy to see that

Ft ⊆ Ft+, for all t ∈ [0,∞]. Moreover, when

Ft = Ft+,∀ t ≥ 0,

we say that (Ft) is a right-continuous filtration. The filtration (Ft+) is right-continuous.

Given any stochastic process (Xt)t≥0, we construct a filtration (FX
t )0≤t≤∞ by

setting FX
t = σ(Xs, 0 ≤ s ≤ t) for all 0 ≤ t < ∞, and FX

∞ = σ(Xs, s ≥ 0). This is called

the canonical filtration of X.

Definition 2.14. We say that a stochastic process (Xt)t≥0 is adapted with respect to the

filtration (Ft) if Xt is Ft-measurable, for all t ≥ 0.

In particular, any stochastic process is adapted with respect to its canonical

filtration.

Definition 2.15. A random variable T : Ω → [0,∞] is a stopping time of the filtration

(Ft), if {T ≤ t} ∈ Ft, for every t ≥ 0.
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If T is a stopping time, we also have {T < t} ∈ Ft for each t > 0, since

{T < t} =
⋃

q∈[0,t)∩Q]

{T ≤ q}.

Moreover, the set

FT = {A ∈ F∞ : ∀ t ≥ 0, A ∩ {T ≤ t} ∈ Ft}

is a σ-field, called the σ-field of the past before T , and T is FT -measurable.

Given a stochastic process (Xt)t≥0, we are usually interested in the hitting times

τA = inf{t ≥ 0 : Xt ∈ A}, (2.2)

for some A, a measurable set. When A = {a}, we simply write τa. The hitting times are

stopping times under some topological conditions of the sets A and continuity properties

of the sample paths of X, as it is stated in the next result.

Proposition 2.16. Let (Xt)t≥0 be an adapted stochastic process with respect to (Ft), taking

values in a metric space E.

• If X has right-continuous sample paths and O is an open subset of E, then the hitting

time τO is a stopping time of (Ft+);

• If X has continuous sample paths and F is a closed subset of E, then the hitting time

τF is a stopping time of (Ft).

For the remainder of this chapter, we fix a Brownian motion B = (Bt)t≥0. Let

T be a stopping time of the canonical filtration of B. We define the random variable

1{T<∞}BT by

1{T<∞}BT (ω) =

BT (ω)(ω) if T (ω) < ∞,

0 if T (ω) = ∞.

which is FT -measurable.

Theorem 2.17 (strong Markov property). If T is a stopping time, and P (T < ∞) > 0,

then the process (B(T )
t )t≥0 given by

B
(T )
t = 1{T<∞}(BT+t −BT )

is a Brownian motion independent of FT , under the probability measure P (· | T < ∞).

One interesting application of the strong Markov property is the “reflection prin-

ciple”.
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Theorem 2.18. For every t > 0, let St = sups≤tBs. Then, if a ≥ 0 and b ≤ a, we have

P (St ≥ a,Bt ≤ b) = P (Bt ≥ 2a− b).

In particular, St has the same distribution as |Bt|.

Now, we briefly consider some properties of the hitting times for Brownian

Motion. Let a ∈ R. By Proposition 2.16, τa is indeed a stopping time, and it is well

known that τa < ∞ almost surely. Also, one can see by the continuity of the paths that

1{τa<∞}Bτa = a almost surely.

Moreover, by Theorem 2.18, the distributions of St and |Bt| are equal, allowing

us to compute easily the distribution of τa, for every a ∈ R. Indeed,

P (τa ≤ t) = P (St ≥ a) = P (|Bt| ≥ a) = P (B2
t ≥ a2) = P (tB2

1 ≥ a2) = P (
a2

B2
1

≤ t),

where, before the last equality, we have used that Bt ∼ N (0, t), then Bt
d
=

√
tB1.

This proves the following corollary.

Corollary 2.19. For every a ∈ R, τa has the same distribution as a2

B2
1
.

Another useful property concerning now the hitting times τ{a,b}, for a < 0 < b,

is the distribution of 1{τ{a,b}<∞}Bτ{a,b}.

Proposition 2.20. For a < 0 < b, we have

P (τb < τa) =
−a

b− a
, P (τa < τb) =

b

b− a
.

Or equivalently,

P (Bτ{a,b} = b) =
−a

b− a
, P (Bτ{a,b} = a) =

b

b− a
.

We finish by defining the Brownian motion not starting at 0.

Definition 2.21. Let Z be a random variable. A stochastic process (Xt)t≥0 is a Brownian

motion started from Z, if we can write Xt = Z+Bt, where B is a Brownian motion started

from 0 and is independent of Z.

We will frequently consider the Brownian motion starting at x ∈ R, choosing

then Z ≡ x.
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Chapter 3

Markov processes, Feller semigroups

and generators

3.1 Analytic Setup

Let (E,E ) be a measurable space.

Definition 3.1. A function Q : E × E → [0, 1] is a Markovian transition kernel, if it satis-

fies the following conditions:

1. For every x ∈ E, the mapping E ∋ A 7→ Q(x,A) is a probability measure on (E,E );

2. For every A ∈ E , the mapping E ∋ x 7→ Q(x,A) is measurable with respect to E .

Let B(E) be the vector space of all bounded measurable functions f : E → R,

and equip it with the norm ∥f∥ = sup {|f(x)| : x ∈ E}. Throughout this text, the

notation ∥ · ∥ will always refer to the supremum norm. A Markovian transition kernel Q

defines a linear operator on B(E) by

Qf(x) =

∫
Q(x, dy) f(y),

for each x ∈ E. Indeed, it is clear that Qf is bounded, moreover it is a contraction on

B(E). And, for f = 1A with A ∈ E , we have by definition that

x 7→ Qf(x) = Q(x,A)

is measurable, thus we conclude the general case by standard approximation argu-

ments.

Given a collection (Qt)t≥0 of transition kernels on E, we would like to obtain a

semigroup on B(E).
11
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Definition 3.2. A collection (Qt)t≥0 of transition kernels on E is a transition semigroup if

the following properties hold:

1. For every x ∈ E, Q0(x, dy) = δx(dy);

2. For every t, s ≥ 0 and A ∈ E ,

Qt+s(x,A) =

∫
Qt(x, dy)Qs(y, A),

which is called the Chapman-Kolmogorov identity;

3. For every A ∈ E , the mapping R+×E ∋ (t, x) 7→ Qt(x,A) is measurable with respect

to B(R+)⊗ E .

By the first item of Definition 3.2, we have Q0f = f for every f ∈ B(E), and

the second one ensures that the equation

Qt(Qsf) = Qt+sf

is satisfied for indicator functions, so the general case follows again by approximation

arguments. Hence, the family {Qt, t ≥ 0} forms a semigroup, as desired.

In the same way, we get that the functions (t, x) 7→ Qtf(x) are measurable with

respect to B(R+) ⊗ E . This allows us to define another important linear operator on

B(E).

Definition 3.3. Given λ > 0, the λ-resolvent Rλ : B(E) → B(E) of a transition semigroup

(Qt)t≥0 on E is a linear operator defined by

Rλf(x) =

∫ ∞

0

e−λtQtf(x) dt

for every f ∈ B(E), x ∈ E.

Proposition 3.4. The resolvent satisfies the following properties:

• λ||Rλf || ≤ ||f || for each f ∈ B(E), λ > 0;

• For λ, µ > 0, the resolvent equation holds:

Rλ −Rµ + (λ− µ)RλRµ = 0.

From now on, we assume that E is a metrizable locally compact topological

space, and also that E is countable at infinity, i.e. E is a countable union of compact

sets. We consider the Borel σ-field of E.

We say that a function f : E → R tends to 0 at infinity if, for every ε > 0, there

exists a compact subset K ⊆ E such that |f(x)| < ε, for all x ∈ E \K. We denote C0(E)

the set of all continuous functions f : E → R tending to 0 at infinity. It is clear that

C0(E) ⊆ B(E), and we would like to restrict the previous operators to the space C0(E).
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Definition 3.5. A transition semigroup (Qt)t≥0 is a Feller semigroup if for every f ∈ C0(E),

we have

• Qtf ∈ C0(E);

• ||Qtf − f || −→ 0 as t → 0.

Remark 2. It is known that the second item can be replaced by the weaker condition

∀ f ∈ C0(E),∀ x ∈ E, |Qtf(x)− f(x)| −→ 0 as t → 0.

If f ∈ C0(E), one can show that Rλf ∈ C0(E), so the resolvent Rλ is a linear

operator on C0(E). Moreover, the range of Rλ in C0(E) plays a fundamental role in the

theory of Feller semigroups.

Proposition 3.6. Let λ > 0. The set R = {Rλf : f ∈ C0(E)} does not depend on the

choice of λ > 0. Also, R is a dense subspace of C0(E).

We now define the object that we will be concerned about throughout this work.

Definition 3.7. Let (Qt)t≥0 be a Feller semigroup. A function f ∈ C0(E) belongs to the

domain D(L) of the infinitesimal generator L of Qt if the limit

Lf = lim
t↓0

Qtf − f

t

exists in C0(E).

In particular, the domain D(L) is a subspace of C0(E), and the infinitesimal gen-

erator L : D(L) → C0(E) is a linear operator.

There is a close relationship between the infinitesimal generator and the resol-

vent operators Rλ. In fact, we can determine the domain D(L) in terms of Rλ.

Proposition 3.8. Let λ > 0.

• For all g ∈ C0(E), we have Rλg ∈ D(L) and (λ− L)Rλg = g;

• For all f ∈ D(L), we have Rλ(λ− L)f = f .

Consequently, D(L) = R, and the operators Rλ : C0(E) → R and λ− L : D(L) → C0(E)

are the inverse of each other.

Furthermore, Proposition 3.8 implies the next theorem, which shows the im-

portance of the infinitesimal operator in the Feller semigroups theory.

Theorem 3.9. A Feller semigroup (Qt)t≥0 is determined by its infinitesimal generator L.

We emphasize that the definition of infinitesimal generator L deeply relies on

its domain D(L). Process with the same expression for the generator (Laplacian, for

instance), but under different domains can have totally different behaviors.
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3.2 Probabilistic Setup

Let (E,E ) be a measurable space and (Xt)t≥0 a stochastic process with values

in E. We now introduce the theory of Markov processes.

Intuitively, we say that X is a Markov process when, given the present state of

X at time s, the past up to time s is irrelevant to predict the future of X after time s.

More precisely, the information of X until time s is given by the σ-field FX
s = σ(Xr, 0 ≤

r ≤ s). Thus, if X is a Markov process, for each choice of t > s and A ∈ E , the

conditional probability

P [Xt ∈ A | σ(Xr, 0 ≤ r ≤ s)]

is just a function of Xs. Namely, there exists E ∋ x 7→ Qs,t(x,A) a measurable function

such that

P [Xt ∈ A | σ(Xr, 0 ≤ r ≤ s)] = Qs,t(Xs, A). (3.1)

It is also reasonable that the conditional probability is indeed the probability of

Xt belongs to A, which implies that E ∋ A 7→ Qs,t(x,A) is a probability measure on

(E,E ). In this way, Qs,t will be a family of Markovian transition kernels.

We will be interested in the case when Qs,t does not depend specifically on the

instants s < t, but only on the increment t− s. Thus, we can rewrite (3.1) by

P [Xt ∈ A | σ(Xr, 0 ≤ r ≤ s)] = Qt−s(Xs, A), (3.2)

for every t > s. This means that the process evolves homogeneously in time, so it is

called a homogeneous Markov process.

As usual, by standard approximation arguments, the equation (3.2) can be gen-

eralized for any f ∈ B(E) rather than indicator functions, so we get

E[f(Xs+t) | σ(Xr, 0 ≤ r ≤ s)] = Qtf(Xs). (3.3)

for any t, s ≥ 0.

Recalling conditional expectation properties and applying (3.3) twice, we get,

for every t, s ≥ 0,

E[Xs+t ∈ A | σ(X0)] = E [E[Xs+t ∈ A | σ(Xr, 0 ≤ r ≤ s)] | σ(X0)]

= E[Qt(Xs, A) | σ(X0)]

= Qs(Qt(X0, A))

=

∫
Qs(X0, dy)Qt(y, A),

also in the last equality we used the definition of the operator Qf . On the other hand,

we should have that

E[Xs+t ∈ A | σ(X0)] = Qs+t(X0, A).
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Thus,

Qs+t(X0, A) =

∫
Qs(X0, dy)Qt(y, A),

so the kernels Qt must satisfy the Chapman-Kolmogorov equation.

This motivates the following definition.

Definition 3.10. Let (Ω,F , (Ft), P ) be a filtered probability space and let (Qt)t≥0 be a

transition semigroup on E. An adapted process (Xt)t≥0 with values in E is a (homoge-

neous) Markov process with respect to (Ft)t≥0, and transition semigroup (Qt)t≥0 if for

every f ∈ B(E) and t, s ≥ 0,

E[f(Xs+t) | Fs] = Qtf(Xs).

It is easy to see that if (Xt)t≥0 is a Markov process with respect to (Ft)t≥0, then

it is also a Markov process with respect to the canonical filtration (FX
t )t≥0. If a Markov

process is mentioned without specifying the filtration, we are implicitly referring to the

canonical one.

We know that a process is determined by its finite-dimensional distribution,

so the following proposition says that in order to understand a Markov process it is

sufficient to know its transition semigroup and its initial distribution.

Proposition 3.11. A process (Xt)t≥0 is a Markov process with respect to (FX
t )t≥0 with

transition semigroup (Qt)t≥0, and initial distribution µ if and only if for any 0 = t0 < t1 <

· · · < tp and f0, . . . , fp ∈ B(E),

E[f0(X0)f1(Xt1) . . . fp(Xtp)] =

∫
µ(dx0)f0(x0)

∫
Qt1(x0, dx1)f1(x1)

×
∫

Qt2−t1(x1, dx2)f2(x2) · · ·
∫

Qtp−tp−1(xp−1, dxp)fp(xp).

(3.4)

Furthermore, the converse gives a way to construct a Markov process given a

transition semigroup (Qt)t≥0 and an initial distribution µ, only asking for some topolog-

ical conditions on E.

For that, let E be a Polish space, that is, a topological space that can be metrized

by a complete metric and has a countable dense subset, and let E be its Borel σ-field. We

will consider Ω = ER+, the set of all mappings ω : R+ → E, eqquiped with F = E R+,

the σ-field generated by the coordinate maps Ω ∋ ω 7→ ω(t), for each t ≥ 0. Moreover,

(Xt)t≥0 will be the canonical process on Ω, i.e. for each t ≥ 0, Xt(ω) = ω(t), for all

ω ∈ Ω. Under this setting, the following proposition can be proved by Kolmogorov’s

extension theorem.
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Proposition 3.12. Given a transition semigroup (Qt)t≥0 on E, for any probability measure

µ on E, there exists a unique probability measure Pµ on (Ω,F ) under which (Xt)t≥0 is a

Markov process with transition semigroup (Qt)t≥0, and the law of X0 is µ.

Given a random variable Z, we denote Eµ[Z] for the expectation of Z under Pµ.

When µ = δx for some x ∈ E, we simply write Px and Ex[Z].

By (3.4), for any t ≥ 0 and f ∈ B(E), we get

Ex[f(Xt)] =

∫
Qt(x, dy)f(y) = Qtf(x), (3.5)

that is, the semigroup of a Markov process of a function f at the point x is the expec-

tation of the process started at x composed with f . In particular, taking f = 1A for any

A ∈ E , we have

Px(Xt ∈ A) = Qt(x,A),

so the transition semigroup gives the probability that the process started at x is in A at

time t, as we desired in the introduction of this section.

Moreover, E ∋ x 7→ Px(Xt ∈ A) is a measurable function. By a standard

monotone class argument, we obtain that E ∋ x 7→ Ex[Z] is measurable, for any random

variable Z. Also, we have that

Eµ[Z] =

∫
µ(dx)Ex[Z].

This enables us to write the Markov property in a handy form. For that, we

consider for each s > 0 an operator θs such that for every t ≥ 0,

Yt ◦ θs = Yt+s,

where Yt is any stochastic process. By this definition, it is immediate that θs is measur-

able with respect to σ(Yt, t ≥ 0). Note also that θs takes away the path of Y before time

s and shifts the rest to the initial time, so we call θs a shift operator.

Proposition 3.13. For every random variable Z positive or bounded and s > 0,

Eµ[Z ◦ θs | Fs] = EXs [Z].

The right-hand side of this equation is the composition of ω 7→ Xs(w) with x 7→
Ex[Z], so it is Fs-measurable by our previous observations. Notice that for Z = 1{Xt∈A},

the above formula gives

Pµ[Xt+s ∈ A | Fs] = PXs(Xt ∈ A) = Qt(Xs, A),

which is exactly the definition of the Markov process, so the reader can expect that this

proposition follows from applying a monotone class argument.
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We briefly observe that under some topological conditions on E (metrizable,

locally compact, and countable at infinity), and for a Feller semigroup (Qt)t≥0, if (Xt)t≥0

is a Markov process with respect to (Ft)t≥0, with Feller semigroup (Qt)t≥0, we can obtain

(X̃t)t≥0 a modification of (Xt)t≥0 with càdlàg sample paths. This modification is still a

Markov process with respect to the same transition semigroup (Qt)t≥0, but with respect

to a right-continuous filtration (F̃t)t≥0.

Finally, we set this entire construction as our standard definition of a Markov

process.

Definition 3.14. Let (Ft)t≥0 be a right-continuous filtration on (Ω,F ) and (Xt)t≥0 be an

adapted process with values in E with right-continuous sample paths. For each x ∈ E, let

Px be a probability measure on F∞ such that E ∋ x 7→ Px(S) is measurable, for every

S ∈ F∞. Given a probability measure µ on (E,E ), let Pµ =
∫
µ(dx)Px.

Then (Xt)t≥0 is a normal Markov process with respect to (Ft)t≥0, if

• Px(X0 = x) = 1 (in particular, µ is the initial distribution under Pµ);

• Eµ[Z ◦ θs | Fs] = EXs [Z], for all s > 0, and any FX
∞ -measurable function Z.

This particular version of the Markov process has a important property.

Proposition 3.15. Let x ∈ E and σx = inf{t > 0 : Xt ̸= x}. There exists λ(x) ∈ [0,∞]

such that σx is exponentially distributed with parameter λ(x) under Px.

With this proposition, we have a classification of points. If λ(x) = ∞, then

Px(σx = 0) = 1, which means that the process leaves x immediately. If λ(x) = 0, then

Px(σx = ∞) = 1 or equivalently Px(Xt = x,∀ t) = 1, so the process never leaves x,

and we call x a trap or an absorbing point. Finally, if 0 < λ(x) < ∞, then σx has an

exponential law with parameter λ(x), and we say that x is a holding point or that the

process stays in x for an exponential holding time. This characterization will be crucial

in the following chapters.

We are interested in a stronger version of Definition 3.14, where we also can

do shifts at random times, specifically using stopping times.

Definition 3.16. Let (Xt)t≥0 be a normal Markov process with respect to (Ft)t≥0. We

say that (Xt)t≥0 is a strong Markov process if for every (Ft)-stopping time T , and any µ

probability measure on E , we have

Eµ[Z ◦ θT | FT ] = EXT
[Z],

for every FX
∞ -measurable function Z.
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Let x ∈ E, σx = inf{t > 0 : Xt ̸= x}, and λ(x) as in Proposition 3.15. The next

result ensures that a strong Markov process only leaves holding points by a jump.

Proposition 3.17. Let (Xt)t≥0 be a strong Markov process. If 0 < λ(x) < ∞, then

Px(Xσx ̸= x) = 1.

Strong Markov processes have a more probabilistic way to compute their in-

finitesimal generator, given by Dynkin’s Formula. We will consider process (Xt)t≥0 tak-

ing values on Rd. Recall the definition of τA from (2.2).

Theorem 3.18 (Dynkin’s Formula). Let (Xt)t≥0 be a strong Markov process taking values

on Rd with respect to (Ft)t≥0 and with Feller semigroup (Qt)t≥0. For f ∈ D(L) and x not

being an absorbing point, we have

Lf(x) = lim
|A|→0,A∋x

Ex[f(XτAc )]− f(x)

Ex[τAc ]
, (3.6)

where |A| denotes the maximum diameter of a Borel set A, restricted by Ex[τAc ] > 0.

We apply now this framework to Brownian motion.

Proposition 3.19. A Brownian motion is a strong Markov process with Feller semigroup

Qt(x, dy) =
1√
2πt

exp

(
−(x− y)2

2t

)
dy.

Moreover, its infinitesimal generator is given by Lf = 1
2
f ′′ and its domain is the set D(L) =

{f ∈ C2(R) : f, f ′′ ∈ C0(R)}.

In the next example, we compute Dynkin’s formula for the Brownian motion,

since it does not have absorbing points.

Example 1. Let (Bt)t≥0 be a Brownian motion starting from x ∈ R. Consider A =

(x − h1, x + h2) with h1, h2 ↘ 0. Since x ∈ A and Bt starts at x under Px, by the

continuity of the paths, Bt cannot jump out of the interval A, but it must exit precisely

at one of its endpoints, then τAc = τ{x−h1,x+h2}. Thus,

Ex[f(BτAc )] = f(x− h1)Px(Bτ{x−h1,x+h2}
= x− h1) + f(x+ h2)Px(Bτ{x−h1,x+h2}

= x+ h2).

Using Markov property and Proposition 2.20, we get

Ex[f(BτAc )] = f(x− h1)P0(Bτ{−h1,h2}
= −h1) + f(x+ h2)P0(Bτ{−h1,h2}

= h2)

=
f(x− h1)h2 + f(x+ h2)h1

h2 + h1

. (3.7)

We now claim that Ex[τ{x−h1,x+h2}] = h1h2, for every x ∈ R. Indeed, by homo-

geneity of the Brownian motion in space, it suffices to show that E0[τ{−h1,h2}] = h1h2.
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Now, by Proposition 3.19, if f ∈ D(L), then f ∈ C2(R), so we can use Taylor’s theorem

to write
f(h)− f(0)

h
= f ′(0) +

1

2
f ′′(0)h+

r(h)

h
with lim

h→0

r(h)

h2
,

for f ∈ D(L). Substituting −h1 and h2 in this equation, one can see that

1

2
f ′′(0) = lim

h1↘0,h2↘0

(
f(−h1)− f(0)

h1

+
f(h2)− f(0)

h2

)
(h1 + h2)

−1

= lim
h1↘0,h2↘0

(
f(−h1)h2 + f(h2)h1

h2 + h1

− f(0)

)
(h1h2)

−1

On the other hand, if we consider equation (3.7) with x = 0, and the generator’s

value stated in Proposition 3.19, then Dynkin’s Formula yields the equality:

1

2
f ′′(0) = lim

h1↘0,h2↘0

(
f(−h1)h2 + f(h2)h1

h2 + h1

− f(0)

)
(E0[τ{−h1,h2}])

−1,

Thus,

lim
h1↘0,h2↘0

h1h2

E0[τ{−h1,h2}]
= 1.

Finally, to obtain the equality without taking the limit, we use the scaling prop-

erty of Brownian Motion:
√
cBt

d
= Bct, for every c > 0 (see Proposition 2.7). Conse-

quently, τ{−√
ch1,

√
ch2}

d
= cτ{−h1,h2} and

1 = lim
c↘0

ch1h2

E0[τ{−√
ch1,

√
ch2}]

=
h1h2

E0[τ{−h1,h2}]
,

so the claim is proved.

Therefore, we get Dynkin’s formula for the generator of a Brownian motion:

Lf(x) = lim
h1↘0,h2↘0

(
f(x− h1)h2 + f(x+ h2)h1

h2 + h1

− f(x)

)
(h1h2)

−1. (3.8)

Remark 3. It is possible to show that the limit in (3.8) is uniform in x.

We finish this section by defining the type of processes we will examine from

now on. Let D ⊆ R be an interval, we add to D an isolated and absorbing point ∆,

called the cemetery.

Definition 3.20. A diffusion process (Wt)t≥0 on D ⊆ R is any strong Markov process with

values in D ∪∆ with respect to (FW
t+ ) whose sample paths are continuous for 0 ≤ t < τ∆,

and equal to ∆ for t ≥ τ∆, where τ∆ = inf{t ≥ 0 : Xt = ∆}.

We will often use the continuity of the paths to guarantee that a diffusion started

at x cannot reach y without hitting all the points between x and y. We recall from (2.2)

the definition of the hitting times

τx = inf{t ≥ 0 : Wt = x},
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for every x ∈ D ∪∆. By Proposition 2.16, τx, x ∈ D, are stopping times, and might also

be ∞, if the process is killed first. Moreover, we observe that the right-continuity of the

paths on D ∪∆ is enough to ensure that Wτx = x on {τx < ∞}.



Chapter 4

The most general BM on R

From now on, we will consider our state space E = R with the usual topology.

It is easy to see that the set C0(R) coincides with the subspace of continuous functions

f : R → R having zero limit as x → ±∞. Also, since f ∈ C0(R) is uniformly continuous

on compact subsets and decays to infinity, one can see that f is uniformly continuous.

Furthermore, we will add to R an isolated point ∆ called the cemetery, and consider

C∆
0 (R) the set of functions in C0(R) extended to value 0 at ∆.

Definition 4.1. A stochastic process (Wt)t≥0 on R is called a general Brownian motion on

R with boundary conditions at the origin if it satisfies the following properties:

• (Wt)t≥0 is a strong Markov process with values in R ∪ {∆} and it has càdlàg trajec-

tories.

• The sample paths of (Wt)t≥0 are continuous on the set
{
t ≥ 0 : lims→t− Ws or Wt /∈

{0,∆}
}

.

• The point ∆, called the cemetery, is an absorbing state.

• Let τ0 = inf{t ≥ 0 : Wt = 0} be the hitting time of 0. For every initial point x ∈ R,

the law of the process (Wt∧τ0)t coincides with the law of a standard Brownian motion

on R absorbed at 0.

Recalling Definition 3.20, note that a general Brownian motion on R is a dif-

fusion. Also, the above definition ensures that Wt behaves like a standard Brownian

motion until it hits 0, so let us investigate what happens afterwards. First, from the prop-

erties of the Brownian motion, we know that τ0 < ∞ a.s., and by the right-continuity

of the paths, we have Wτ0 = 0. Thus, since ∆ is an absorbing point, it follows that Wt

cannot reach ∆ before 0.

21
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Now, by Proposition 3.15, we have that T = inf{t > 0 : Wt ̸= 0} is exponentially

distributed with parameter λ ∈ [0,∞] under P0. We distinguish three cases depending

on the value of λ.

• Case 1: 0 < λ < ∞

Due to Proposition 3.17, the process leaves 0 by a jump, so the continuity of the

paths on R forces W to jump to ∆. Hence, Wt = ∆ for all t ≥ T in this case.

• Case 2: λ = ∞

Here, P0(T = 0) = 1, so the process leaves 0 at once. Since P0(W0 = 0) = 1 and

the paths are right-continuous, the process cannot exit immediately from 0 to ∆,

otherwise this would be a jump and the process would be continuous to the left,

not to the right.

• Case 3: λ = 0

In this situation, we have T = ∞ a.s., which means that 0 is a trap.

We now prove that a general Brownian motion on R with boundary conditions

at 0 is a Feller process on C∆
0 (R). In the proof, we will use the notation Wt /∈ R meaning

that Wt = ∆. This will apply to more general settings where the process takes values in

a partitioned state space E = A1∪A2 and it is allowed to exit one of the sets Ai without

being killed, what will be very useful in the next chapter.

In the present case, the proof could be simplified noting that f ∈ C∆
0 (R) van-

ishes on the sets {Wt /∈ R}, but we avoid this in view of the results in Chapter 5.

Proposition 4.2. Every general Brownian motion on R with boundary conditions at the

origin has a Feller semigroup on C∆
0 (R).

Proof. To prove the result, we need to verify whether the semigroup satisfies Definition

3.5. Recall from equation (3.5) that the semigroup is given by Qtf(x) = Ex[f(Wt)], for

each t ≥ 0 and x ∈ R ∪∆. Thus, we have to show the uniform convergence,

||Qtf − f || −→ 0 as t → 0,

and the stability of C∆
0 (R) for the process semigroup, that is, if f ∈ C∆

0 (R), then Qtf ∈
C∆

0 (R). Hence, for f ∈ C∆
0 (R), we shall prove that Ex[f(Wt)] is continuous in x ∈

{∆} ∪ R and tends to 0 at infinity,

lim
x→∞

Ex[f(Wt)] = 0.

Also, Qtf(x) must vanish at ∆, but this is trivial, since ∆ is an absorbing point

and f(∆) = 0, hence E∆[f(Wt)] = 0, for all t ≥ 0.
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We begin by proving the uniform convergence. By Remark 2, this comes from

the pointwise convergence. Then, it suffices to show that

|Ex[f(Wt)]− f(x)| −→ 0 as t → 0, (4.1)

for all f ∈ C∆
0 (R) and x ∈ R∪∆. For x = ∆, this is immediate since both f and

Ex[f(Wt)] vanish at ∆. So, fix x ∈ R and f ∈ C∆
0 (R). For any t ≥ 0, we have

|Ex[f(Wt)]− f(x)| ≤ Ex[|f(Wt)− f(x)|1{Wt∈R}] + Ex[|f(Wt)− f(x)|1{Wt /∈R}]. (4.2)

We now prove separately that these two terms from the right-hand side of (4.2)

go to 0 as t → 0, hence we get (4.1). Since f is bounded, for the second term on the

right hand side of (4.2) it is sufficient to show that

lim
t→0

Px(Wt /∈ R) = 0, (4.3)

Since Px(W0 = x) = 1, then Px(τ∆ > 0) = 1. Consequently,

lim
t→0

1{Wt /∈R} = 0

Px-almost surely and we get (4.3).

Now, for the first term on the right hand side of (4.2) , recall that f is uniformly

continuous, so for every ε > 0, we can find a δ = δ(ε) such that

Ex[|f(Wt)− f(x)|1{Wt∈R}]

= Ex[|f(Wt)− f(x)|1{|Wt−x|<δ}∩{Wt∈R}] + Ex[|f(Wt)− f(x)|1{|Wt−x|≥δ}∩{Wt∈R}]

< ε+ 2∥f∥Px(|Wt − x| ≥ δ,Wt ∈ R).

Again, it is enough to prove that for all δ > 0,

lim
t→0

Px(|Wt − x| ≥ δ,Wt ∈ R) = lim
t→0

Px(|Wt −W0| ≥ δ,Wt ∈ R) = 0,

which follows from the continuity of the paths, since for every δ > 0, it holds that

1{|Wt−W0|≥δ}∩{Wt∈R} = 0 whenever t is sufficiently close to 0.

We proceed by verifying that C∆
0 (R) is stable for the process semigroup. First,

fixed some f ∈ C∆
0 (R) and t ≥ 0, we will show that

lim
x→∞

Ex[f(Wt)] = 0.

Indeed, given ε > 0 there exists M > 0 such that |f(x)| < ε for x > M . Thus,

|Ex[f(Wt)]|

≤ Ex[|f(Wt)|1{Wt>M}∩{Wt∈R}] + Ex[|f(Wt)|1{Wt≤M}∩{Wt∈R}] + Ex[|f(Wt)|1{Wt /∈R}]|

≤ ε+ ∥f∥Px(Wt ≤ M,Wt ∈ R) + ∥f∥Px(Wt /∈ R).
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So, we want to show that for every t ≥ 0 and M > 0,

lim
x→∞

Px(Wt ≤ M,Wt ∈ R) = 0 and lim
x→∞

Px(Wt /∈ R) = 0. (4.4)

To do so, let y ∈ R and (Bt)t≥0 be a standard Brownian motion, we denote

τy = inf{t ≥ 0 : Wt = y} and τBy = inf{t ≥ 0 : Bt = y}. Let x > M , starting from x,

Wt cannot reach zero without passing through M , thus by the continuity of the paths,

we have that Px(τ0 > τM) = 1. In particular, the definition of Wt implies that τM
d
= τBM .

Also, if Wt ≤ M then Wt has already hit M by time t, so τBM ≤ t under Px, whose

probability we can estimate using the proof of Corollary 2.19. Thus,

Px(Wt ≤ M,Wt ∈ R) ≤ Px(τ
B
M ≤ t)

= P0(τ
B
x−M ≤ t)

= 2P0(Bt ≥ x−M)

= 2

∫ ∞

x−M

1√
2πt

exp
(
− y2

2t

)
dy −→ 0 as x → ∞.

We will also use this to achieve the second limit in (4.4). Since the process

does not exit R without passing through 0 and it is equal in distribution to a Brownian

motion in time [0, τ0], we have

Px(Wt /∈ R) ≤ Px(τ
B
0 ≤ t) −→ 0 as x → ∞,

as before. By symmetry of the Brownian motion, the same argument holds to prove that

Ex[f(Wt)] goes to 0 as x → −∞.

Finally, we will show that Ex[f(Wt)] is continuous in x ∈ {∆} ∪ R, fixed some

f ∈ C∆
0 (R) and t ≥ 0. Since the cemetery is an isolated point, we can assume x ∈ R.

Let us construct a coupling of all processes W y
t starting from any y ∈ R. Let (Bt)t≥0 be a

Brownian motion starting from 0 independent of W 0
t , a general Brownian motion with

boundary conditions at the origin, also starting from zero. We define

W y
t =

y +Bt , if 0 ≤ t < τB−y;

W 0
t−τB−y

, if t ≥ τB−y.

In this way, before the time τB−y (when Bt first hits −y so that W y
t first hits 0),

the processes W y
t follow the same Brownian motion, but each one starting from y. After

τB−y, the processes W y
t are coupled with W 0

t .

Without loss of generality, we can suppose that x ∈ [0,∞), since the other case

is symmetric. First, fixed x ∈ (0,∞) and t ≥ 0, we have for any y ∈ R that

|E[f(W y
t )]− E[f(W x

t )]|

≤ E[|f(W y
t )− f(W x

t )|1{t<τB−y∧τB−x}] + E[|f(W y
t )− f(W x

t )|1{t≥τB−y∧τB−x}]

≤ E[|f(y +Bt)− f(x+Bt)|] + E[|f(W y
t )− f(W x

t )|1{t≥τB−y∧τB−x}].
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By the uniform continuity of f , we have E[|f(y+Bt)−f(x+Bt)|] −→ 0 as y → x.

For the remaining part, without loss of generality, we can suppose that 0 < x < y

(otherwise, we can choose 0 < y < x, and the proof is totally symmetric). Thus,

τB−x < τB−y, and

E[|f(W y
t )− f(W x

t )|1{t≥τB−y∧τB−x}]

= E[|f(W y
t )− f(W x

t )|1{τB−x≤t≤τB−y}] + E[|f(W y
t )− f(W x

t )|1{τB−y<t}]

≤ 2∥f∥P (τB−x ≤ t ≤ τB−y) + E[|f(W 0
t−τB−y

)− f(W 0
t−τB−x

)|1{τB−y<t}].

Due to the limit limy→x τ
B
−y = τB−x a.s., the sequence of sets {τB−x ≤ t ≤ τB−y} decreases to

{τB−x = t} as y decreases to x. Thus,

lim
y↑x

P (τB−y ≤ t ≤ τB−x) = P (τB−x = t) = 0,

where the last equality follows from the fact that τB−x is a continuous random variable

(see Corollary 2.19).

Now, denoting τ 0∆ = inf{t ≥ 0 : W 0
t = ∆} = inf{t ≥ 0 : W 0

t /∈ R}, note that

E[|f(W 0
t−τB−y

)− f(W 0
t−τB−x

)|1{τB−y<t}]

= E[|f(W 0
t−τB−y

)− f(W 0
t−τB−x

)|1{τB−x+τ0∆=t}1{τB−y<t}]

+ E[|f(W 0
t−τB−y

)− f(W 0
t−τB−x

)|1{τB−x+τ0∆ ̸=t}1{τB−y<t}].

Since P (τB−x + τ 0∆ = t) = 0 (see Remark 4 below), the first term vanishes. It

remains to analyze the second term. Note that the only discontinuity allowed on the

paths of the process is when it jumps from 0 to the cemetery, which occurs for W y
t when

W 0
t−τB−y

= W 0
τ0∆

, that is {τB−y + τ 0∆ = t}. Observe that on the event {τB−x + τ 0∆ ̸= t}, we

can choose y sufficiently close to x such that τB−y + τ 0∆ ̸= t. On this set, the paths W 0
t are

continuous, then

W 0
t−τB−y

−→ W 0
t−τB−x

as y → x

almost surely. Since f is continuous and bounded, the Dominated Convergence Theo-

rem yields

E[|f(W 0
t−τB−y

)− f(W 0
t−τB−x

)|1{τB−x+τ0∆ ̸=t}1{τB−y<t}] −→ 0 as y → x.

Therefore, we conclude that

|E[f(W y
t )]− E[f(W x

t )]| −→ 0 as y → x,

for x > 0.



26 Chapter 4. The most general BM on R

For x = 0, we have that τB0 = 0 a.s. under P0 and W x
t coincides with W 0

t . For

any y ∈ R, note that

|E[f(W y
t )]− E[f(W 0

t )]|

≤ E[|f(y +Bt)− f(W 0
t )|1{τB−y>t}] + E[|f(W 0

t−τB−y
)− f(W 0

t )|1{τB−y≤t}]

≤ 2∥f∥P (τB−y > t) + E[|f(W 0
t−τB−y

)− f(W 0
t−τB−x

)|1{τB−y≤t}].

For the first term in the right-hand side of the equation, we use the limit

limy→0 τ
B
−y = τB0 = 0 a.s. to obtain

lim
y→0

P (τB−y > t) = P (∅) = 0.

For the second term, we argue as before, using the continuity of the sample

paths and the function f , and the Dominated Convergence Theorem. This completes

the proof of the continuity of Qtf(x) in x, and the lemma follows.

Remark 4. The claim P (τB−x + τ 0∆ = t) = 0 follows from the fact that if X, Y are in-

dependent random variables and X is continuous (i.e. its distribution function FX is

continuous), then X + Y is continuous.

Indeed, for t ∈ R, δ > 0, note that

P (X + Y = t) ≤ E[1{t−δ<X+Y≤t}]

= E[E[1{t−δ−Y <X≤t−Y }|Y ]]

= E[g(Y )],

where g(y) = E[1{t−δ−y<X≤t−y}], using the substitution rule (see [? , Example 5.1.5]),

since X, Y are independent. On the other hand, for all y ∈ R and ε > 0,

E[1{t−δ−y<X≤t−y}] = FX(t− y)− FX(t− δ − y) < ε,

choosing δ = δ(ε) > 0 small enough. In fact, FX is uniformly continuous, because it is

continuous, limx→∞ FX(x) = 1 and limx→−∞ FX(x) = 0. Since ε > 0 was arbitrary, we

can conclude.

Since each Brownian motion on R with boundary conditions at the origin is

a Feller process, we are naturally led to the problem of computing its infinitesimal

generator.

Proposition 4.3. For f in the domain DW (L) of a general Brownian motion Wt on R with

boundary conditions at the origin, the infinitesimal generator values

Lf(x) =
1

2
f ′′(x),

at x ̸= 0 and Lf(∆) = 0. Moreover, DW (L) is contained in the space of functions whose

second derivative on R \ {0} extends to an element of C∆
0 (R).
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Proof. Let x ̸= 0, then x is not a trap and we can apply the Dynkin’s formula given in

Theorem 3.18. Suppose that x > 0 and consider A = (x − h1, x + h2) with h1, h2 ↘ 0.

For h1 sufficiently small and starting from point x, for Wt to reach 0 it must exit the set

A. Therefore, Wt behaves like a Brownian motion in A, and their Dynkin’s formulas are

the same. Thus, as in Example 1, we have

Lf(x) = lim
h1↘0,h2↘0

(
f(x− h1)h2 + f(x+ h2)h1

h2 + h1

− f(x)

)
(h1h2)

−1

= lim
h1↘0,h2↘0

(
f(x− h1)− f(x)

h1

+
f(x+ h2)− f(x)

h2

)
(h1 + h2)

−1. (4.5)

Since h1 and h2 go to 0 independently, we can take first the limit on h2 and we

get

Lf(x) = lim
h1↘0

(
f(x− h1)− f(x)

h1

+ lim
h2↘0

f(x+ h2)− f(x)

h2

)
(h1)

−1, (4.6)

so that the limit limh2↘0
f(x+h2)−f(x)

h2
exists, which is precisely f ′

+(x) the right derivative

of f at x. Similarly, the limit limh1↘0
f(x−h1)−f(x)

h1
exists and it is equal to −f ′

−(x), where

f ′
−(x) denotes the left derivative of f . Moreover, for the limit in (4.6) to be finite, the

numerator must necessarily approach zero, implying that f ′
−(x) = f ′

+(x). This ensures

the existence of the derivative f ′(x) for x > 0. A completely analogous argument shows

that f ′(x) also exists for x < 0.

Now, we will compute the second derivative. Fix 0 < ε < x, we apply (4.5) to

the points ε < y < x with h1 = h2 = hn = x−ε
n

, for each n ∈ N, so

Lf(y) = lim
n→∞

1

2hn

(
f(y − hn)− f(y)

hn

+
f(y + hn)− f(y)

hn

)
.

By Remark 3, the above limit is uniform in ε < y < x, so we may exchange the

limit and the integral below:∫ x

ε

Lf(y) dy = lim
n→∞

∫ x

ε

1

2hn

(
f(y − hn)− f(y)

hn

+
f(y + hn)− f(y)

hn

)
dy.

Observe that∫ x

ε

1

2hn

(
f(y − hn)− f(y)

hn

+
f(y + hn)− f(y)

hn

)
dy

=
1

2h2
n

(∫ x

ε

f(y − hn) dy −
∫ x

ε

f(y) dy +

∫ x

ε

f(y + hn) dy −
∫ x

ε

f(y) dy

)
=

1

2h2
n

(∫ x−hn

ε−hn

f(y) dy −
∫ x

ε

f(y) dy

)
+

1

2h2
n

(∫ x+hn

ε+hn

f(y) dy −
∫ x

ε

f(y) dy

)
=

1

2h2
n

(∫ ε

ε−hn

f(y) dy −
∫ x

x−hn

f(y) dy

)
+

1

2h2
n

(∫ x+hn

x

f(y) dy −
∫ ε+hn

ε

f(y) dy

)
.
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Define g(x) =
∫ x

0
f(y) dy for x > 0. Since f is differentiable on (0,∞), we have

that g is twice differentiable and g′′ = f ′ for x > 0. We can rewrite the above expression

in terms of g as follows:

1

2h2
n

(∫ x+hn

x

f(y) dy −
∫ x

x−hn

f(y) dy

)
− 1

2h2
n

(∫ ε+hn

ε

f(y) dy −
∫ ε

ε−hn

f(y) dy

)
=

1

2hn

(
g(x+ hn)− g(x)

hn

+
g(x− hn)− g(x)

hn

)
− 1

2hn

(
g(ε+ hn)− g(ε)

hn

+
g(ε− hn)− g(ε)

hn

)
,

and applying Taylor’s theorem (similarly as we did in Example 1), we obtain

lim
n→∞

1

2hn

(
g(x+ hn)− g(x)

hn

+
g(x− hn)− g(x)

hn

)
=

1

2
g′′(x) =

1

2
f ′(x),

and

lim
n→∞

1

2hn

(
g(ε+ hn)− g(ε)

hn

+
g(ε− hn)− g(ε)

hn

)
=

1

2
f ′(ε).

Thus, combing all these expressions, we have∫ x

ε

Lf(y) dy =
1

2
(f ′(x)− f ′(ε)),

and the Fundamental Theorem of Calculus implies that f ′ is differentiable and

Lf(x) =
1

2
f ′′(x),

for x > ε > 0. Since ε ∈ (0, x) was arbitrary, this identity extends to all x > 0. The proof

for x < 0 is analogous.

Now, to compute the generator at ∆, using that it is an absorbing state, we

obtain trivially

Lf(∆) = lim
t→0+

E∆[f(Wt)]− f(∆)

t
= 0.

Therefore, for f ∈ DW (L), we have by definition that Lf ∈ C∆
0 (R), and we have

compute that

Lf(x) = f ′′(x) for x ̸= 0 and Lf(∆) = 0.

Since Lf is continuous and ∆ is isolated, there exists a natural extension of f ′′

to 0 and ∆, given by

lim
x→0+

f ′′(x) = lim
x→0−

f ′′(x) = 2Lf(0),

f ′′(∆) = 2Lf(∆) = 0.

In particular, this extension will belong to C∆
0 (R). This completes the proof.
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Now, in order to fully characterize the general Brownian motion on R (with

boundary conditions at the origin), we must determine the domain of its infinitesimal

generator. Thus, by Theorem 3.9, we will determine all such processes. Naturally, we

expect that the domain of our general Brownian motion will have certain restrictions

at 0. The next lemma confirms our expectations by showing that the domain DW (L) is

determined by a condition in the neighborhood of x = 0. Moreover, we will see later

that this boundary condition depends on the behavior of the process when it hits 0.

Lemma 4.4. If f1 ∈ DW (L) and f2 ∈ C∆
0 (R) is such that f ′′

2 exists in R \ {0}, admits an

extension to an element of C∆
0 (R), and f1 = f2 in (−ε, ε), for some ε > 0, then f2 ∈ DW (L).

Proof. We need to show that the limit

lim
t→0+

Qtf2(x)− f2(x)

t
= lim

t→0+

Ex[f2(Wt)]− f2(x)

t

exists and it is uniform in x. We will consider two cases: |x| > ε/2 and |x| < ε/2.

Let |x| > ε/2. Since the process Wt is equal in distribution to Bt until the hitting

time of zero, we can compare the quotient in the generator limit for both process. Let

(B0
t )t≥0 be an absorbed Brownian motion at 0 starting from x, then∣∣∣∣Ex[f2(Wt)]− f2(x)

t
− Ex[f2(B

0
t )]− f2(x)

t

∣∣∣∣
=

∣∣∣∣Ex[f2(B
0
t )1{τ0>t}] + Ex[f2(Wt)1{τ0<t}]− f2(x)

t
− Ex[f2(B

0
t )]− f2(x)

t

∣∣∣∣
=

∣∣∣∣Ex[f2(Wt)1{τ0<t}]− Ex[f2(B
0
t )1{τ0<t}]

t

∣∣∣∣
≤ 2∥f2∥

Px(τ0 < t)

t
,

Now, by the proof of Corollary 2.19, the hitting time τ0 for a Brownian motion

is such that

Px(τ0 < t) = P0(τx < t) = 2P0(Bt ≥ x)

= 2

∫ ∞

x

1√
2πt

exp
(
− y2

2t

)
dy

= 2

∫ ∞

0

1√
2πt

exp
{
− (y − x)2

2t

}
dy = o(tn) as t → 0+, (4.7)

for any n ∈ N and |x| > ε, for all ε > 0. Therefore, choosing n = 1, we conclude that

the uniform limits

lim
t→0+

Ex[f2(Wt)]− f2(x)

t
, lim

t→0+

Ex[f2(B
0
t )]− f2(x)

t
.

must to be equal for |x| > ε/2 whenever they exist.
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Now, we have that f2 ∈ C0(R) and is twice differentiable in R \ {0} with second

derivative extending to an element of C∆
0 (R). Since we are considering only x away

from the origin, we get

lim
t→0+

Ex[f2(B
0
t )]− f2(x)

t
=

1

2
f ′′
2 (x),

finishing the argument.

It remains to prove that the same limit extends uniformly near to x = 0. Since

f1 = f2 on (−ε, ε), we have for −ε < x < ε∣∣∣∣Ex[f2(Wt)]− f2(x)

t
− Ex[f1(Wt)]− f1(x)

t

∣∣∣∣ = ∣∣∣∣Ex[f2(Wt)1{|Wt|>ε}]− Ex[f1(Wt)1{|Wt|>ε}

t

∣∣∣∣ .
Since the process started at −ε < x < ε, if |Wt| > ε, then W has already hit

ε or −ε by time t. Thus, setting Tε = τ{−ε,ε}, we have Tε < t. Observing also that

|f2(x)− f1(x)| ≤ max|x|≥ε |f2(x)− f1(x)| which is finite, we get∣∣∣∣Ex[f2(Wt)]− f2(x)

t
− Ex[f1(Wt)]− f1(x)

t

∣∣∣∣ ≤ max
|x|≥ε

|f2(x)− f1(x)|
Px(Tε < t)

t
.

We now estimate this hitting probability and aim to find a uniform upper bound.

Considering −ε/2 ≤ x ≤ ε/2, we have Px(Tε/2 ≤ Tε) = 1 by continuity of the paths (note

that this also includes the case when Tε = ∞ when the process is killed before hitting

−ε or ε). Now, recall that the shift operators θs removes the portion of a path before

time s and shift the remaining path at time zero. Thus, if W reaches −ε or ε before time

t, then the shifted process W ◦ θTε/2
also reaches −ε or ε before time t. That is,

1{Tε<t} ≤ 1{Tε<t} ◦ θTε/2
.

So an application of the strong Markov property yields

Px(Tε < t) ≤ Ex[1{Tε<t} ◦ θTε/2
]

= Ex[EWTε/2
[1{Tε<t}]]

= Ex[1{WTε/2=−ε/2}E−ε/2[1{Tε<t}]] + Ex[1{WTε/2=ε/2}Eε/2[1{Tε<t}]]

= Px(WTε/2
= −ε/2)P−ε/2(Tε < t) + Px(WTε/2

= ε/2)Pε/2(Tε < t)

≤ P−ε/2(Tε < t) + Pε/2(Tε < t).

Now, we compare this to the Brownian motion hitting time. Let T{0,ε} = inf{t ≥
0 : Wt ∈ {−ε, 0, ε}} and TB

{0,ε} = inf{t ≥ 0 : Bt ∈ {−ε, 0, ε}}, where (Bt)t≥0 is a standard

Brownian motion. Observe that

Pε/2(Tε < t) ≤ Pε/2(Tε < t, T{0,ε} < t)

≤ Pε/2(T{0,ε} < t)

= Pε/2(T
B
{0,ε} < t),
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using that Wt is equal in distribution to a Brownian motion in [0, T{0,ε}]. Similarly,

P−ε/2(Tε < t) ≤ P−ε/2(T
B
{0,ε} < t). Also, as we did in (4.7), we have

P−ε/2(T
B
{0,ε} < t) = Pε/2(T

B
{0,ε} < t) = o(tn) as t → 0+

for all n > 0.

So putting all this together, we get∣∣∣∣Ex[f2(Wt)]− f2(x)

t
− Ex[f1(Wt)]− f1(x)

t

∣∣∣∣
≤ max

x≥ε
|f2(x)− f1(x)|

P−ε/2(T
B
{0,ε} < t) + Pε/2(T

B
{0,ε} < t)

t

which goes to 0 independently of x, as t → 0+. Therefore, both expressions have the

same limit. Recalling that f1 ∈ DW (L), we obtain that

lim
t→0+

Ex[f2(Wt)]− f2(x)

t
= lim

t→0+

Ex[f1(Wt)]− f1(x)

t
=

1

2
f ′′
1 (x)

uniformly in |x| ≤ ε/2. This completes the proof.

From now on, we denote g(0+) = limx→0+ g(x) and g(0−) = limx→0− g(x), when

these limits exist. For f ∈ DW (L), we claim that

f ′(0+) = f ′
+(0) and f ′(0−) = f ′

−(0).

Indeed, let f ∈ DW (L). We have seen that f is twice differentiable on R \
{0}, and the second derivative f ′′ extends to an element of C∆

0 (R), in particular f ′′ is

bounded. Thus, for any sequence cn ↓ 0, we have

|f ′(cn)− f ′(cm)| =
∣∣∣∣∫ cn

cm

f ′′(x) dx

∣∣∣∣ ≤ ∥f ′′∥|cn − cm| −→ 0,

for n,m large enough. This proves that the limit limc→0+ f ′(c) exists.

Now, for any h > 0, we have that f is continuous on [0, h] and differentiable on

(0, h), so using the Mean Value Theorem, we can found a c = c(h) ∈ (0, h) such that

f ′(c) =
f(h)− f(0)

h
.

In particular, since c(h) → 0 as h → 0, it follows that

f ′
+(0) = lim

h→0+

f(h)− f(0)

h
= lim

c→0+
f ′(c) = f ′(0+), (4.8)

as desired. The other limit can be computed similarly.

We will deduce the expression for the domain DW (L) of a general Brownian

motion on R from a expression in terms of some measures on (−∞, 0) and (0,∞). We

start with the following lemma.
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Lemma 4.5. There exist constants c1, c−2 , c
+
2 , c3 ≥ 0 and measures ν−(dx) and ν+(dx) on

(−∞, 0) and (0,∞), respectively, satisfying

c1 + c−2 + c+2 + c3 +

∫ 0

−∞
(1 ∧ −x) ν−(dx) +

∫ ∞

0

(1 ∧ x) ν+(dx) = 1, (4.9)

so that f belongs to DW (L) if and only if: f belongs to C∆
0 (R), it is twice differentiable in

R \ {0} with second derivative extending to an element of C∆
0 (R), and the equation

c1f(0) + c−2 f
′(0−)− c+2 f

′(0+) +
c3
2
f ′′(0+)

=

∫
(−∞,0)

(f(x)− f(0)) ν−(dx) +

∫
(0,∞)

(f(x)− f(0)) ν+(dx) (4.10)

holds.

To prove the previous lemma we need the next result concerning weak conver-

gence of measures.

Proposition 4.6. Let (µε)ε>0 be a family of measures on (0,∞) such that µε((0,∞)) ≤ 1

for all ε > 0, and let C[0,∞] be the space of continuous functions on [0,∞]. Then, there

exist a subsequence εn ↘ 0 and a measure µ on [0,∞] such that

lim
n→∞

∫
(0,∞)

f(x)µεn(dx) =

∫
[0,∞]

f(x)µ(dx), (4.11)

for every f ∈ C[0,∞].

Proof of Proposition 4.6. Considering Alexandroff compactification, [0,∞] is compact,

so the space C[0,∞] has a countable dense subset in the supremum norm, which we

denote by {fk}∞k=1. We will show first that there exists a subsequence εn ↘ 0 such that

the limit

lim
n→∞

∫
(0,∞)

fk(x)µεn(dx)

exists, for all k ∈ N. We will proceed via a diagonal argument. Letting k = 1, we have∫
(0,∞)

f1(x)µε(dx) ≤ ∥f1∥µε((0,∞)) ≤ ∥f1∥,

for all ε > 0. Thus, we can find a sequence ε1n ↘ 0 such that
∫
(0,∞)

f1(x)µε1n
(dx) con-

verges as n → ∞. Also, for k = 2, we have∫
(0,∞)

f2(x)µε1n
(dx) ≤ ∥f2∥,

for all ε1n > 0, then we can extract a subsequence (ε2n) of (ε1n) such that
∫∞
0

f2(x)µε2n
(dx)

converges as n → ∞ with ε2n ↘ 0. Applying this successively, we will have found for

each k a sequence (εkn) ⊆ (εk−1
n ) ↘ 0 such that

∫∞
0

fk(x)µεkn
(dx) converges as n → ∞.



33

Thus, fixing k and taking the diagonal sequence εn = εnn, we obtain∣∣∣∣∫
(0,∞)

fk(x)µεnn(dx)−
∫
(0,∞)

fk(x)µεkn
(dx)

∣∣∣∣ −→ 0,

as n → ∞, since for n sufficiently large, we have (εnn) ⊆ (εkn) and the second integral

converges. This completes the diagonal argument.

Next, we can extend this limit for all f ∈ C[0,∞] using the density of {fk}∞k=1.

In fact, for every function f ∈ C[0,∞], there exists a subsequence (fkn)n of {fk}∞k=1 such

that fkn −→ f as n → ∞ in the supremum norm. Then, for all ε > 0, we can choose n

large enough such that ∥fkn − f∥∞ < ε. Hence,∣∣∣∣∫
(0,∞)

f(x)µεn(dx)−
∫
(0,∞)

fkn(x)µεn(dx)

∣∣∣∣ ≤ ∥fkn − f∥∞ < ε,

and the limit limn→∞
∫∞
0

f(x)µεn(dx) exists for every f ∈ C[0,∞], for the same sequence

εn ↘ 0.

Now, we may define the operator C[0,∞] ∋ f 7→ limn→∞
∫∞
0

f(x)µεn(dx),

which is positive linear. Also, since C[0,∞] consists of bounded continuous functions

on a compact space, Riesz Representation Theorem ensures that there exists a measure

µ(dx) on [0,∞] such that

lim
n→∞

∫
(0,∞)

f(x)µεn(dx) =

∫
[0,∞]

f(x)µ(dx),

for all f ∈ C[0,∞], which completes the proof.

Remark 5. Note that the same result holds when considering a family (µε)ε>0 of measures

on (−∞, 0) with µε((−∞, 0)) ≤ 1, for all ε > 0, and the space C[−∞, 0].

Now, we come back to the proof of the Lemma 4.5.

Proof of Lemma 4.5. First, recall that T = inf{t > 0 : Wt ̸= 0} is exponentially dis-

tributed with parameter λ ∈ [0,∞] under P0. We will split the proof into three cases:

λ = 0, 0 < λ < ∞, and λ = ∞.

Case λ = 0:

Here, T = ∞ a.s. and 0 is a trap, so the process Wt must coincide with the

absorbed Brownian motion at 0. Also, since 0 is absorbing, we have

Lf(0) = lim
t→0+

E0[f(Wt)]− f(0)

t
= 0,

for any f ∈ DW (L). Thus, f ′′(0−) = f ′′(0+) = 0, and choosing c1 = c−2 = c+2 = 0, c3 = 1,

and ν− = ν+ = 0, the lemma holds trivially.
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Case 0 < λ < ∞:

We will show that 1
2
f ′′(0+) = −λf(0) is the boundary condition for f ∈ DW (L).

Recall from Proposition 3.17 that for exponential holding points, the process leaves 0

jumping to the cemetery, so for f ∈ C∆
0 (R), we get

E0[f(Wt)] = E0[f(Wt)1{T<t}] + E0[f(Wt)1{T>t}]

= E0[f(∆)1{T<t}] + E0[f(0)1{T>t}]

= f(0)P0(T > t)

= f(0) exp(−λt).

Thus, for f ∈ DW (L),

Lf(0) = lim
t→0+

E0[f(Wt)]− f(0)

t
= f(0) lim

t→0+

exp(−λt)− 1

t
= −λf(0),

which implies that 1
2
f ′′(0+) = −λf(0), as desired. With this boundary condition, it is

enough to choose c1 =
λ

1+λ
, c3 =

1
1+λ

, c−2 = c+2 = 0, and ν− = ν+ = 0 to obtain the result.

Case λ = ∞.

In this situation, T = 0 a.s., so the process leaves 0 at once, then 0 is not a trap,

so we can compute the generator at x = 0 via the Dynkin formula (see Theorem 3.18).

Thus, let A = (−ε, ε) with ε ↘ 0. Starting from 0, W exits A at −ε, ε or ∆. Setting

Tε = τ−ε ∧ τε ∧ τ∆, the Dynkin formula becomes

Lf(0) = lim
ε↘0

E0[f(WTε)]− f(0)

E0[Tε]
,

for f ∈ DW (L). Note that

E0[f(WTε)]

E0[Tε]
=

∫
1

E0[Tε]
f(WTε) dP0

=

∫
R∪∆

f(x)
1

E0[Tε]
P0(WTε ∈ dx) =

∫
R
f(x)

1

E0[Tε]
P0(WTε ∈ dx),

where in the last equality we used that f vanishes at ∆.

Consider the finite measure νε(dx) =
1

E0[Tε]
P0(WTε ∈ dx) on R ∪ {∆}. Noticing

that νε(R ∪ {∆}) = 1
E0[Tε]

, we can express the generator in terms of νε via

Lf(0) = lim
ε↘0

{[∫
R
(f(x)− f(0)) νε(dx)

]
− f(0)νε(∆)

}
. (4.12)

In order to obtain our normalized constants, let

Kε = 1 + νε(∆) +

∫ 0

−∞
(1 ∧ −x) νε(dx) +

∫ ∞

0

(1 ∧ x) νε(dx).
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Note that 1 ≤ Kε < ∞, so (4.12) implies

lim
ε↘0

νε(∆)

Kε

f(0) +
Lf(0)

Kε

−
∫
R
(f(x)− f(0))

νε(dx)

Kε

= 0. (4.13)

To construct our desired measures, we now investigate some weak measure limits (in

the sense of (4.11)). Consider the measures

µ−
ε (A) =

∫
A

(1 ∧ −x)
νε(dx)

Kε

on (−∞, 0) and

µ+
ε (A) =

∫
A

(1 ∧ x)
νε(dx)

Kε

on (0,∞).

Observe that µ+
ε (dx) < 1 for all ε > 0, so Proposition 4.6 assures that there is a

measure µ+(dx) on [0,∞] and a subsequence εn ↘ 0 such that

lim
n→∞

∫
(0,∞)

f(x)µ+
εn(dx) =

∫
[0,∞]

f(x)µ+(dx), (4.14)

for all f ∈ C[0,∞]. In view of Remark 5, applying the same argument to µ−
εn and passing

to a further subsequence if necessary, we get a measure µ−(dx) on [−∞, 0] such that

lim
n→∞

∫
(−∞,0)

f(x)µ−
εn(dx) =

∫
[−∞,0]

f(x)µ−(dx),

for every f ∈ C[−∞, 0].

We are ready now to return to the equation (4.13). Note that 0 ≤ νεn (∆)
Kεn

≤ 1

and 0 < 1
Kεn

≤ 1, for all n ∈ N, so passing to a subsequence once more if required, we

may assume

lim
n→∞

νεn(∆)

Kεn

= p1 and lim
n→∞

1

Kεn

= p2,

with 0 ≤ p1, p2 ≤ 1.

Let f ∈ DW (L). Since f ∈ C∆
0 (R), we have that the function f(x)−f(0)

1∧x is con-

tinuous on (0,∞) and limx→∞
f(x)−f(0)

1∧x = −f(0) < ∞. Also, we know that f is differ-

entiable, so limx→0+
f(x)−f(0)

1∧x = limx→0+
f(x)−f(0)

x
= f ′(0+) < ∞. In that way, we can

extend f(x)−f(0)
1∧x continuously to [0,∞].

Thus, using equation (4.14) with the function f(x)−f(0)
1∧x ∈ C[0,∞] and observing

that 1∧x is the Radon-Nikodym derivative of µ+
εn(dx) with respect to 1

Kεn
νεn(dx), we get∫

[0,∞]

f(x)− f(0)

1 ∧ x
µ+(dx) = lim

n→∞

∫
(0,∞)

f(x)− f(0)

1 ∧ x
µ+
εn(dx)

= lim
n→∞

∫
(0,∞)

f(x)− f(0)

1 ∧ x
(1 ∧ x)

1

Kεn

νεn(dx)

= lim
n→∞

∫
(0,∞)

(f(x)− f(0))
1

Kεn

νεn(dx)

= lim
n→∞

∫
[0,∞)

(f(x)− f(0))
1

Kεn

νεn(dx),
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where in the last equation we simply used that f(x)− f(0) vanishes at 0, recalling that
1

Kεn
νεn(dx) is a measure on R ∪∆.

Similarly, f(x)−f(0)
1∧−x

is continuous on (−∞, 0), limx→∞
f(x)−f(0)

1∧−x
= −f(0) < ∞,

and limx→0−
f(x)−f(0)

1∧−x
= limx→0−

f(x)−f(0)
−x

= −f ′(0−) < ∞. Thus,∫
[−∞,0]

f(x)− f(0)

1 ∧ −x
µ−(dx) = lim

n→∞

∫
(−∞,0)

(f(x)− f(0))
1

Kεn

νεn(dx).

Substituting these limits into equation (4.13), we obtain

p1f(0) + p2Lf(0)−
∫
[−∞,0]

f(x)− f(0)

1 ∧ −x
µ−(dx)−

∫
[0,∞]

f(x)− f(0)

1 ∧ x
µ+(dx) = 0.

Also, considering the limits of f(x)−f(0)
1∧−x

and f(x)−f(0)
1∧x , we get

(p1 + µ−(−∞) + µ+(∞))f(0) + µ−(0)f ′(0−)− µ+(0)f ′(0+) + p2Lf(0)

=

∫
(−∞,0)

f(x)− f(0)

1 ∧ −x
µ−(dx) +

∫
(0,∞)

f(x)− f(0)

1 ∧ x
µ+(dx).

Defining the measures ν−(A) =
∫
A

1
1∧−x

µ−(dx) on (−∞, 0), ν+(A) =
∫
A

1
1∧xµ

+(dx)

on (0,∞), and setting c1 = p1 + µ−(−∞) + µ+(∞), c−2 = µ−(0), c+2 = µ+(0), c3 = p2

yields

c1f(0) + c−2 f
′(0−)− c+2 f

′(0+) +
c3
2
f ′′(0+)

=

∫
(−∞,0)

(f(x)− f(0)) ν−(dx) +

∫
(0,∞)

(f(x)− f(0)) ν+(dx),

which is our result missing only to check (4.9). To see this, note that integrating against

the constant function equals to 1, we have µ−([−∞, 0]) = limn→∞ µ−
εn((−∞, 0)) and

µ+([0,∞]) = limn→∞ µ+
εn((0,∞)). Thus,

p1 + p2 + µ−([−∞, 0]) + µ+([0,∞])

= lim
n→∞

νεn(∆)

Kεn

+
1

Kεn

+ µ−
εn((−∞, 0)) + µ+

εn((0,∞))

= lim
n→∞

νεn(∆) + 1 +
∫ 0

−∞(1 ∧ −x) νεn(dx) +
∫∞
0
(1 ∧ x) νεn(dx)

Kεn

= 1,

and we finally get

c1 + c−2 + c+2 + c3 +

∫ 0

−∞
(1 ∧ −x) ν−(dx)

∫ ∞

0

(1 ∧ x) ν+(dx)

= c1 + c−2 + c+2 + c3 + µ−((−∞, 0)) + µ+((0,∞))

= p1 + p2 + µ−([−∞, 0]) + µ+([0,∞]) = 1.

Now, we will show the converse. Let D ′ be the set of functions satisfying equa-

tion (4.10) for f belonging to C∆
0 (R) and having second derivatives in R \ {0} which
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admit an extension to an element of C∆
0 (R). We will show that D ′ ⊆ DW (L). Indeed,

consider the following equation on R \ {0}

βf − 1

2
f ′′ = g, (4.15)

for β > 0 and g ∈ C0(R). This equation has a solution in DW (L). In fact, by Proposi-

tion 3.8 we have that Rβg ∈ DW (L) for g ∈ C0(R). Also, the operator Rβ is the inverse

of β − L. Thus, taking f = Rβg, we have

βf − 1

2
f ′′ = (β − L)f = g

on R \ {0}, as desired.

Now, let f ∈ D ′. Observing that f ∈ C0(R), f ′′ ∈ C0(−∞, 0), C0(0,∞) and

f ′′(0+) = f ′′(0−), there will exist a function g ∈ C0(R) such that (4.15) holds for that

f . Assuming that f does not belong to DW (L), since we proved that DW (L) ⊆ D ′, there

will exist two functions f1, f2 ∈ D ′ satisfying the same equation. Thus,

β(f1 − f2)−
1

2
(f ′′

1 − f ′′
2 ) = 0, (4.16)

for x ̸= 0. But we know that the solution for (4.16) is given by

f1(x)− f2(x) = d1 exp(−
√
2βx) + d2 exp(

√
2βx),

for some constants d1, d2 ∈ R. However, f1 − f2 also goes to 0 at infinity, then d1 = 0 for

x < 0 and d2 = 0 for x > 0. Thus,

f1(x)− f2(x) =

d2 exp(−
√
2βx), if x > 0;

d1 exp(
√
2βx), if x < 0.

Moreover, the continuity of f1, f2 forces d1 = d2 = d and f1(0)− f2(0) = d. Also,

d ̸= 0 because f1, f2 are supposed to be different.

Since f1, f2 ∈ D ′, we get

c1(f1(0)− f2(0)) + c−2 (f
′
1(0−)− f ′

2(0−))− c+2 (f
′
1(0+)− f ′

2(0+)) +
1

2
c3(f

′′
1 (0+)− f ′′

2 (0+))

=

∫ 0

−∞
(f1(x)− f2(x))− (f1(0)− f2(0)) ν

−(dx)

+

∫ ∞

0

(f1(x)− f2(x))− (f1(0)− f2(0)) ν
+(dx).

Computing the limits at 0 for the side derivatives of f1 − f2 and dividing both

sides by d, we obtain

c1 +
√

2β(c−2 + c+2 ) + c3β

=

∫ 0

−∞
(exp(

√
2βx)− 1) ν−(dx) +

∫ ∞

0

(exp(−
√
2βx)− 1) ν+(dx),
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which is a contradiction, since both integrands are non positive whereas c1, c−2 , c
+
2 , c3 ≥

0. Moreover, these constants and measures can not be 0 at the same time, otherwise the

constants would have to sum 1. Therefore, f ∈ DW (L) and we can conclude.

We are now ready to determine the domain of the infinitesimal generator for

any general Brownian motion on R.

Theorem 4.7. For every general Brownian motion W on R with boundary conditions at

the origin, its infinitesimal generator is given by

Lf(x) =
1

2
f ′′(x) for x ̸= 0 and Lf(0) =

1

2
f ′′(0−) =

1

2
f ′′(0+),

with domain

DW (L) = {f ∈ C∆
0 (R) : Lf ∈ C∆

0 (R), c1f(0) + c−2 f
′(0−)− c+2 f

′(0+) +
1

2
c3f

′′(0+) = 0},

for some constants c1, c−2 , c
+
2 , c3 ≥ 0 with c1 + c−2 + c+2 + c3 = 1, and c1 ̸= 1.

Remark 6. We observe that c1 ̸= 1, otherwise the domain’s equation simplifies to f(0) = 0,

but this set of functions does not define a dense subset, so it cannot be a domain of a

generator.

Proof. By Lemma 4.5, it suffices to prove that ν− = ν+ = 0 what we really obtained for

0 ≤ λ < ∞. Arguing by contradiction, suppose that ν−(−∞,−ε), ν+(ε,∞) > 0 for some

ε > 0. Then, choosing any f1 ∈ DW (L), we can slightly modify it to obtain f2 = f1 on

[−ε, ε], but f2(x) < f1(x) for |x| > ε so that f2 still belongs to C∆
0 (R), f ′′

2 exists in R \ {0}
and can be extended to an element of C∆

0 (R). Thus, according to Lemma 4.4, we have

f2 ∈ DW (L). However, since f1, f2 and its derivatives coincide at 0, Lemma 4.5 yields∫
(−∞,0)

(f1(x)− f2(x)) ν
−(dx) +

∫
(0,∞)

(f1(x)− f2(x)) ν
+(dx) = 0

⇒
∫
(−∞,−ε)

(f1(x)− f2(x)) ν
−(dx) = −

∫
(ε,∞)

(f1(x)− f2(x)) ν
+(dx).

Since both integrand are positive, this implies that∫
(−∞,0)

(f1(x)− f2(x)) ν
−(dx) =

∫
(0,∞)

(f1(x)− f2(x)) ν
+(dx) = 0

⇒ (f1 − f2)1{(−∞,ε)} = 0 ν−-a.e. and (f1 − f2)1{(ε,∞)} = 0 ν+-a.e.,

which is not possible since both f1− f2 and ν− are positive on (−∞, ε), and both f1− f2

and ν+ are positive on (ε,∞).

Therefore, ν−(−∞,−ε) = ν+(ε,∞) = 0, for all ε > 0. Letting ε ↘ 0 we get

ν−(−∞, 0) = ν+(0,∞) = 0, and the theorem is proved.
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Consider a general Brownian motion on R such that its constants c1, c
−
2 , c

+
2 , c3

are positive. Dividing the domain’s equation by c−2 + c+2 , we get

c1
c−2 + c+2

f(0) +
c−2

c−2 + c+2
f ′(0−)− c+2

c−2 + c+2
f ′(0+) +

c3
2(c−2 + c+2 )

f ′′(0+) = 0 .

Setting γ = c1
c−2 +c+2

, β =
c+2

c−2 +c+2
, c = c3

2(c−2 +c+2 )
, we have

cf ′′(0+) = βf ′(0+)− (1− β)f ′(0−)− γf(0),

which corresponds exactly to the domain’s boundary condition of the Brownian Motion

skew at 0, sticky at 0 and killed elastically at 0, given without proof in Borodin’s book [1,

page 127, Section 13, Appendix 1]. Hence, we have proved that the general Brownian

motion on R with boundary conditions at the origin coincides with a Skew Sticky Killed

Brownian Motion at 0.
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Chapter 5

The most general BM on

(−∞, 0−] ∪ [0+,∞)

We will now consider our state space E = (−∞, 0−] ∪ [0+,∞). That is, we

split the line R into two disjoint half-lines, the positive and the negative one, with 0

corresponding to both 0− and 0+, but seen as distinct points. Also, each half-line has

the topology of the usual one. As in the previous chapter, the set C0(E) coincides with

the subspace of continuous functions f : E → R having zero limit as x → ±∞. Also, we

will add to E the cemetery ∆, and consider C∆
0 (E) the set of functions in C0(E) with

f(∆) = 0. Note that ∆ is an isolated point.

Definition 5.1. A stochastic process (Wt)t≥0 on E = (−∞, 0−]∪[0+,∞) is called a general

Brownian motion on E with boundary conditions at the origin if it satisfies the following

properties:

• (Wt)t≥0 is a strong Markov process with values in E ∪ {∆} and it has càdlàg trajec-

tories.

• The sample paths of (Wt)t≥0 are continuous on the set
{
t ≥ 0 : lims→t− Ws or Wt /∈

{0+, 0−,∆}
}

.

• The point ∆, called the cemetery, is an absorbing state.

• Let τ0+ = inf{t ≥ 0 : Wt = 0+} be the hitting time of 0+. For every initial point

x ∈ [0+,∞), the law of the process (Wt∧τ0+)t coincides with the law of a standard

Brownian motion on [0,∞) absorbed at 0, where we are identifying 0+ with 0. Simi-

larly, for every starting point x ∈ (−∞, 0−], the law of (Wt∧τ0−)t coincides with that

of a Brownian motion on (−∞, 0] absorbed at 0, where we are identifying 0− with 0

and τ0− = inf{t ≥ 0 : Wt = 0−} is the hitting time of 0−.

41
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Since each half-line (−∞, 0−] and [0+,∞) can be identified with the standard

negative and positive half-lines, respectively, some results from Chapter 4 apply directly

to this setting. We will state them now.

First, the hitting time of 0 for Brownian motion is finite almost surely, yet ∆ is

an absorbing point, then Wt cannot reach ∆ before 0− or 0+. Also, the Proposition 3.15

says us that T+ = inf{t > 0 : Wt ̸= 0+} and T− = inf{t > 0 : Wt ̸= 0+} are exponentially

distributed under the probabilities P0+, P0−, with parameters λ+ and λ−, respectively.

We distinguish the following cases depending on the value of λ+. The situation for λ−

is analogous.

• Case 1: 0 < λ+ < ∞

In this case, by Proposition 3.17, the process leaves 0+ via a jump, and the second

condition in Definition 5.1 enables W only to jump to 0− or to ∆. Hence, at time

T+, the process is killed or arises on the opposite half-line.

• Case 2: λ+ = ∞

Here, P0+(T+ = 0) = 1 and the process leaves 0+ at once. Since the process starts

at 0+ under P0+ and the process is càdlàg, thus right continuous, the process

cannot go immediately from 0+ to ∆ or 0−, since this would be a jump and the

process would be continuous to the left.

• Case 3: λ+ = 0

Here, we have T+ = ∞ a.s. and 0+ is an absorbing point.

Moreover, by the observations before Proposition 4.2, we can give the same

proof to show that the general Brownian motion on E is a Feller process (considering

for example x ∈ [0,∞) and checking if the process has already left [0,∞) or not). The

reader could also notice that Proposition 4.3 was proved considering x ∈ [0,∞) or

x ∈ (−∞, 0] separately and was based mostly in analytic arguments, so it adapts easily

to Brownian motion on the state space E = (−∞, 0−] ∪ [0+,∞). Indeed, in this case,

we can say even more.

Proposition 5.2. Let f ∈ DW (L), the domain of a general Brownian motion on E with

boundary conditions at the origin. Then, f ′′ ∈ C∆
0 (E) and infinitesimal generator values

Lf(x) =
1

2
f ′′(x), (5.1)

for x ∈ E. Also, Lf(∆) = 0.
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Proof. In view of our previous observations, it remains only to prove that

Lf(0+) =
1

2
f ′′(0+), Lf(0−) =

1

2
f ′′(0−)

for f ∈ DW (L), where the second and first derivatives at 0+ and 0− are interpreted as

the right-hand derivative and left-hand derivatives, respectively.

To prove that, we give a completely analytic argument. First, we identify

[0+,∞] with the interval [0,∞], and apply the mean value theorem to obtain

f ′
+(0) = lim

h↘0

f(h)− f(0)

h
= lim

c↘0
f ′(c),

as was done in the context of (4.8) in Chapter 4.

Returning to the notation [0+,∞], we have

f ′(0+) = lim
h↘0+

f(h)− f(0+)

h
= lim

c↘0+
f ′(c),

which shows that f ′ is continuous at 0+.

We now apply the same reasoning again. We have that f ′ is continuous on [0, h]

and differentiable on (0, h), so we can find c = c(h) ∈ (0, h) such that

f ′′(c) =
f ′(h)− f ′(0)

h
.

We already know that limc↘0 f
′′(c) = 2Lf(0), so we deduce that

f ′′
+(0) = lim

h↘0

f ′(h)− f ′(0)

h
= 2Lf(0),

that is,

f ′′(0+) = lim
h↘0+

f ′(h)− f ′(0+)

h
= 2Lf(0+).

An identical argument applied to the interval (−∞, 0−] shows similarly that

f ′′(0−) = 2Lf(0−).

We now set up that for a function to belong to the domain DW (L), it is sufficient

to know its behavior in a neighborhood of 0+ and 0−. The proof is almost identical to

that of Lemma 4.4, and is therefore omitted.

Lemma 5.3. If f1 ∈ DW (L), f2, f ′′
2 ∈ C∆

0 (E), and f1 = f2 in (−ε, 0−] ∪ [0+, ε), for some

ε > 0, then f2 ∈ DW (L).

To obtain the domain’s boundary conditions at 0+ and 0−, we proceed similarly

as we did for the general Brownian Motion on R, expressing them first in terms of

measures on (−∞, 0−] and [0+,∞). The proof is close to the one for general Brownian

motion on R, but we do some suitable adaptations.
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Lemma 5.4. There exists nonnegative constants a+, a−, c+i , c
−
i , i = 1, 2, 3 and measures ν+

j

on (0+,∞), ν−
j on (−∞, 0−), j = 1, 2 for which

c+1 + a+ + c+2 + c+3 +

∫
(0+,∞)

(1 ∧ x) ν+
1 (dx) + ν−

1 ((−∞, 0−)) = 1, (5.2)

c−1 + a− + c−2 + c−3 +

∫
(−∞,0−)

(1 ∧ −x) ν−
2 (dx) + ν+

2 ((0+,∞)) = 1, (5.3)

such that f belongs to DW (L) if and only if f, f ′′ ∈ C∆
0 (E), and it satisfies

c+1 f(0+) + a+(f(0+)− f(0−))− c+2 f
′(0+) +

c+3
2
f ′′(0+)

=

∫
(0+,∞)

(f(x)− f(0+)) ν+
1 (dx) +

∫
(−∞,0−)

(f(x)− f(0+)) ν−
1 (dx), (5.4)

and

c−1 f(0−) + a−(f(0−)− f(0+)) + c−2 f
′(0−) +

c−3
2
f ′′(0−)

=

∫
(0+,∞)

(f(x)− f(0−)) ν+
2 (dx) +

∫
(−∞,0−)

(f(x)− f(0−)) ν−
2 (dx). (5.5)

Proof. Recall from Proposition 3.15 that T+ = inf{t > 0 : Wt ̸= 0+} and T− = inf{t >
0 : Wt ̸= 0−} are exponentially distributed with parameters λ+ and λ−, under the

probabilities P0+, P0−, respectively. We examine the following cases, supposing first

that f ∈ DW (L).

Case λ+ = 0 or λ− = 0.

If λ+ = 0, then 0+ is an absorbing point, so f ′′(0+) = Lf(0+) = 0, and we may

choose c+1 = a+ = c+2 = 0, c+3 = 1, and ν−
1 = ν+

1 = 0. The case λ− = 0 is analogous.

Case 0 < λ+ < ∞ or 0 < λ− < ∞:

Again we will consider only 0 < λ+ < ∞. In this case, the process waits an

exponential time at 0+, then it jumps to 0− or ∆. In particular, 0+ is not a trap under

P0+, so we may apply Theorem 3.18.

Let A = [0+, ε) with ε ↘ 0. Starting from 0+, the process exits A precisely

when it jumps from 0+ to the points 0− or ∆. Thus,

Lf(0+) = lim
ε↘0

E0+[f(WT+)]− f(0+)

E0+[T+]

= λ+[f(0−)P0+(WT+ = 0−) + f(∆)P0+(WT+ = ∆)− f(0+)].

Recalling that f vanishes at ∆, we rewrite the equation as follows

Lf(0+) = λ+P0+(WT+ = 0−)(f(0−)− f(0+))− λ+(1− P0+(WT+ = 0−))f(0+)

= λ+P0+(WT+ = 0−)(f(0−)− f(0+))− λ+P0+(WT+ = ∆)f(0+).
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Since Lf(0+) = 1
2
f ′′(0+), we get

1

2
f ′′(0+) + λ+P0+(WT+ = ∆)f(0+) + λ+P0+(WT+ = 0−)(f(0+)− f(0−)) = 0. (5.6)

Setting c+1 =
λ+P0+(WT+

=∆)

1+λ+
, a+ =

λ+P0+(WT+
=0−)

1+λ+
, c+2 = 0, c+3 = 1

1+λ+
and ν−

1 =

ν+
1 = 0, the lemma follows.

Note also that we can see the equation (5.6) as

1

2
f ′′(0+)

= − 1

E0+[T+]
[P0+(WT+ = ∆)(f(0+)− f(∆)) + P0+(WT+ = 0−)(f(0+)− f(0−))].

Case λ+ = ∞ or λ− = ∞.

If λ+ = ∞, then the process leaves 0+ immediately, so we can apply Theo-

rem 3.18 again. Let A = [0+, ε) with ε ↘ 0. Starting from 0+, the process can leave A

only at ε,∆, 0−. Then considering Tε = τε ∧ τ∆ ∧ τ0−, by Dynkin Formula, we have

Lf(0+) = lim
ε↘0

E0+[f(WTε)]− f(0+)

E0+[Tε]
.

We rewrite this equation in terms of the pull-back measure νε(dx) =
1

E0+[Tε]
P0+(WTε ∈ dx) on E ∪∆. Thus,

Lf(0+) = lim
ε↘0

∫
E

(f(x)− f(0+)) νε(dx)− f(0+)νε(∆).

We consider Kε = 1 + νε(∆ ∪ (−∞, 0−]) +
∫
(0+,∞)

(1 ∧ x) νε(dx), so the above

equation implies

lim
ε↘0

νε(∆)

Kε

f(0+) +
Lf(0+)

Kε

−
∫
E

(f(x)− f(0+))
νε(dx)

Kε

= 0, (5.7)

since 1 ≤ Kε < ∞. We now look at the measures

µ+
ε (A) =

∫
A

(1 ∧ x)
νε(dx)

Kε

on (0+,∞) and

µ−
ε (A) =

νε(A)

Kε

on (−∞, 0−].

Identifying [0+,∞) with [0,∞) and noticing that µ+
ε ((0+,∞)) < 1, we use

Proposition 4.6 to obtain a sequence (εn)n and a measure µ+(dx) on [0+,∞] such that

lim
n→∞

∫
(0+,∞)

f(x)µ+
εn(dx) =

∫
[0+,∞]

f(x)µ+(dx),

for all f ∈ C[0+,∞]..
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Applying the same reasoning and Remark 5, we also obtain a measure µ−(dx)

on [−∞, 0−] such that, possibly after refining the sequence, we have

lim
n→∞

∫
(−∞,0−]

f(x)µ−
εn(dx) =

∫
[−∞,0−]

f(x)µ−(dx),

for all f ∈ C[−∞, 0−].

Now, we use these limits with appropriated functions. For f ∈ DW (L), the

function f(x)−f(0+)
1∧x is continuous on (0+,∞) and limx→∞

f(x)−f(0+)
1∧x = −f(0+) < ∞.

Also, limx↓0+
f(x)−f(0+)

1∧x = limx↓0+
f(x)−f(0+)

x
= f ′(0+) < ∞. Thus, taking its extension to

[0+,∞], we get∫
[0+,∞]

f(x)− f(0+)

1 ∧ x
µ+(dx) = lim

n→∞

∫
(0+,∞)

f(x)− f(0+)

1 ∧ x
µ+
εn(dx)

= lim
n→∞

∫
(0+,∞)

f(x)− f(0+)

1 ∧ x
(1 ∧ x)

1

Kεn

νεn(dx)

= lim
n→∞

∫
(0+,∞)

(f(x)− f(0+))
1

Kεn

νεn(dx)

= lim
n→∞

∫
[0+,∞)

(f(x)− f(0+))
1

Kεn

νεn(dx),

where we have used that 1∧ x is the Radon-Nikodym derivative of µ+
εn(dx) with respect

to 1
Kεn

νεn(dx).

Similarly, one can see that∫
[−∞,0−]

(f(x)− f(0+))µ−(dx) = lim
n→∞

∫
(−∞,0−]

(f(x)− f(0+))
1

Kεn

νεn(dx),

for all f ∈ DW (L).

Moreover, the sequences νεn (∆)
Kεn

and 1
Kεn

are bounded, so we may assume

lim
n→∞

νεn(∆)

Kεn

= p1 and lim
n→∞

1

Kεn

= p2,

passing to a further subsequence, if necessary. Applying all these limits, equation (5.7)

simplifies to

p1f(0+) + p2Lf(0+)

=

∫
[0+,∞]

f(x)− f(0+)

1 ∧ x
µ+(dx) +

∫
[−∞,0−]

(f(x)− f(0+))µ−(dx).

Hence,

(p1 + µ+(∞) + µ−(−∞))f(0+)

+ µ−(0−)(f(0+)− f(0−))− µ+(0+)f ′(0+) +
p2
2
f ′′(0+)

=

∫
(0+,∞)

f(x)− f(0+)

1 ∧ x
µ+(dx) +

∫
(−∞,0−)

(f(x)− f(0+))µ−(dx).
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Setting the constants

c+1 = p1 + µ+(∞) + µ−(−∞),

a+ = µ−(0−),

c+2 = µ+(0+),

c+3 = p2,

and considering the measures

ν+
1 (A) =

∫
A

1

1 ∧ x
µ+(dx) on (0+,∞),

ν−
1 (A) = µ−(A) on (−∞, 0−)

yields the desired equation (5.4). It is only missing to check (5.2). This follows from

p1 + p2 + µ−([−∞, 0−]) + µ+([0+,∞])

= lim
n→∞

νεn(∆)

Kεn

+
1

Kεn

+ µ−
εn((−∞, 0−]) + µ+

εn((0+,∞))

= lim
n→∞

νεn(∆) + 1 + ν−
εn((−∞, 0−]) +

∫
(0+,∞)

(1 ∧ x) νεn(dx)

Kεn

= 1.

For the case λ− = ∞, the argument is analogous. We just emphasizes that,

following this procedure, we will obtain an equation taking the form

p1f(0−) + p2Lf(0−)

=

∫
[−∞,0−]

f(x)− f(0−)

1 ∧ −x
µ−(dx) +

∫
[0+,∞]

(f(x)− f(0−))µ+(dx).

Now, since limx↑0−
f(x)−f(0−)

1∧−x
= limx↑0−

f(x)−f(0−)
−x

= −f ′(0−), this leads to the sign

change in the coefficient of c−2 , as compared to c+2 in the statement of the lemma.

For the converse, let D ′ be the set of functions f, f ′′ ∈ C∆
0 (E) satisfying the

equations (5.4) and (5.5). We want to show that D ′ ⊆ DW (L). In fact, as in the proof

of Lemma 4.5, we have that the equation

βf − 1

2
f ′′ = g, (5.8)

for β > 0 and g ∈ C0(E), has a solution in DW (L).

Let f ∈ D ′. Since f satisfy (5.8) for some β > 0 and g ∈ C0(E), and DW (L) ⊆
D ′, if f does not belong to DW (L), then there exist two different functions f1, f2 ∈ D ′

satisfying the same equation. Consequently,

β(f1 − f2)−
1

2
(f ′′

1 − f ′′
2 ) = 0 on E. (5.9)
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Now, considering the known solution of (5.9) and the fact that f1 − f2 decays

to 0 at infinity, we obtain

f1(x)− f2(x) =

d+ exp(−
√
2βx), if x ∈ [0+,∞);

d− exp(
√
2βx), if x ∈ (−∞, 0−],

for some d+, d− ∈ R, defining naturally exp(0+) = exp(0−) = 1. Also, since f1 and f2

are distinct, then d+, d− cannot be both equal to 0.

Since f1, f2 ∈ D ′, subtracting the equations (5.4) derived from f1 and f2, and

computing f1 − f2 and its derivatives at 0+ or 0− results in

c+1 d
+ + a+d+ − a+d− + c+2 d

+
√
2β + c+3 d

+β

=

∫
(0+,∞)

d+[exp(−
√

2βx)− 1] ν+
1 (dx) +

∫
(−∞,0−)

[d− exp(
√
2βx)− d+] ν−

1 (dx). (5.10)

Now, doing analogous computations using equation (5.5), we obtain

c−1 d
− + a−d− − a−d+ + c−2 d

−
√

2β + c−3 d
−β

=

∫
(0+,∞)

[d+ exp(−
√

2βx)− d−] ν+
2 (dx) +

∫
(−∞,0−)

d−[exp(
√

2βx)− 1] ν−
2 (dx). (5.11)

We will show that these equations cannot be both true. Indeed, suppose that

d+ = 0, then d− ̸= 0, so (5.11) simplifies to

c−1 + a− + c−2
√

2β + c−3 β

=

∫
(0+,∞)

(−1) ν+
2 (dx) +

∫
(−∞,0−)

(exp(
√

2βx)− 1) ν−
2 (dx),

since both integrands are negative, whereas the constants c−1 , a
−, c−2 , c

−
3 are all non-

negative, the only possibility for the equation to hold is that all these constants and

measures are simultaneously zero. However, (5.3) must hold, leading to a contradic-

tion.

For d− = 0 the argument is similar, so we can assume d+, d− ̸= 0. Without loss

of generality suppose d− ≤ d+, then (5.10) implies

c+1 + a+(1− d−

d+
) + c+2

√
2β + c+3 β

=

∫
(0+,∞)

[exp(−
√

2βx)− 1] ν+
1 (dx) +

∫
(−∞,0−)

[
d−

d+
exp(

√
2βx)− 1

]
ν−
1 (dx),

and we have the problem that the left-hand side of the equation is nonnegative, whereas

the right side is non positive, giving the same contradiction as before.

Therefore, f ∈ DW (L) and the proof is complete.
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Combining Lemmas 5.3 and 5.4, we found the domain of any general Brownian

motion on (−∞, 0−] ∪ [0+,∞) with boundary conditions at the origin.

Theorem 5.5. For each general Brownian motion on (−∞, 0−] ∪ [0+,∞) with boundary

conditions at the origin, there correspond nonnegative constants a+, a−, c+i , c
−
i , i = 1, 2, 3

such that the domain DW (L) consists of functions with f ′′ ∈ C∆
0 (E) that satisfy

c+1 f(0+) + a+(f(0+)− f(0−))− c+2 f
′(0+) +

c+3
2
f ′′(0+) = 0 and

c−1 f(0−) + a−(f(0−)− f(0+)) + c−2 f
′(0−) +

c−3
2
f ′′(0−) = 0.

Proof. We want to show that the measures ν+
j , ν−

j , for j = 1, 2, in Lemma 5.4 are

identically zero, what was true for λ+, λ− ̸= ∞. To illustrate the argument, let j = 1.

We assume that ν+
1 (ε,∞), ν−

1 (−∞,−ε) > 0, for some ε > 0. Take any f1 ∈ DW (L) and

adjust it to obtain f2 = f1 on [−ε, 0−] ∪ [0+, ε], but f2(x) < f1(x) for |x| > ε in such a

way that f2 also belongs to C∆
0 (E) and f ′′ ∈ C∆

0 (E). Thus, by Lemma 5.3, we also have

f2 ∈ DW (L) and Lemma 5.4 applies to both f1, f2. Since they agree in a neighborhood

of 0+ and 0−, equation (5.4) reduces to∫
(0+,∞)

(f1(x)− f2(x)) ν
+
1 (dx) +

∫
(−∞,0−)

(f1(x)− f2(x)) ν
−
1 (dx) = 0

which implies∫
(ε,∞)

(f1(x)− f2(x)) ν
+
1 (dx) = −

∫
(−∞,−ε)

(f1(x)− f2(x)) ν
−
1 (dx).

Since both integrands are positive, this leads to∫
(ε,∞)

(f1(x)− f2(x)) ν
+
1 (dx) =

∫
(−∞,−ε)

(f1(x)− f2(x)) ν
−
1 (dx) = 0

implying that

(f1 − f2)1{(ε,∞)} = 0 ν+
1 -a.e. and (f1 − f2)1{(−∞,−ε)} = 0 ν−

1 -a.e.,

which is not possible since both the measures and the functions are positive on each

of their respective intervals. Hence, ν+
1 (ε,∞) = ν−

1 (−∞,−ε) = 0. Since ε > 0 was

arbitrary, it follows that ν+
1 ≡ 0, ν−

1 ≡ 0, as desired.

Remark 7. Let us do some final observations. As consequence of [4, Proposition 1],

which characterizes the resolvent family of the Snapping Brownian Motion , it is pos-

sible to check the infinitesimal generator of the Snapping Brownian Motion on E =

(−∞, 0−] ∪ [0+,∞) is given by Lf = 1
2
f ′′ whose the domain D(L) consists of functions

such that f ′′ ∈ C∆
0 (E) and

f ′(0+) = f ′(0−) =
κ

2
(f(0+)− f(0−))
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where κ is a positive constant. This is a particular case of the class of processes obtained

in our Theorem 5.5, by taking a+ = a− = κ/2, c+2 = c−2 = 1 and c+1 = c−1 = c+3 = c−3 = 0.

The coefficients appearing in the definition of the DW (L) in the statement of

Theorem 5.5 can be interpreted as follows.

The coefficient c+1 (respectively c−1 ) is related to the rate at which the process

jumps from 0+ (respectively 0−) to the cemetery; that is, it is a rate of “killing”.

The coefficient a+ (respectively a−) is related to the rate at which the process

jumps from 0+ to 0− (respectively from 0− to 0+); that is, it is the rate at each the

process switch of half-line. The original Snapping Out Brownian Motion of Lejay is

symmetric, that is, a+ = a−. Here we allow the case a+ ̸= a−, which can be understood

as a Skew Snapping Out BM.

The coefficient c+2 (respectively c−2 ) is related to the reflection strength at 0+

(respectively 0−); and the coefficient c+3 (respectively c−3 ) is related to stickiness of the

process at 0+(respectively 0−). Note that the equations defining the domain of the

generator in the Theorem 5.5 are homogeneous, so they can be normalized. This is

important when thinking about the fact that stickiness at 0± and reflection at 0± are

not independent: they compete.

The discussion above, thus inspires us to call the class of processes obtained

in Theorem 5.5 of Skew Sticky Killed Snapping Out Brownian Motion, which is a new

Brownian type process and, as proved here, is the most general Brownian motion on

the state space (−∞, 0−] ∪ [0+,∞).
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