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Resumo

O presente trabalho teve o intuito de estudar os seguintes problemas: Lim-
ite Hidrodinâmico para o processo de exclusão simples simétrico (SSEP) com uma
membrana lenta e as Flutuações fora do equilı́brio para o SSEP com um elo lento.
Mais precisamente, o modelo em estudo do Limite Hidrodinâmico é o SSEP, no
toro d-dimensional, que possui uma membrana Λ cuja taxa de passagem é dada
por α/Nβ, α > 0, menor do que a taxa em outros elos. Devido à existência desta
membrana lenta, dependendo do regime do parâmetro que regula a lentidão desta
membrana, aparecem a nı́vel macroscópico condições de fronteira. Para β ∈ [0, 1),
a equação hidrodinâmica é dada pela equação de calor no toro contı́nuo, signifi-
cando que a membrana lenta não tem efeito no limite. Para β ∈ (1,∞], a equação
hidrodinâmica é dada pela equação de calor com condições de bordo de Neumann,
significando que a membrana divide o toro em duas regiões isoladas Λ and Λ{. E,
para o valor crı́tico β = 1, a equação hidrodinâmica é dada pela equação de calor
com condições de fronteira de Robin, relacionada com a lei de Fick. No caso das
Flutuações, o modelo em estudo é o SSEP unidimensional que possui um elo lento.
A grande dificuldade no trabalho das Flutuações, foi obter as estimativas precisas
de probabilidades de transição de passeios aleatórios de dimensão 1, quando ol-
hamos para a derivada discreta e de dimensão 2 quando olhamos para a função
correlação.

Palavras-chave: Sistema de Partı́culas, limite hidrodinâmico, flutuações, pro-
cesso de exclusão.



Abstract

The present work aims to study the following problems: The Hydrodynamic
Limit for the simple symmetric exclusion processes (SSEP) with a slow mem-
brane and the non-equilibrium fluctuations for the SSEP with a slow bond. more
precisely, the model in study of the Hydrodynamic Limit is the SSEP in the d-
dimensional torus, bonds crossing the membrane Λ have jump rate α/Nβ, α > 0,
lower than the rate in other bonds. Due to the existence of this slow membrane,
depending on the regime of the parameter that regulates the slowness of this mem-
brane, boundary conditions appear ate macroscopic level. For β ∈ [0, 1), the hydro-
dynamic equation is given by the usual heat equation on the continuous torus,
meaning that the slow membrane has no effect in the limit. For β ∈ (1,∞], the
hydrodynamic equation is the heat equation with Neumann boundary conditions,
meaning that the slow membrane divides the torus into two isolated regions Λ and
Λ{. And, for the critical value β = 1, the hydrodynamic equation is the heat equa-
tion with certain Robin boundary conditions related to the Fick’s Law. In the case
of Fluctuations, the model in study is the SSEP one-dimensional with a slow bond.
The main difficulty of this work is a precise estimate of transition probabilities
of random walks, in 1-d when looking at the discrete derivative and in 2-d when
looking at the correlation.

Keywords: Particle Systems, hydrodynamic limit, fluctuations, exclusion process.
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Chapter 1

Introduction

This thesis is focused on the development of two important contributions in the
area of scaling limits of interacting particle systems. The first result establishes
the hydrodynamic limit for a symmetric simple exclusion process (SSEP) on the
d-dimensional discrete torus TdN with a spatial non-homogeneity given by a slow
membrane. The slow membrane is defined here as the boundary of a smooth sim-
ple connected region Λ on the continuous d-dimensional torus Td. In this setting,
bonds crossing the membrane have jump rate α/Nβ and all other bonds have jump
rate one, where α > 0, β ∈ [0,∞], and N ∈ N is the scaling parameter. In the dif-
fusive scaling we prove that the hydrodynamic limit presents a dynamical phase
transition, that is, it depends on the regime of β. For β ∈ [0, 1), the hydrodynamic
equation is given by the usual heat equation on the continuous torus, meaning that
the slow membrane has no effect in the limit. For β ∈ (1,∞], the hydrodynamic
equation is the heat equation with Neumann boundary conditions, meaning that
the slow membrane ∂Λ divides Td into two isolated regions Λ and Λ{. And for the
critical value β = 1, the hydrodynamic equation is the heat equation with cer-
tain Robin boundary conditions related to the Fick’s Law. The second result is the
non-equilibrium fluctuations for the one-dimensional symmetric simple exclusion
process with a slow bond. This generalizes a result of [8, 10], which dealt with the
equilibrium fluctuations. The foundation stone of our proof is a precise estimate
on the correlations of the system. To obtain these estimates, we first deduce a spa-
tially discrete PDE for the covariance function and we relate it to the local times of
a random walk in a non-homogeneous environment via Duhamel’s principle. Pro-
jection techniques and coupling arguments reduce the analysis to the problem of
studying the local times of the classical random walk. We think that the method
developed here can be applied to a variety of models, and we provide a discussion
on this matter.

1



Chapter 2

Hydrodynamic Limit for the SSEP
with a slow membrane

2.1 Introduction
A central question of Statistical Mechanics is about how microscopic interac-

tions determine the macroscopic behavior of a given system. Under this guideline,
an entire area on scaling limits of interacting random particle systems has been
developed, see [18] and references therein.

In the last years, many attention has been given to scaling limits of (spatially)
non-homogeneous interacting systems, see for instance [12, 7] among many oth-
ers. Such an attention is quite natural due to the fact that a non-homogeneity may
represent vast physical situations, as impurities, changing of density in the media
etc. Among those interacting particles systems, processes of exclusion type have
special importance: they are, at same time, mathematically tractable and have a
physical interaction, leading to precise representation of many phenomena. Being
more precise, a random process is called of exclusion type if it has the hard-core
interaction, that is, at most one particle is allowed per site of a given graph. The
random evolution of the system (in the symmetric case) can be described as fol-
lows: to each edge of the given graph, a Poisson clock is associated, all of them
independent. At a ring time of some clock, the occupation values for the vertexes
of the corresponding edge are interchanged.

In [12], a quite broad setting for the one-dimensional symmetric exclusion pro-
cess (SEP) in non-homogeneous medium has been considered, being obtained its
hydrodynamic limit, that is, the law of large numbers for the time evolution of the
spatial density of particles. The hydrodynamic equation there was given by a PDE
related to a Krein-Feller operator. And in [6], the fluctuations for the same model
were obtained.

The scenario for the SEP in non-homogeneous medium in dimension d ≥ 2 up
to now is far less understood. In [25], a generalization of [12] to the d-dimensional
setting was reached. However, the definition of model there was very specific to
permit a reduction to the one-dimensional approach of [12].
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In [13], the hydrodynamic limit in the diffusive scaling for the following d-
dimensional simple symmetric exclusion process (SSEP) in non-homogeneous medi-
um was proved, where the term simple means that only jumps to nearest neigh-
bors are allowed. The underlying graph is the discrete d-dimensional torus, and
all bonds of the graph have rate one, except those laying over a (d−1)-dimensional
closed surface, which have rate given by N−1 times a constant depending on the
angle between the edge and the normal vector to the surface, where N is the scal-
ing parameter. The hydrodynamic equation obtained was given by a PDE related
to a d-dimensional Krein-Feller operator. Despite less broad in certain sense than
the setting of [25], the model in [13] cannot be approached by one-dimensional
techniques, being truly d-dimensional.

~ζ(u)

u

Λ

Λ{

N−1TdN

Figure 2.1: The region in gray represents Λ, and the white region represents its
complement Λ{. The grid represents N−1TdN , the discrete torus embedded on the
continuous torus Td. By ~ζ(u) we denote the normal exterior unitary vector to Λ at
the point u ∈ ∂Λ.

In the present paper, we consider a d-dimensional model close to the one in [13]
and related to the slow bond phase transition behavior of [7, 8, 9]. It is fixed a
(d − 1)-dimensional smooth surface ∂Λ in the continuous d-dimensional torus Td,
see Figure 2.1. Edges have rates equal to one, except those intersecting ∂Λ, which
have rate α/Nβ, where α > 0, β ∈ [0,∞] and N ∈ N is the scaling parameter.
Here we prove the hydrodynamic limit, which depends on the range of β, namely,
if β ∈ [0, 1), β = 1 or β ∈ (1,∞].

For β ∈ [0, 1), the hydrodynamic equation is given by the usual heat equation:
meaning that, in this regime, the slow bonds do not have any effect in the contin-
uum limit. For β ∈ (1,∞], the hydrodynamic equation is the heat equation with
the following Neumann boundary conditions over ∂Λ:

∂ρ(t, u+)

∂~ζ(u)
=
∂ρ(t, u−)

∂~ζ(u)
= 0, ∀ t ≥ 0, u ∈ ∂Λ,

where ~ζ is the normal unitary vector to ∂Λ. This means that, in this regime, the
slow bonds are so strong that there no flux of mass through ∂Λ in the continuum,
despite the existence of flux of particles in the discrete for each N ∈ N. For the

3



critical value β = 1, the hydrodynamic equation is given by the heat equation with
the following Robin boundary conditions:

∂ρ(t, u+)

∂~ζ(u)
=
∂ρ(t, u−)

∂~ζ(u)
= α

(
ρ(t, u+)− ρ(t, u−)

) d∑
j=1

|〈~ζ(u), ej〉|, t ≥ 0, u ∈ ∂Λ , (2.1)

where u− denotes the limit towards u ∈ ∂Λ through points over Λ while u+ denotes
the limit towards u ∈ ∂Λ through points over Λ{, and {e1 . . . , ed} is the canonical
basis of Rd.

We observe that the Robin boundary condition above is in agreement with the
Fick’s Law: the spatial derivatives are equal due to the conservation of particles,
representing the rate at which the mass crosses the boundary. Such a rate is
proportional to the difference of concentration on each side of the boundary, being
the diffusion coefficient through the boundary at a point u ∈ ∂Λ given by D(u) =

α
∑d

j=1 |〈~ζ(u), ej〉|. Since ~ζ(u) is a unitary vector, the reader can check via Lagrange
multipliers that this diffusion coefficient satisfies

α ≤ D(u) ≤ α
√
d

in dimension d ≥ 2. Moreover, in this case β = 1, the hydrodynamic equation ex-
hibits the phenomena of non-invariance for isometries. Let us explain this notion.
Consider an isometry T : Td → Td, an initial density profile ρ0 : Td → [0, 1] and
denote by (S(t)ρ0)(u) the solution of the usual heat equation with initial condition
ρ0. Then, (

S(t)(ρ0 ◦T)
)
(u) = (S(t)ρ0)

(
T(u)

)
.

In other words, if we isometrically move the initial condition of the usual heat
equation, the solution of the PDE under this new initial condition is the equal
to the previous solution moved by the same isometry. On the other hand, as we
can see in (2.1), the diffusion coefficient D(u) depends on how the surface ∂Λ is
positioned with respect to the canonical basis. Hence the PDE for β = 1 is not
invariant for isometries, differently from the cases β ∈ [0, 1) and β ∈ (1,∞]. Note
that the diffusion coefficient also says that the underlying graph plays a role in the
limit.

Besides the dynamical phase transition itself, this work has the following fea-
tures. First of all, in contrast with some previous works, the hydrodynamic equa-
tions are characterized as classical PDEs, with clear interpretation. In the regime
β ∈ [0, 1), the proof relies on a sharp replacement lemma which compares occupa-
tions of neighbor sites in opposite sides of ∂Λ. For β = 1, the proof is based on a
precise analysis of the surface integrals and the model drops the ad hoc hypoth-
esis adopted in [13]: here the rates for bonds crossing ∂Λ are all equal to α/N ,
with no extra constant depending on the incident angle. Finally, a remark the
uniqueness of weak solutions for the cases β = 1 and β ∈ (1,∞]. Uniqueness of
weak solutions are in general a delicate and technical issue, specially for dimen-
sion higher than one. In Proposition 2.7.2 we provide a general statement which
leads to the uniqueness of weak solutions in both cases β = 1 and β ∈ (1,∞]. The
keystone of the proof is the notion of Friedrichs extension for strongly monotone
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symmetric operators. The uniqueness statement has the feature of being sim-
ple, d-dimensional and easily adaptable to many contexts. However, it is strictly
limited to the uniqueness of weak solutions of parabolic linear PDEs with linear
boundary conditions.

The paper is divided as follows: In Section 2.2 we state definitions and results.
In Section 2.3 we draw the strategy of proof for the hydrodynamic limit. In Sec-
tion 2.4 is reserved to the proof of tightness of the processes. In Section 3.3 we
prove the necessary replacement lemmas and energy estimates. In Section 2.6
we characterize limit points as concentrated on weak solutions of the respective
PDEs, and in Section 2.7 we assure uniqueness of those weak solutions.

2.2 Definitions and Results
Let Td be the continuous d-dimensional torus, which is [0, 1)d with periodic

boundary conditions, and let TdN be the discrete torus with Nd points, which can
naturally embedded in the continuous torus as N−1TdN , see Figure 2.1. We there-
fore will not distinguish notation for functions defined on Td or N−1TdN .

By η = (η(x))x∈TdN we denote configurations in the state space ΩN = {0, 1}TdN ,
where η(x) = 0 means that the site x is empty, and η(x) = 1 means that the
site x is occupied. By a symmetric simple exclusion process we mean the Markov
Process with configuration space ΩN and exchange rates ξNx,y > 0 for x, y ∈ TdN
with ‖x − y‖1 = 1. This process can be characterized in terms of the infinitesimal
generator LN acting on functions f : ΩN → R as

(LNf)(η) =
∑
x∈TdN

d∑
j=1

ξNx,x+ej

[
f(ηx,x+ej)− f(η)

]
,

where {e1, . . . , ed} is the canonical basis of Rd and ηx,x+ej is the configuration ob-
tained from η by exchanging the occupation variables η(x) and η(x+ ej), that is,

ηx,x+ej(y) =


η(x+ ej), if y = x ,
η(x), if y = x+ ej ,
η(y), otherwise.

The Bernoulli product measures {νNθ : θ ∈ [0, 1]} are invariant and in fact, re-
versible, for the symmetric nearest neighbor exclusion process introduced above.
Namely, νNθ is a product measure on ΩN whose marginal at site x ∈ TdN is given by

νNθ {η : η(x) = 1} = θ .

Fix now two parameters α > 0 and β ∈ [0,∞] and a simple connected closed
region Λ ⊂ Td whose boundary ∂Λ is a smooth (d − 1)-dimensional surface. The
symmetric simple exclusion process with slow bonds over ∂Λ (SSEP with slow bonds
over ∂Λ) we define now is the particular simple symmetric exclusion process with
exchange rates given by

ξNx,x+ej
=


α

Nβ
, if

x

N
∈ Λ and x+ej

N
∈ Λ{, or

x

N
∈ Λ{ and

x+ ej
N

∈ Λ,

1 , otherwise,
(2.2)
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for all x ∈ TdN and j = 1, . . . , d. That is, the slow bonds of the process will be the
bonds in N−1TdN for which one of its vertices belongs to Λ and the other one belongs
to Λ{. See Figure 2.1 for an illustration.

Note that, when β = ∞, there are no crossings of particles through the bound-
ary ∂Λ. From now on, abusing of notation, we will call the generator of the SSEP
with slow bonds over ∂Λ by LN , being understood that jump rates will be given
by (2.2).

Denote by {ηt : t ≥ 0} the Markov process with state space ΩN and generator
N2LN , where the N2 factor is the so-called diffusive scaling. This Markov pro-
cess depends on N , but it will not be indexed on it to not overload notation. Let
D(R+,ΩN) be the Skorohod space of càdlàg trajectories taking values in ΩN . For a
measure µN on ΩN , denote by PNµN the probability measure on D(R+,ΩN) induced
by the initial state µN and the Markov process {ηt : t ≥ 0}. Expectation with
respect to PNµN will be denoted by ENµN .

In the sequel, we present the partial differential equations governing the time
evolution of the density profile for the different regimes of β, defining the notion
of weak solution for each one of those equations. Denote by ρt a function ρ(t, ·)
and denote by Cn(Td) the set of continuous functions from Td to R with continuous
derivatives of order up to n. Let 〈·, ·〉 and ‖ · ‖ be the inner product and norm in
L2(Td), that is,

〈f, g〉 =

∫
Td
f(u) g(u) du and ‖f‖ =

√
〈f, f〉 , ∀ f, g ∈ L2(Td) . (2.3)

Fix once and for all a measurable density profile ρ0 : Td → [0, 1]. Note that ρ0 is
bounded.

Definition 1. A bounded function ρ : [0, T ] × Td → R is said to be a weak solution
of the heat equation {

∂tρ(t, u) = ∆ρ(t, u), t ≥ 0, u ∈ Td,
ρ(0, u) = ρ0(u), u ∈ Td. (2.4)

if, for all functions H ∈ C2(Td) and all t ∈ [0, T ], the function ρ(t, ·) satisfies the
integral equation

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds = 0 .

We recall next the definition of Sobolev Space from [5]. Let U be an open set
of Rd or Td. The Sobolev Space H1(U) consists of all locally summable functions
κ : U → R such that there exist functions ∂ujκ ∈ L2(U), j = 1, . . . , d, satisfying∫

Td
∂ujH(u)κ(u) du = −

∫
Td
H(u)∂ujκ(u) du

for all H ∈ C∞(U) with compact support. Furthermore, for κ ∈ H1(U), we de-

fine the norm ‖κ‖H1(U) =
(∑d

j=1

∫
U

∣∣∂ujκ∣∣2 du)1/2

. Finally, we define the space
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L2([0, T ],H1(U)), which consists of all measurable functions τ : [0, T ]→ H1(U) such
that

‖τ‖L2([0,T ],H1(U)) :=
(∫ T

0

‖τt‖2
H1(U) dt

)1/2

< ∞ .

Note that U = Td\∂Λ is an open subset of Td.

The following notation will be used several times along the text. Given a func-
tion f : Td\∂Λ→ R and u ∈ ∂Λ, we denote

f(u+) := lim
v→u
v∈Λ{

f(v) and f(u−) := lim
v→u
v∈Λ

f(v) , (2.5)

that is, f(u+) is the limit of f(v) as v approaches u ∈ ∂Λ through the complement of
Λ, while f(u−) is the limit of f(v) as v approaches u ∈ ∂Λ through Λ. Let 1A be the
indicator function of a set A, that is, 1A(a) = 1 if a ∈ A and zero otherwise. Denote
by ~ζ(u) the normal unitary exterior vector to the region Λ at the point u ∈ ∂Λ and
by ∂/∂~ζ the directional derivative with respect to ~ζ(u).

Below, by 〈~u,~v〉 we denote the canonical inner product of two vectors ~u and ~v in
Rd, which shall not be misunderstood with the inner product in L2(Td) as defined
in (2.3). By dS we indicate a surface integral.

Definition 2. A bounded function ρ : [0, T ] × Td → R is said to be a weak solution
of the following heat equation with Robin boundary conditions

∂tρ(t, u) = ∆ρ(t, u), t ≥ 0, u ∈ Td,
∂ρ(t, u+)

∂~ζ(u)
=
∂ρ(t, u−)

∂~ζ(u)
= α

(
ρ(t, u+)− ρ(t, u−)

) d∑
j=1

|〈~ζ(u), ej〉|, t ≥ 0, u ∈ ∂Λ,

ρ(0, u) = ρ0(u), u ∈ Td .
(2.6)

if ρ ∈ L2([0, T ],H1(Td\∂Λ)) and, for all functions H = h11Λ + h21Λ{ with h1, h2 ∈
C2(Td) and for all t ∈ [0, T ], the following the integral equation holds:

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds−
∫ t

0

∫
∂Λ

ρs(u
+)

d∑
j=1

∂ujH(u+)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

ρs(u
−)

d∑
j=1

∂ujH(u−)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

α (ρs(u
−)− ρs(u+))(H(u+)−H(u−))

( d∑
j=1

|〈~ζ(u), ej〉|
)
dS(u)ds = 0 .

The reader should note that the function H is (possibly) discontinuous at the
boundary ∂Λ. Note also that the expression

∑d
j=1 ∂ujH(u±)〈~ζ(u), ej〉 appearing in

the integral equation above is nothing but ∂H(u±)/∂~ζ due to linearity of the direc-
tional derivative.
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Definition 3. A bounded function ρ : [0, T ] × Td → R is said to be a weak solution
of the heat equation with Neumann boundary conditions

∂tρ(t, u) = ∆ρ(t, u), t ≥ 0, u ∈ Td,
∂ρ(t, u+)

∂~ζ(u)
=
∂ρ(t, u−)

∂~ζ(u)
= 0, t ≥ 0, u ∈ ∂Λ,

ρ(0, u) = ρ0(u), u ∈ Td ,

(2.7)

if ρ ∈ L2([0, T ],H1(Td\∂Λ)) and, for all functions H = h11Λ + h21Λ{ with h1, h2 ∈
C2(Td) and for all t ∈ [0, T ], the following integral equation holds:

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds−
∫ t

0

∫
∂Λ

ρs(u
+)

d∑
j=1

∂ujH(u+)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

ρs(u
−)

d∑
j=1

∂ujH(u−)〈~ζ(u), ej〉 dS(u)ds = 0 .

Since in Definitions 2 and 3 we impose ρ ∈ L2([0, T ],H1(Td\∂Λ)), the integrals
above are well-defined on the boundary due to the notion of trace in Sobolev spaces,
see [5] on the subject. We clarify that the notion of weak solutions above have
been defined in the standard way of Analysis: the reader can check that a strong
solution of (2.4), (2.6) or (2.7) is indeed a weak solution of the respective PDE.

Fix a measurable density profile ρ0 : Td → [0, 1]. For each N ∈ N, let µN be
a probability measure on ΩN . A sequence of probability measures {µN : N ≥ 1}
is said to be associated to a profile ρ0 : Td → [0, 1] if, for every δ > 0 and every
continuous function H : Td → R the following limit holds:

lim
N→∞

µN

{∣∣∣∣∣ 1

Nd

∑
x∈TdN

H(x/N)η(x)−
∫
H(u)ρ0(u)du

∣∣∣∣∣ > δ

}
= 0 . (2.8)

Below, we establish the main result of this paper, the hydrodynamic limit for
the exclusion process with slow bonds, which depends on the regime of β.
Theorem 2.2.1. Fix β ∈ [0,∞]. Consider the exclusion process with slow bonds over
∂Λ with rate αN−β at each one of these slow bonds. Fix a Borel measurable initial
profile ρ0 : Td → [0, 1] and consider a sequence of probability measures {µN}N∈N on
ΩN associated to ρ0 in the sense of (2.8). Then, for each t ∈ [0, T ],

lim
N→∞

PNµN

[
η :

∣∣∣∣∣ 1

Nd

∑
x∈TdN

H(x/N) ηt(x)−
∫
Td
H(u) ρ(t, u)du

∣∣∣∣∣ > δ

]
= 0 ,

for every δ > 0 and every function H ∈ C(Td) where:

• If β ∈ [0, 1), then ρ is the unique weak solution of (2.4).

• If β = 1, then ρ is the unique weak solution of (2.6).

• If β ∈ (1,∞], then ρ is the unique weak solution of (2.7).
The assumption that Λ is simple and connected may be dropped, being imposed

only for the sake of clarity. Otherwise, notation would be highly overloaded.
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2.3 Scaling Limit and Proof’s Structure
LetM be the space of positive Radon measures on Td with total mass bounded

by one, endowed with the weak topology. Let πNt ∈ M the empirical measure at
time t associated to ηt, it is a measure on Td obtained rescaling space by N :

πNt (du) = πNt (ηt, du) :=
1

Nd

∑
x∈TdN

ηt(x)δx/N(du) ,

where δu denotes the Dirac measure concentrated on u ∈ Td. For a measurable
function H : Td → R which is π-integrable, denote by 〈πNt , H〉 the integral of H
with respect to πNt :

〈πNt , H〉 =
1

Nd

∑
x∈TdN

H
(
x
N

)
ηt(x) .

Note that this notation 〈·, ·〉 is also used as the inner product of L2(Td). Fix once
and for all a time horizon T > 0. Let D([0, T ],M) be the space ofM-valued càdlàg
trajectories π : [0, T ] → M endowed with the Skorohod topology. Then, the M-
valued process {πNt : t ≥ 0} is a random element of D([0, T ],M) determined by
{ηt : t ≥ 0}. For each probability measure µN on ΩN , denote by Qβ,N

µN
the distribution

of {πNt : t ≥ 0} on the path space D([0, T ],M), when ηN0 has distribution µN .
Fix a continuous Borel measurable profile ρ0 : Td → [0, 1] and consider a se-

quence {µN : N ≥ 1} of measures on ΩN associated to ρ0. Let Qβ be the probability
measure on D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du,
where:

• if β ∈ [0, 1), then ρ is the unique weak solution of (2.4),

• if β = 1, then ρ is the unique weak solution of (2.6),

• if β ∈ (1,∞], then ρ is the unique weak solution of (2.7).

Proposition 2.3.1. For any β ∈ [0,∞], the sequence of probability measures Qβ,N
µN

converges weakly to Qβ as N goes to infinity.

The proof of this result is divided into three parts. In the next section, we
show that tightness of the sequence {Qβ,N

µN
: N ≥ 1}. In Section 3.3, we prove a

suitable Replacement Lemma for each regime of β, which will be crucial in the
task of characterizing limit points. In Section 2.6 we characterize the limit points
of the sequence for each regime of the parameter β. Finally, the uniqueness of
weak solutions is presented in Section 2.7 and this implies the uniqueness of limit
points of the sequence {Qβ,N

µN
: N ≥ 1}.

Finally, we note that Theorem 2.2.1 is a consequence of Proposition 2.3.1. Ac-
tually, since Qβ,N

µN
weakly converges to Qβ for all continuous functions H : Td → R,

it follows that the path {〈πNt , H〉 : 0 ≤ t ≤ T} converges in distribution to {〈πt, H〉 :
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0 ≤ t ≤ T}. Since {〈πt, H〉 : 0 ≤ t ≤ T} is a deterministic path, convergence in
distribution is equivalent to convergence in probability. Therefore,

lim
N→∞

PNµN

{∣∣∣∣∣ 1

Nd

∑
x∈TdN

H(x/N) ηt(x)−
∫
Td
H(u)ρ(t, u)du

∣∣∣∣∣ > δ

}
= lim

N→∞
Qβ,N
µN

{
|〈πNt , H〉 − 〈πt, H〉| > δ

}
= 0 ,

for all δ > 0 and 0 ≤ t ≤ T . This gives the strategy of proof for the hydrodynamic
limit. Next, we make some general observations.

Since particles in the exclusion process evolve independently as a nearest neigh-
bor random walk, except for exclusion rule, the exclusion process with slow bonds
over ∂Λ is related to the random walk on N−1TdN that describes the evolution of the
system with a single particle. To be used throughout the paper we introduce the
generator of the random walk described above, which is

LNH
(
x
N

)
=

d∑
j=1

{
ξNx,x+ej

[
H
(x+ej

N

)
−H

(
x
N

)]
+ ξNx,x−ej

[
H
(x−ej

N

)
−H

(
x
N

)]}
(2.9)

for every H : N−1TdN → R and every x ∈ TdN . Above, it is understood that ξx±ej ,x =
ξx,x±ej . By Dynkin’s formula (see A.1.5.1 in [18]),

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

N2LN〈πNs , H〉ds

is a martingale with respect to the natural filtration Ft := σ(ηNs : s ≤ t). By some
elementary calculations,

N2LN〈πNs , H〉 =
1

Nd−2

∑
x∈TdN

ηs(x)LNH
( x
N

)
= 〈πNs , N2LNH〉 ,

hence the martingale can be rewritten as

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

〈πNs , N2LNH〉ds . (2.10)

Note that this observation stands for any jump rates. The particular form of jump
rates for the SSEP with slow bonds over ∂Λ will play a role when characterizing
limit points and proving replacement lemmas.

2.4 Tightness
This section deals with the issue of tightness for the sequence {Qβ,N

µN
: N ≥ 1} of

probability measures on D([0, T ],M).

Proposition 2.4.1. For any fixed β ∈ [0,∞], the sequence of measures {Qβ,N
µN

: N ≥
1} is tight in the Skorohod topology of D([0, T ],M).
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Proof. In order to prove tightness of {πNt : 0 ≤ t ≤ T}, it is enough to show
tightness of the real-valued process {〈πNt , H〉 : 0 ≤ t ≤ T} for H ∈ C(Td). In
fact, (cf. Proposition 1.7, chapter 4 of [18]) it is enough to show tightness of
{〈πNt , H〉 : 0 ≤ t ≤ T} in D([0, T ],R) for a dense set of functions in C(Td) with
respect to the uniform topology.

For that purpose, fix H ∈ C2(Td). Since the sum of tight processes is tight, in
order to prove tightness of {〈πNt , H〉 : N ≥ 1}, it is enough to assure tightness of
each term in (2.10). The quadratic variation of MN

t (H) is given by

〈MN(H)〉t =

∫ t

0

d∑
j=1

∑
x∈TdN

ξNx,x+ej

N2d−2

[
(ηs(x)− ηs(x+ ej))(H(

x+ej
N

)−H( x
N

))
]2

ds, (2.11)

implying that

〈MN(H)〉t ≤
αt

Nd

d∑
j=1

‖∂ujH‖2
∞ , (2.12)

where ‖H‖∞ := supu∈Td |H(u)|, hence MN
t converges to zero as N → ∞ in L2(PβµN ).

Therefore, by Doob’s inequality, for every δ > 0,

lim
N→∞

PNµN
[

sup
0≤t≤T

|MN
t (H)| > δ

]
= 0 , (2.13)

which implies tightness of the sequence of martingales {MN
t (H) : N ≥ 1}. Next,

we will prove tightness for the integral term in (2.10). Let ΓN be the set of vertices
in TdN having some incident edge with exchange rate not equal to one, that is,

ΓN =
{
x ∈ TdN : for some j = 1, . . . , d, ξNx,x+ej

=
α

Nβ
or ξNx,x−ej =

α

Nβ

}
. (2.14)

The term 〈πNs , N2LNH〉 appearing inside the time integral in (2.10) can be then
written as

1

Nd

d∑
j=1

∑
x/∈ΓN

ηs(x)N2
[
H(

x+ej
N

) +H(
x−ej
N

)− 2H( x
N

)
]

+
1

Nd−1

d∑
j=1

∑
x∈ΓN

ηs(x)
[
ξNx,x+ej

N
(
H(

x+ej
N

)−H( x
N

)
)
+ξNx,x−ejN

(
H(

x−ej
N

)−H( x
N

)
)]

since ξx,x+ej = ξx+ej ,x = 1 for every x /∈ ΓN . By a Taylor expansion on H ∈ C2(Td),
the absolute value of the summand in the first double sum above is bounded by
‖∆H‖∞. Since there are O(Nd−1) elements in ΓN , and ξx,x+ej ≤ α, the absolute
value of summand in second double sum above is bounded by

∑d
j=1 α‖∂ujH‖∞.

Therefore, there exists C > 0, depending only on H, such that |N2LN〈πNs , H〉| ≤ C,
which yields ∣∣∣∣∫ t

s

N2LN〈πNs , H〉dr
∣∣∣∣ ≤ C|t− s| .

By [18, Proposition 4.1.6], last inequality implies tightness of the integral term,
concluding the proof of the proposition.
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2.5 Replacement Lemma and Energy Estimates
This section gives a fundamental result that allow us to replace a mean occu-

pation of a site by the mean density of particles in a small macroscopic box around
this site. We start by introducing some tools to be used in the sequel.

Denote by HN(µN |νθ) the relative entropy of µN with respect to the invariant
state νθ. For a precise definition and properties of the entropy, we refer the reader
to [18]. Assuming 0 < θ < 1, the formula in [18, Theorem A1.8.3] assures the
existence a finite constant κ0 = κ0(θ) such that

HN(µN |νθ) ≤ κ0N
d (2.15)

for any probability measure µN on {0, 1}TdN . Denote by DN the Dirichlet form of the
process, which is the functional acting on functions f : {0, 1}TdN → R as

DN(f) := 〈f,−LNf〉νθ =
d∑
j=1

∑
x∈TdN

ξNx,x+ej

2

∫ (
f(ηx,x+ej)− f(η)

)2
νθ(dη) . (2.16)

In the sequence, we will make use of the functional DN(
√
f), where f is a proba-

bility density with respect to νθ.

2.5.1 Replacement Lemma for β ∈ [0, 1)

Below, we define the local density of particles, which corresponds a to the mean
occupation in a box around a given site. Abusing of notation, we denote by εN − 1
the integer part of εN − 1. For β ∈ [0, 1), we define the local mean by

ηεN(x) =
1

(εN)d

εN−1∑
j1,j2,...,jd=0

η (x+ j1e1 + . . .+ jded) . (2.17)

Note that the sum on the right hand side of above may contain sites in and out
of Λ in the sense that x/N ∈ Λ or x/N ∈ Λ{. By O(f(N)) we will mean a function
bounded in modulus by a constant times f(N).

Lemma 2.5.1. Fix β ∈ [0, 1). Let f be a density with respect to the invariant mea-
sure νθ, λN : TdN → R a function such that ‖λN‖∞ ≤M <∞ and γ > 0. Then,∫

γN
∑
x∈ΓN

λN(x)
{
η(x)− ηεN(x)

}
f(η)νθ(dη)

≤ γ2M2O(Nd)

2

(Nβ−1

α
+ dε

)
+N2DN(

√
f) .

Proof. By the definition (2.17) of local mean ηεN(x),∫
λN(x)

{
η(x)− ηεN(x)

}
f(η)νθ(dη) =
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Λ
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N−1TdN

x
N

y
N

Figure 2.2: Illustration (in dimension 2) of a polygonal path joining the sites x and
y = x + j1e1 + j2e2, with j1 = j2 = 3. Note the embedding in the continuous torus
Td.

=

∫
λN(x)

1

εdNd

εN−1∑
j1,...,jd=0

{
η(x)− η(x+ j1e1 + . . .+ jded)

}
f(η)νθ(dη) . (2.18)

The next step is to write η(x)− η(x+ j1e1 + · · ·+ jded) as a telescopic sum:

η(x)− η(x+ j1e1 + . . .+ jded) =

j1+···+jd∑
`=1

η(a`−1)− η(a`) ,

where a0 = x, aj1+···+j` = x + j1e1 + · · · + jded, and ‖a`−1 − a`‖1 = 1 for any ` =
1, . . . , j1 + · · ·+ jd. Note that the path a0, a1, . . . , aj1+···+j` depends on the initial point
x and the final point x+ j1e1 + · · ·+ jded. See Figure 2.2 for an illustration and keep
in mind that the length of this path is bounded by dεN . Inserting the previous
equality into (2.18), we get∫

λN(x)
1

(εN)d

εN−1∑
j1,...,jd=0

{ j1+···+jd∑
`=1

η(a`−1)− η(a`)
}
f(η) νθ(dη) .

Rewriting the expression above as twice the half and performing the transforma-
tion η 7→ ηa`−1,a` for which the probability measure νθ is invariant, expression above
becomes:

1

2(εN)d

εN−1∑
j1,...,jd=0

j1+···+jd∑
`=1

∫
λN(x) (η(a`−1)− η(a`)) (f (ηa`,a`−1)− f (η)) dνθ .

Since ab =
√
ca b√

c
≤ 1

2
ca2 + 1

2
b2

c
, which holds for any c > 0, the previous expression

is smaller or equal than

1

2(εN)d

εN−1∑
j1,...,jd=0

j1+···+jd∑
`=1

[
ξNa`−1,a`

2A

∫ (√
f (ηa`,a`−1)−

√
f (η)

)2

dνθ

+
A

2ξNa`−1,a`

∫
λ2
N(x) (η(a`)− η(a`−1))2

(√
f (ηa`,a`−1) +

√
f (η)

)2

dνθ

]
.
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Summing over x ∈ ΓN , we can bound the last expression by

1

2(εN)d

∑
x∈ΓN

εN−1∑
j1,...,jd=0

j1+···+jd∑
`=1

[
ξNa`−1,a`

2A

∫ (√
f (ηa`,a`−1)−

√
f (η)

)2

dνθ

+
∑
x∈ΓN

A

2ξNa`−1,a`

∫
λ2
N(x) (η(a`)− η(a`−1))2

(√
f (ηa`,a`−1) +

√
f (η)

)2

dνθ

]
.

Recalling (2.16), we can bound the first parcel in the sum above by

1

2(εN)d

εN−1∑
j1,...,jd=0

1

A
DN(

√
f) =

1

2A
DN(

√
f) .

Since f is a density and |λN(x)| ≤M , the second parcel is bounded by

1

2(εN)d

∑
x∈ΓN

εN−1∑
j1,...,jd=0

j1+···+jd∑
`=1

A

2
· 4M2

ξNa`−1,a`

≤ 1

(εN)d

εN−1∑
j1,...,jd=0

AM2O(Nd−1)
(Nβ

α
+ dεN

)
= AM2O(Nd−1)

(Nβ

α
+ dεN

)
.

Up to here we have achieved that∫ ∑
x∈ΓN

λN(x)
{
η(x)− ηεN(x)

}
f(η)νθ(dη)

≤ AM2O(Nd−1)
(Nβ

α
+ dεN

)
+

1

2A
DN(

√
f) .

We point out that the quantity of sites on ΓN is of order O(Nd−1), which is a conse-
quence of the fact that ∂Λ is a smooth surface of dimension d−1. Then, multiplying
the inequality above by γN gives us∫

γN
∑
x∈ΓN

λN(x)
{
η(x)− ηεN(x)

}
f(η)νθ(dη)

≤ AγO(Nd)M2
[Nβ

α
+ dεN

]
+
γN

2A
DN(

√
f) .

Now choosing A = γN−1/2 the proof ends.

Recall the definition of ΓN in (2.14).

Lemma 2.5.2 (Replacement lemma). Fix β ∈ [0, 1). Let λN : TdN → R be a sequence
of functions such that ‖λN‖∞ ≤M <∞. Then,

lim
ε→0

lim
N→∞

EβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
x∈ΓN

λN(x){ηεNs (x)− ηs(x)} ds
∣∣∣ ] = 0 .
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Proof. Using the variational formula for entropy, for any γ ∈ R (which will be
chosen large a posteriori),

EβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
x∈ΓN

λN(x){ηs(x)− ηεNs (x)}ds
∣∣∣ ]

=
1

γNd
EβµN

[
γN

∣∣∣ ∫ t

0

∑
x∈ΓN

λN(x){ηs(x)− ηεNs (x)}ds
∣∣∣]

≤ HN(µN |νθ)
γNd

+
1

γNd
logEνθ

[
exp

(
γN
∣∣∣ ∫ t

0

∑
x∈ΓN

λN(x){ηs(x)− ηεNs (x)}ds
∣∣∣)]. (2.19)

By the estimate (2.15) on the entropy, the first parcel of above is negligible as
N → ∞ since we will choose γ arbitrarily large. Therefore, we can focus on the
second parcel. Using that e|x| ≤ ex + e−x and

lim
N→∞

1

Nd
log(aN + bN) = max

{
lim
N→∞

1

Nd
log aN , lim

N→∞

1

Nd
log bN

}
(2.20)

for any sequences aN , bN > 0, one can see that the second parcel on the right hand
side of (2.19) is less than or equal to the sum of

lim
N→∞

1

γNd
log
{
Eνθ
[

exp
(
γN

∫ t

0

∑
x∈ΓN

λN(x){ηs(x)− ηεNs (x)}ds
)]}

(2.21)

and

lim
N→∞

1

γNd
log
{
Eνθ
[

exp
(
− γN

∫ t

0

∑
x∈ΓN

λN(x){ηs(x)− ηεNs (x)}ds
)]}

. (2.22)

We handle only (2.21), being (2.22) analogous. By Feynman-Kac’s formula, see [18,
Appendix 1, Lemma 7.2], expression (2.21) is bounded by

lim
N→∞

1

γNd
log
{

exp
(∫ t

0

ΦN ds
)}

= lim
N→∞

tΦ1
N

γNd
,

where

Φ1
N = sup

f density

{∫
γN

∑
x∈ΓN

λN(x){η(x)− ηεN(x)}f(η)νθ(dη)−N2DN(
√
f)

}
.

Applying Lemma 2.5.1 finishes the proof.

2.5.2 Replacement Lemma for β ∈ [1,∞]

Here, some additional notation is required. The idea is actually very simple:
the local mean shall be over a region avoiding slow bonds. Let BN [x, `] ⊂ TdN be the
discrete box centered on x ∈ TdN which edge has size 2`, that is, BN [x, `] = {y ∈ TdN :

15



‖y − x‖∞ ≤ `}, where we have written ‖ · ‖∞ for the supremum norm on TdN , that
is, ‖(x1, . . . , xd)‖∞ = max

{
|x1| ∧ |N − x1|, . . . , |xd| ∧ |N − xd|

}
.

Λ

Λ{

N−1TdN

x
N

Figure 2.3: Illustration in dimension two of CN [x, 2]. The sites in CN [x, 2] are those
laying in the gray region.

Let ΛN = {x ∈ TdN : x
N
∈ Λ} the set of sites in 1

N
TdN belonging to Λ. We define now

the region CN [x, `] ⊂ TdN by

CN [x, `] :=

BN [x, `] ∩ ΛN if x
N
∈ Λ ,

BN [x, `] ∩ Λ{N if x
N
∈ Λ{ ,

(2.23)

see Figure 2.3 for an illustration. For β ∈ [1,∞], we define the local density as the
average over CN [x, `], that is,

ηεN(x) :=
1

#CN [x, εN ]

∑
y∈CN [x,εN ]

η(y) . (2.24)

Lemma 2.5.3. Fix β ∈ [1,∞]. Let f be a density with respect to the invariant
measure νθ, let λN : TdN → R a function such that ‖λN‖∞ ≤M <∞ and γ > 0. Then,
the following inequalities hold:∫

γN
∑
x∈ΓN

λN(x)
{
η(x)− ηεN(x)

}
f(η)νθ(dη) ≤ 1

2
γ2M2O(Nd)dε+N2DN(

√
f) (2.25)

and∫
γ
∑
x∈TdN

λN(x){η(x)− ηεN(x)}f(η)νθ(dη) ≤ 1
2
γ2M2O(Nd−1)dε+N2DN(

√
f) .

(2.26)

Proof. Let us prove the inequality (2.26). As commented in the beginning of this
subsection, the local average ηεN is taken over CN [x, εN ]. Thus, we can write∫

λN(x){η(x)− ηεN(x)}f(η)νθ(dη)

16



=

∫
λN(x)

{ 1

#CN [x, εN ]

∑
y∈CN [x,εN ]

(
η(x)− η(y)

)}
f(η)νθ(dη) . (2.27)

For each y ∈ C[x, εN ], let γ(x, y) be a polygonal path of minimal length connecting
x to y which does not crosses ∂Λ. That is, γ(x, y) is a sequence of sites (a0, . . . , aM)
such that x = a0, y = aM , ‖ai − ai+1‖1 = 1 and ξa,ai+1

= 1 for i = 0, . . . ,M − 1, and
γ(x, y) has minimal length, that is, M = M(x, y) = ‖x− y‖1 + 1. Now we repeat the
steps in the proof of Lemma 2.5.1, observing that in this case the sum will be over
TdN , obtaining that (2.27) is bounded from above by

1

2#CN [x, εN ]

∑
x∈TdN

∑
y∈CN [x,εN ]

M(x,y)−1∑
`=1

[
1

2A

∫ (√
f(ηa`,a`−1)−

√
f(η)

)2

dνθ

+
A

2

∫ (
λN(x)

)2

(η(a`)− η(a`−1))2
(√

f(ηa`,a`−1) +
√
f(η)

)2

dνθ

]
.

We can bound the first parcel in the sum above by 1
2A
DN(
√
f) and the second parcel

by

1

2#CN [x, εN ]

∑
x∈TdN

∑
y∈CN [x,εN ]

M(x,y)−1∑
`=1

4AM2

2

≤ 1

#CN [x, εN ]

∑
y∈CN [x,εN ]

AM2O(Nd)dεN = AM2O(Nd)dεN .

We hence have∫ ∑
x∈TdN

λN(x)
{
η(x)− ηεN(x)

}
f(η)νθ(dη) ≤ AM2O(Nd)dεN +

1

2A
DN(

√
f) .

Then, multiplying the inequality above by γ gives us∫
γ
∑
x∈TdN

λN(x)
{
η(x)− ηεN(x)

}
f(η)νθ(dη) ≤ AγO(Nd)M2dεN +

γ

2A
DN(

√
f) .

Now choosing A = γN−2/2 the proof of (2.25) ends. The proof of inequality (2.25)
similar to the proof of Lemma 2.5.1, under the additional feature that rates of
bonds over a path connecting two sites will be always equal to one, which facilitates
the argument.

Lemma 2.5.4 (Replacement lemma). Fix β ∈ [1,∞]. Let λN : TdN → R be a sequence
of functions such that ‖λN‖∞ ≤ c <∞. Then,

lim
ε→0

lim
N→∞

EβµN
[∣∣∣ ∫ t

0

1

Nd−1

∑
x∈ΓN

λN(x){ηεNs (x)− ηs(x)} ds
∣∣∣] = 0

and
lim
ε→0

lim
N→∞

EβµN
[∣∣∣ ∫ t

0

1

Nd

∑
x∈TdN

λN(x){ηεNs (x)− ηs(x)} ds
∣∣∣] = 0 .
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Proof. The proof is similar to the one of Lemma 2.5.2, being sufficient to show that
expressions

Φ2
N := sup

f density

{∫
γN

∑
x∈ΓN

λN(x){ηεN(x)− η(x)}f(η)dνθ −N2DN(
√
f)
}
,

Φ3
N := sup

f density

{∫
γ
∑
x∈TdN

λN(x){ηεN(x)− η(x)}f(η)dνθ −N2DN(
√
f)
}

satisfy

lim
N→∞

tΦ2
N

γNd
= 0 and lim

N→∞

tΦ3
N

γNd
= 0 ,

which is a consequence of Lemma 2.5.3, finishing the proof.

2.5.3 Energy Estimates
In this subsection, consider β ∈ [1,∞]. Our goal here is to prove that any limit

point Qβ
∗ of the sequence {Qβ,N

µN
: N > 1} is concentrated on trajectories ρ(t, u)du

with finite energy, meaning that ρ(t, u) belongs to a suitable Sobolev space.
This result plays a both role in the uniqueness of weak solutions of (2.7) and

in the characterization of limit points. The fact that Qβ
∗ is concentrated in tra-

jectories with density with respect to the Lebesgue measure of the form ρ(t, u)du,
with 0 ≤ ρ ≤ 1, is a consequence of maximum of one particle per site, see [18].
The issue here is to prove that the density ρ(t, u) belongs to the Sobolev space
L2
(
[0, T ];H1(Td\∂Λ)

)
, see Section 2.2 for its definition.

Assume without loss of generality that the entire sequence {Qβ,N
µN

: N ≥ 1}
weakly converges to Qβ

∗ . Let B[u, ε] := {r ∈ Td : ‖r − u‖∞ < ε} and

C[u, ε] :=

B[u, ε] ∩ Λ if u ∈ Λ ,

B[u, ε] ∩ Λ{ if u ∈ Λ{ ,

where we have written ‖ · ‖∞ for the supremum norm on the continuous torus
Td = [0, 1)d, that is, ‖(u1, . . . , ud)‖∞ = max

{
|u1| ∧ |1 − u1|, . . . , |ud| ∧ |1 − ud|

}
. See

Figure 2.4 for an illustration.
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Λ

Λ{

Td

u

Figure 2.4: Illustration in dimension two of C[u, ε], which is represented by the
region in gray, while B[u, ε] is represented by the square delimited by the dashed
line. Note that C[u, ε] is the continuous counterpart of CN [x, `] defined in (2.23).

We define an approximation of the identity ιε in the continuous torus Td by

ιε(u, v) :=
1

|C[u, ε]|
1C[u,ε](v) , (2.28)

where |C[u, ε]| above denotes the Lebesgue measure of the set C[u, ε]. Recall that
the convolution of a measure π with ιε is defined by

(π ∗ ιε)(u) =

∫
Td
ιε(u, v)π(dv) for any u ∈ Td . (2.29)

Given a function ρ, the convolution ρ ∗ ιε shall be understood as the convolution of
the measure ρ(v)dv with ιε. An important remark now is the equality

(πNt ∗ ιε)
(
x
N

)
= ηεNt (x) +O

(
(εN)1−d) , (2.30)

where ηεNt has been defined in (2.24), being the small error above due to the fact
that sites on the boundary of CN [x, `] may or may not belong to C[u, ε] when taking
u = x/N and ` = εN . Given a function H : Td → R, let

VN(ε, j,H, η) :=
1

Nd

∑
x∈TdN

H
(
x
N

){η(x)− η(x+ εNej)}
ε

− 2

Nd

∑
x∈TdN

(
H
(
x
N

))2

. (2.31)

Lemma 2.5.5. Consider H1, . . . , Hk functions in C0,1([0, T ]× Td) with compact sup-
port contained in [0, T ]× (Td\∂Λ). Hence, for every ε > 0 and j = 1, . . . , d,

lim
δ→0

lim
N→∞

EβµN
[

max
1≤i≤k

{∫ T

0

VN(ε, j,Hi(s, ·), ηδNs ) ds
}]
≤ κ0 , (2.32)

where κ0 has been defined in (2.15).

Proof. Provided by Lemma 2.5.4, it is enough to prove that

lim
N→∞

EβµN
[

max
1≤i≤k

{∫ t

0

VN(ε, j,Hi(s, ·), ηs) ds
}]
≤ κ0 .
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By the entropy inequality, for each fixed N , the expectation above is smaller than

H(µN |νθ)
Nd

+
1

Nd
logEνθ

[
exp

{
max
1≤i≤k

Nd
{∫ T

0

VN(ε, j,Hi(s, ·), ηs) ds
}}]

.

Using (2.15), we bound the first parcel above by κ0. Since exp
{

max1≤i≤k aj
}
≤∑

1≤i≤k exp{aj} and by (2.20), we conclude that the limsup as N ↑ ∞ of the second
parcel above is less than or equal to

lim
N→∞

1

Nd
logEνθ

[ ∑
1≤i≤k

exp
{
Nd

∫ T

0

VN(ε, j,Hi(s, ·), ηs) ds
}]

= max
1≤i≤k

lim
N→∞

1

Nd
logEνθ

[
exp

{
Nd

∫ T

0

VN(ε, j,Hi(s, ·), ηs) ds
}]

.

Thus, in order to conclude the proof, it is enough to show that the limsup above is
non positive for each i = 1, . . . , k. By the Feynman-Kac formula (see [18, p. 332,
Lemma 7.2]) for each fixed N and d ≥ 2,

1

Nd
logEνθ

[
exp

{
Nd

∫ T

0

VN(ε, j,Hi(s, ·), ηs) ds
}]

(2.33)

≤
∫ T

0

sup
f

{∫
VN(ε, j,Hi(s, ·), η)f(η)dνθ −N2−dDN(

√
f)
}
ds , (2.34)

where the supremum above is taken over all probability densities f with respect to
νθ. By assumption, each of the functions {Hi : i = 1, . . . , k} vanishes in a neighbor-
hood of ∂Λ. Thus, we make following observation about the first sum in the RHS
of (2.31): for small ε, non-zero summands are such that x/N and (x + εNej)N lay
both in Λ or both in Λ{. Henceforth, in such a case, it is possible to find a path no
slow bonds connecting x and x + εNej. Keeping this in mind, we can repeat the
arguments in the proof of Lemma 2.5.3 to deduce that∫

1

Nd

∑
x∈TdN

H
(
x
N

){η(x)− η(x+ εNej)}
ε

f(η)dνθ

≤ N2−dDN(
√
f) +

2

Nd

∑
x∈TdN

(
H
(
x
N

))2

.

Plugging this inequality into (2.34) implies that (2.33) has a nonpositive limsup,
showing (2.5.3) and therefore finishing the proof.

Lemma 2.5.6.

EQβ∗

[
sup
H

{∫ T

0

∫
Td

(∂ujH)(s, u)ρ(s, u)duds− 2

∫ T

0

∫
Td

(H(s, u))2 duds

}]
≤ κ0 ,

where the supremum is carried over all functions H ∈ C0,1([0, T ]×Td) with compact
support contained in [0, T ]× (Td\∂Λ).
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Proof. Consider a sequence {Hi : i ≥ 1} dense in the subset of C2([0, t] × Td) of
functions with support contained in [0, T ]× (Td\∂Λ), being the density with respect
to the norm ‖H‖∞+‖∂uH‖∞. Recall we are assuming that {Qβ,N

µN
: N ≥ 1} converges

to Qβ
∗ . Then, by (2.32) and the Portmanteau Theorem,

lim
δ→0

EQβ∗

[
max
1≤i≤k

{1

ε

∫ T

0

∫
Td
Hi(s, u)){ρδs(u)− ρδs(u+ εej)} duds

− 2

∫ T

0

∫
Td

(Hi(s, u))2 duds
}]
≤ κ0,

where ρδs(u) = (ρs∗ιδ)(u) as defined in (2.29). Letting δ ↓ 0, the Lebesgue Differenti-
ation Theorem assures that ρδs(u) converges almost surely to ρs. Then, performing
a change of variables and letting ε ↓ 0, we obtain that

EQβ∗

[
max
1≤i≤k

{∫ T

0

∫
Td

(∂ujHi(s, u))ρs(u) duds− 2

∫ T

0

∫
Td

(Hi(s, u))2 duds
}]
≤ κ0.

Since the maximum increases to the supremum, we conclude the lemma by ap-
plying the Monotone Convergence Theorem to {Hi : i ≥ 1}, which is a dense se-
quence in the subset of functions C2([0, T ]×Td) with compact support contained in
[0, T ]× (T d\∂Λ).

Proposition 2.5.7. The measure Qβ
∗ is concentrated on paths π(t, u) = ρ(t, u)du

such that ρ ∈ L2
(
[0, T ];H1(Td\∂Λ)

)
.

Proof. Denote by ` : C2([0, T ]× Td)→ R the linear functional defined by

`(H) =

∫ T

0

∫
Td

(∂ujH)(s, u)ρ(s, u) du ds .

Since the set of functions H ∈ C2([0, T ] × Td) with support contained in [0, T ] ×
(Td\∂Λ) is dense in L2([0, T ]×Td) and since by Lemma 2.5.6 ` is a Qβ

∗ -a.s. bounded
functional in C2([0, T ] × Td), we can extend it to a Qβ

∗ -a.s. bounded functional in
L2([0, T ] × Td), which is a Hilbert space. Then, by the Riesz Representation Theo-
rem, there exists a function G ∈ L2([0, T ]× Td) such that

`(H) = −
∫ T

0

∫
Td
H(s, u)G(s, u) du ds ,

concluding the proof.

2.6 Characterization of limit points
Before going into the details of each regime β ∈ [0, 1), β = 1 or β ∈ (1,∞], we

make some useful considerations for all cases.
We will prove in this section that all limit points of the sequence {Qβ,N

µN
: N ≥ 1}

are concentrated on trajectories of measures π(t, du) = ρ(t, u) du, whose density
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ρ(t, u) with respect to the Lebesgue measure is the weak solution of the hydrody-
namic equation (2.4), (2.6) or (2.7) for each corresponding value of β. Provided by
tightness, let Qβ

∗ be a limit point of the sequence {Qβ,N
µN

: N ≥ 1} and assume,
without loss of generality, that {Qβ,N

µN
: N ≥ 1} converges to Qβ

∗ .
Since there is at most one particle per site, it is easy to show that Qβ

∗ is concen-
trated on trajectories π(t, du) which are absolutely continuous with respect to the
Lebesgue measure π(t, du) = ρ(t, u) du and whose density ρ(t, ·), is nonnegative and
bounded by one. Recall the martingale MN

t (H) in (2.10).

Lemma 2.6.1. If

a) β ∈ [0, 1) and H ∈ C2(Td), or

b) β ∈ [1,∞] and H ∈ C2(Td\∂Λ),

then, for all δ > 0,
lim
N→∞

PNµN
[

sup
0≤t≤T

|MN
t (H)| > δ

]
= 0 . (2.35)

Proof. Item a) has been already proved in (2.13). For item b), recalling (2.11) note
that

〈MN(H)〉t ≤
T

N2d−2

d∑
j=1

∑
x∈TdN

ξNx,x+ej

[
H(

x+ej
N

)−H( x
N

)
]2

. (2.36)

Since H ∈ C2(Td\∂Λ), H is differentiable with bounded derivative except over ∂Λ.
Therefore, if the edge x, x+ ej is not a slow bond, then

ξNx,x+ej

[
H(

x+ej
N

)−H( x
N

)
]2

≤ 1

N2
‖∂ujH‖2

∞ . (2.37)

On the other hand, if the edge x, x+ ej is a slow bond, then

ξNx,x+ej

[
H(

x+ej
N

)−Ht(
x
N

)
]2

≤ 4α‖H‖2
∞

Nβ
. (2.38)

Since the number of slow bonds is of order O(Nd−1), plugging (2.37) and (2.38)
into (2.36) gives us 〈MN(Ht)〉t ≤ O(1/Nd). ’ Then, Doob’s inequality concludes the
proof.

2.6.1 Characterization of limit points for β ∈ [0, 1).
Proposition 2.6.2. Let H ∈ C2(Td). Then, for any δ > 0,

Qβ
∗

[
π. : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,∆H〉 ds
∣∣∣ > δ

]
= 0 .

Proof. Since Qβ,N
µN

converges weakly to Qβ
∗ , by Portmanteau’s Theorem (see [2, The-

orem 2.1]),

Qβ
∗

[
π. : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,∆H〉 ds
∣∣∣ > δ

]
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≤ lim
N→∞

Qβ,N
µN

[
π. : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,∆H〉 ds
∣∣∣ > δ

]
(2.39)

since the supremum above is a continuous function in the Skorohod metric, see
Proposition 2.8.1. Recall that Qβ,N

µN
is the probability measure induced by PβµN

via the empirical measure. With this in mind and then adding and subtracting
〈πNs , N2LNH〉, expression (2.39) can be bounded from above by

lim
N→∞

PβµN
[
π. : sup

0≤t≤T

∣∣∣〈πNt , H〉 − 〈πN0 , H〉 − ∫ t

0

〈πNs , N2LNH〉 ds
∣∣∣ > δ/2

]
+ lim

N→∞
PβµN

[
π. : sup

0≤t≤T

∣∣∣ ∫ t

0

〈πNs ,∆H −N2LNH〉 ds
∣∣∣ > δ/2

]
.

By Lemma 2.6.1, the first term above is null. Since there is at most one particle
per site, the second term in last expression is bounded by

lim
N→∞

PβµN
[ T
Nd

∑
x/∈ΓN

∣∣∣∆H( x
N

)
−N2LN

( x
N

)∣∣∣ > δ/4
]

+ lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

1

Nd

∑
x∈ΓN

{
∆H

( x
N

)
−N2LN

( x
N

)}
ηs(x) ds

∣∣∣ > δ/4
]
.

Outside ΓN , the operator N2LN coincides with the discrete Laplacian. Since H ∈
C2(Td), the first probability above vanishes for N sufficiently large. Recall that the
number of elements in ΓN is of order Nd−1. Applying the triangular inequality, the
second expression in the previous sum becomes bounded by the sum of

lim
N→∞

PβµN
[
O(N−1)T‖∆H‖∞ > δ/8

]
(2.40)

and

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

1

Nd−1

∑
x∈ΓN

NLN
( x
N

)
ηs(x) ds

∣∣∣ > δ/8
]
. (2.41)

For large N , the probability in (2.40) vanishes. We deal now with (2.41). Let
x ∈ ΓN . By definition of ΓN , some adjacent bond to x is a slow bond. Thus, the
opposite vertex to x with respect to this bond is also in ΓN , see Figure 2.5.

Recall the definition of LN in (2.9). Whenever {x, x− ej} neither {x, x + ej} are
slow bonds, the expression

ξNx,x+ej

[
H
(x+ej

N

)
−H

(
x
N

)]
+ ξNx,x−ej

[
H
(x−ej

N

)
−H

(
x
N

)]
is of order O(N−2) due to assumption H ∈ C2(Td). Therefore, in (2.41) we can
disregard terms of this kind, reducing the proof that (2.41) is null to prove that

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

A(e) ds
∣∣∣ > δ/16

]
= 0 , (2.42)
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N−1TdN

x
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N

Figure 2.5: Illustration of sites x, y, z ∈ ΓN . We note that two adjacent edges to x
are slow bonds, and two adjacent edges are not. Besides, any opposite vertex to x
will be of the form x± ej.

where

A(e) =

[
αN1−β

(
H
(x+ej

N

)
−H

(
x
N

))
+
H
(x−ej

N

)
−H

(
x
N

)
1/N

]
ηs(x)

+

[
H
(x+2ej

N

)
−H

(x+ej
N

)
1/N

+ αN1−β
(
H
(
x
N

)
−H

(x+ej
N

))]
ηs(x+ ej) .

SinceH is smooth, the terms inside parenthesis involvingN1−β are of orderO(N−β)
and hence negligible. On the other hand, the remaining terms are close to plus or
minus the derivative of H at x/N . We have thus reduced the proof of (2.42) to the
proof of

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηs(x+ ej)− ηs(x)

)
ds
∣∣∣ > δ/32

]
= 0 .

(2.43)
Let t0 = 0 < t1 < · · · < tn = T be a partition of [0, T ] with mesh bounded by an
arbitrary ε̃ > 0. Via the triangular inequality, if we prove that

n∑
k=0

lim
N→∞

PβµN
[ ∣∣∣ ∫ tk

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηs(x+ ej)− ηs(x)

)
ds
∣∣∣ > δ

]
vanishes, then we will conclude that (2.43) vanishes as well. Therefore, it is enough
now to show that, for any δ > 0 and any t ∈ [0, T ],

lim
N→∞

PβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηs(x+ ej)− ηs(x)

)
ds
∣∣∣ > δ

]
= 0 .

Markov’s inequality then allows us to bound the expression above by

lim
N→∞

δ−1EβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηs(x+ ej)− ηs(x)

)
ds
∣∣∣ ] . (2.44)
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Adding and subtracting ηεNs (x) and ηεNs (x+ ej), we bound (2.44) from above by

lim
N→∞

δ−1EβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηs(x+ ej)− ηεNs (x+ ej)

)
ds
∣∣∣ ]

+ lim
N→∞

δ−1EβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηεNs (x+ ej)− ηεNs (x)

)
ds
∣∣∣ ]

+ lim
N→∞

δ−1EβµN
[ ∣∣∣ ∫ t

0

1

Nd−1

∑
e={x,x+ej}
e is a slow bond

∂ujH
(
x
N

)(
ηεNs (x)− ηs(x)

)
ds
∣∣∣ ] .

Since |{ηεNs (x+ej)−ηεNs (x)}| ≤ 2(εN)d−1

(εN)d
= 2

εN
, |ΓN | is of orderNd−1 and ‖∂ujH‖∞ <∞,

the second term above vanishes. For the remaining terms, we apply Lemma 2.5.2,
finishing the proof.

2.6.2 Characterization of limit points for β = 1.
This subsection is devoted to the proof of the next proposition. Keep in mind

that Proposition 2.5.7 allows us to write π(t, u) = ρ(t, u)du when considering the
measure Qβ

∗ .

Proposition 2.6.3. Let H ∈ C2(Td\∂Λ). For all δ > 0,

Qβ
∗

[
π. : sup

0≤t≤T

∣∣∣〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds

−
∫ t

0

∫
∂Λ

ρs(u
+)

d∑
j=1

∂ujH(u+)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

ρs(u
−)

d∑
j=1

∂ujH(u−)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

α(ρs(u
−)− ρs(u+))(H(u+)−H(u−))

d∑
j=1

|〈~ζ(u), ej〉| dS(u)ds
∣∣∣ > δ

]
= 0.

(2.45)

Let us gather some ingredients for the proof of above. The first one is a suitable
expression for NLN over ΓN . Define

ΓN,− = ΓN ∩
{
x ∈ TdN : x

N
∈ Λ

}
and

ΓN,+ = ΓN ∩
{
x ∈ TdN : x

N
∈ Λ{

} (2.46)

Such a notation has been chosen to agree with (2.5). Let us focus on ΓN,−, be-
ing the analysis for ΓN,+ completely analogous. It is convenient to consider the
decomposition ΓN,− =

⋃d
j=1 ΓjN,−, where

ΓjN,− = Γj,left
N,− ∪ Γj,right

N,− , with
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Figure 2.6: In the left, an illustration of the set ΓN,−, whose elements are repre-
sented by black balls. In the right, an illustration of the sets Γj,left

N,− and Γj,right
N,− for

j = 2, whose elements are represented by gray and black balls, respectively.

Γj,left
N,− =

{
x ∈ ΓN,− :

x− ej
N

∈ Λ{
}

and Γj,right
N,− =

{
x ∈ ΓN,− :

x+ ej
N

∈ Λ{
}
,

see Figure 2.6 for an illustration. Note that Γj,right
N,− and Γj,left

N,− are not necessarily
disjoint for a fixed j. Nevertheless, due to the smoothness of ∂Λ, the number of
elements in the intersection of these two sets is of order O(Nd−2), hence negligible
to our purposes. We will henceforth assume that Γj,right

N,− and Γj,left
N,− are disjoint sets

for all j = 1, . . . , d.

Remark 2.6.4. At first sight, the reader may imagine that ΓN,− is equal to Γj,left
N,− ∪

Γj,right
N,− for any j, or at least very to close to. This is false, as illustrated by Figure 2.6.

Moreover, for i 6= j and large N , the sets ΓjN,− and ΓiN,− in general are not disjoint
with a no negligible intersection.

Define now

NLjNH( x
N

) = NξNx,x+ej

(
H(

x+ej
N

)−H( x
N

)
)

+NξNx,x−ej
(
H(

x−ej
N

)−H( x
N

)
)
.

Then, by By Fubini’s Lemma,

∑
x∈ΓN,−

NLNH
(
x
N

)
ηεNs (x) =

∑
x∈ΓN,−

d∑
j=1

NLjNH
(
x
N

)
ηεNs (x)

=
d∑
j=1

{ ∑
x∈Γj,right

N,−

NLjNH
(
x
N

)
ηεNs (x) +

∑
x∈Γj,left

N,−

NLjNH
(
x
N

)
ηεNs (x)

}
. (2.47)

If x ∈ Γj,right
N,− , then ξNx,x+ej

= α/N and ξNx,x−ej = 1, see Figure 2.5. In this case,

NLjNH
(
x
N

)
= α

(
H
(x+ej

N

)
−H

(
x
N

))
− ∂ujH

(
x
N

)
+O(N−1) .
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On the other hand, if x ∈ Γj,left
N,− , then ξNx,x−ej = α/N and ξNx,x+ej

= 1. In this case,

NLjNH
(
x
N

)
= ∂ujH

(
x
N

)
+ α

(
H
(x−ej

N

)
−H

(
x
N

))
+O(N−1) .

Now, let u : Td → ∂Λ be a function such that

‖u(u)− u‖ = min
v∈∂Λ
‖v − u‖ , (2.48)

and u is continuous in a neighborhood of ∂Λ. That is, u maps u ∈ Td to some of its
closest points over ∂Λ and u is continuous on the set (∂Λ)ε = {u ∈ Td : dist(u, ∂Λ) <
ε} for some small ε > 0. There are more than one function fulfilling (2.48), but
any choice among them will be satisfactory for our purposes, once this function is
continuous near ∂Λ. With this mind we can rewrite (2.47), achieving the formula

1

Nd−1

∑
x∈ΓN,−

NLNH
(
x
N

)
ηεNs (x)

=
1

Nd−1

d∑
j=1

{ ∑
x∈Γj,right

N,−

[
α
(
H(u+)−H(u−)

)
− ∂ujH(u−)

]
ηεNs (x)

+
∑

x∈Γj,left
N,−

[
∂ujH(u−) + α

(
H(u+)−H(u−)

)]
ηεNs (x)

}
.

(2.49)

plus a negligible error, where by H(u−) and H(u+) are the sided limits of H at u.
The dependence of u on x/N will be dropped to not overload notation. Defining

ΓjN,+ = Γj,left
N,+ ∪ Γj,right

N,+ , with

Γj,left
N,+ =

{
x ∈ ΓN,+ :

x+ ej
N

∈ Λ
}

and Γj,right
N,+ =

{
x ∈ ΓN,+ :

x− ej
N

∈ Λ
}
,

we similarly have

1

Nd−1

∑
x∈ΓN,+

NLNH
(
x
N

)
ηεNs (x)

=
1

Nd−1

d∑
j=1

{ ∑
x∈Γj,right

N,+

[
∂ujH(u+) + α

(
H(u−)−H(u+)

)]
ηεNs (x)

+
∑

x∈Γj,left
N,+

[
α
(
H(u−)−H(u+)

)
− ∂ujH(u+)

]
ηεNs (x)

}
.

(2.50)

The second ingredient is about convergence of sums over ΓN towards integrals
over ∂Λ. Let us review some standard facts about integrals over surfaces. Consider
a smooth compact manifold M ⊂ Rd of dimension (d − 1). Assume that M is the
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graph of a function f : R ⊂ Rd−1 → R, that is,M = {(x, f(x)) : x ∈ R}. Then, given
a smooth function g :M→ R, the surface integral of g overM will be given by∫

M
g(u) dS(u) =

∫
R

g(x, f(x))
dx

| cos(γ(x, f(x)))|

=

∫
R

g
(
x1, . . . , xd−1, f(x1, . . . , xd−1)

) dx1 · · · dxd−1

|〈~ζ(x1, . . . , xd−1), ed〉|
,

(2.51)

where γ(x, f(x)) is defined as the angle between the normal exterior vector ~ζ(u) =
~ζ(x1, . . . , xd−1) and ed, the d-th element of the canonical basis of Rd. Of course, a
manifold in general is only locally a graph of a function as above. Nevertheless, the
notion of partition of unity allows to use this local property to evaluate a surface
integral. Recall the definition of u given in (2.48).

Lemma 2.6.5. Let g : Λ\(∂Λ) ⊂ Td → R be a function which is continuous near ∂Λ
with an extension to Λ which is also continuous near ∂Λ. Then,∫

∂Λ

g(u−)|〈~ζ(u), ej〉| dS(u) = lim
N→∞

1

Nd−1

∑
x∈ΓjN,−

g
(
x
N

)
and (2.52)

∫
∂Λ

g(u−)〈~ζ(u), ej〉 dS(u) = lim
N→∞

1

Nd−1

[ ∑
x∈Γj,right

N,−

g
(
x
N

)
−
∑

x∈Γj,left
N,−

g
(
x
N

)]
. (2.53)

Analogously, if g : Λ{ ⊂ Td → R is a function which is continuous near ∂Λ with an
extension to the closure of Λ{ which is also continuous near ∂Λ, then∫

∂Λ

g(u+)|〈~ζ(u), ej〉| dS(u) = lim
N→∞

1

Nd−1

∑
x∈ΓjN,+

g
(
x
N

)
and (2.54)

∫
∂Λ

g(u+)〈~ζ(u), ej〉 dS(u) = lim
N→∞

1

Nd−1

[ ∑
x∈Γj,right

N,+

g
(
x
N

)
−
∑

x∈Γj,left
N,+

g
(
x
N

)]
. (2.55)

Proof. In view of the previous discussion, we claim that

lim
N→∞

1

Nd−1

∑
x∈ΓjN,−

h
(
x
N

)∣∣〈~ζ(u( x
N

)
)
, ej
〉∣∣ =

∫
∂Λ

h(u−) dS(u) . (2.56)

for any continuous function h : Λ → R such that h(u) = 0 on the set {u ∈ ∂Λ :

〈~ζ(u), ej〉 = 0}. This is due to the fact that the sum in the left hand side of (2.52) is
equal to a Riemann sum for the integral on the right hand side of (2.51) modulus
a small error. To see this, it is enough to note that if x ∈ ΓN,−, then x/N is at
a distance less or equal than 1/N to ∂Λ, and recall that Λ is compact, thus any
continuous function over Λ is uniformly continuous.

Consider now the function h : Λ→ R given by

h(u) := g(u) |〈~ζ
(
u(u)

)
, ej〉| .
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Since u(u) = u for u ∈ ∂Λ, we have that h(u) = 0 on the set {u ∈ ∂Λ : 〈~ζ(u), ej〉 = 0}.
Then, considering this particular function h in (2.56) leads to (2.52). The limit
(2.53) can be derived from (2.52) noticing that, for N sufficiently large,

• if x ∈ Γj,right
N,− , then 〈~ζ

(
u(x/N)

)
, ej〉 > 0 and

• if x ∈ Γj,left
N,− , then 〈~ζ

(
u(x/N)

)
, ej〉 < 0,

see Figure 2.5 for support. The proofs for (2.54) and (2.55) are analogous.

Proof of Proposition 2.6.3. The fact that boundary integrals are not well-defined in
the whole Skorohod space D([0, T ],M) forbids us to directly apply Portmanteau’s
Theorem. To circumvent this technical obstacle, fix ε > 0 which will be taken small
later. Adding and subtracting the convolution of ρ(t, u) with the approximation of
identity ιε defined in (2.28), we bound the probability in (2.45) by the sum of

Qβ
∗

[
π. : sup

0≤t≤T

∣∣∣〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds

−
∫ t

0

∫
∂Λ

(ρs ∗ ιε)(u+)
d∑
j=1

∂ujH(u+)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

(ρs ∗ ιε)(u−)
d∑
j=1

∂ujH(u−)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

α((ρs ∗ ιε)(u−)− (ρs ∗ ιε)(u+))

× (H(u+)−H(u−))
d∑
j=1

|〈~ζ(u), ej〉| dS(u)ds
∣∣∣ > δ/2

]

(2.57)

and

Qβ
∗

[
π. : sup

0≤t≤T

∣∣∣ ∫ t

0

∫
∂Λ

(
(ρs ∗ ιε)(u+)− ρs(u+)

) d∑
j=1

H(u+)〈~ζ(u), ej〉 dS(u)ds

−
∫ t

0

∫
∂Λ

(
(ρs ∗ ιε)(u−)− ρs(u−)

) d∑
j=1

∂ujH(u−)〈~ζ(u), ej〉 dS(u)ds

−
∫ t

0

∫
∂Λ

α
(

(ρs ∗ ιε)(u−)− ρs(u−)
)

(H(u+)−H(u−))
d∑
j=1

|〈~ζ(u), ej〉| dS(u)ds

+

∫ t

0

∫
∂Λ

α
(

(ρs ∗ ιε)(u+)− ρs(u+)
)

× (H(u+)−H(u−))
d∑
j=1

|〈~ζ(u), ej〉| dS(u)ds
∣∣∣ > δ/2

]
.

(2.58)

where ιε and the convolution ρs ∗ ιε were defined in (2.29). Adapting results of
[1, Chapter III] to our context, the reader can check that functions in the Sobolev
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space L2
(
[0, T ];H1(Td\∂Λ)

)
are continuous in Td\∂Λ. Thus, Lemma 2.5.7 gives us

that (2.58) vanishes as ε → 0. It remains to deal with (2.57). By Portmanteau’s
Theorem, (2.57) is bounded from above by

lim
N→∞

Qβ,N
µN

[
π. : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,∆H〉 ds

−
∫ t

0

∫
∂Λ

(πs ∗ ιε)(u+)
d∑
j=1

∂ujH(u+)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

(πs ∗ ιε)(u−)
d∑
j=1

∂ujH(u−)〈~ζ(u), ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

α((πs ∗ ιε)(u−)−(πs ∗ ιε)(u+))

× (H(u+)−H(u−))
d∑
j=1

|〈~ζ(u), ej〉| dS(u)ds
∣∣∣ > δ/2

]
,

since the supremum above is a continuous function in the Skorohod metric. Now,
recalling that Qβ,N

µN
is the probability induced by PβµN via the empirical measure,

adding and subtracting the terms 〈πNs , N2LNH〉 and 1
Nd−1

∑
x∈ΓN

NLNH( x
N

)ηεNs (x),
applying (2.30) and the Lemma 2.6.5, we can bound the previous expression by the
sum of

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣〈πNt , H〉 − 〈πN0 , H〉 − ∫ t

0

〈πNs , N2LNH〉 ds
∣∣∣ > δ/8

]
, (2.59)

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

∑
x/∈ΓN

(
N2LNH

(
x
N

)
−∆H

(
x
N

))
ηs(x) ds

∣∣∣ > δ/8
]
, (2.60)

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ 1

Nd−1

∫ t

0

∑
x∈ΓN

NLNH
(
x
N

)
(ηs(x)− ηεNs (x)) ds

∣∣∣ > δ/8
]

(2.61)

30



and

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

∑
x∈ΓN

NLNH
( x
N

)
ηεNs (x) ds

+
d∑
j=1

∫ t

0

1

Nd−1

∑
x∈Γj,right

N,−

ηεNs (x)∂ujH(u−) ds

−
d∑
j=1

∫ t

0

1

Nd−1

∑
x∈Γj,left

N,−

ηεNs (x)∂ujH(u−) ds

−
d∑
j=1

∫ t

0

1

Nd−1

∑
x∈Γj,right

N,+

ηεNs (x)∂ujH(u+) ds

+
d∑
j=1

∫ t

0

1

Nd−1

∑
x∈Γj,left

N,+

ηεNs (x)∂ujH(u+) ds

+
d∑
j=1

∫ t

0

1

Nd−1

∑
x∈ΓjN,−

α ηεNs (x)(H(u+)−H(u−)) ds

−
d∑
j=1

∫ t

0

1

Nd−1

∑
x∈ΓjN,+

α ηεNs (x)(H(u+)−H(u−)) ds+ err(N)
∣∣∣ > δ/8

]
,

(2.62)

where err(N) is a error that goes in modulus to zero as N → ∞. Proposition 2.6.1
tells us that (2.59) is null. The approximation of the continuous Laplacian by the
discrete Laplacian assures that (2.60) is null. Since NLNH is a sequence of uni-
formly bounded functions, Lemma 2.5.4 allows we conclude that (2.61) vanishes as
ε ↘ 0. Finally, provided by formulas (2.49) and (2.50) and recalling the decompo-
sition ΓN = ΓN,+ ∪ ΓN,−, we can see that, except for the error term, all terms inside
the supremum in (2.62) cancel. This concludes the proof.

2.6.3 Characterization of limit points for β ∈ (1,∞].
Proposition 2.6.6. Let H ∈ C2(Td\∂Λ). For all δ > 0,

Qβ
∗

[
π. : sup

0≤t≤T

∣∣∣〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds

−
∫ t

0

∫
∂Λ

ρs(u
+)

d∑
j=1

∂ujH(u+)〈~ζ, ej〉 dS(u)ds

+

∫ t

0

∫
∂Λ

ρs(u
−)

d∑
j=1

∂ujH(u−)〈~ζ, ej〉 dS(u)ds
∣∣∣ > δ

]
= 0.

(2.63)

Proof. The proof of this proposition is similar, in fact, simpler than the one of

31



Proposition 2.6.3. In this case,

1

Nd−1

∑
x∈ΓN,−

NLNH
(
x
N

)
ηεNs (x)

=
1

Nd−1

d∑
j=1

{ ∑
x∈Γj,right

N,−

[
αN1−β(H(u+)−H(u−)

)
− ∂ujH(u−)

]
ηεNs (x)

+
∑

x∈Γj,left
N,−

[
∂ujH(u−) + αN1−β(H(u+)−H(u−)

)]
ηεNs (x)

}
.

(2.64)

and

1

Nd−1

∑
x∈ΓN,+

NLNH
(
x
N

)
ηεNs (x)

=
1

Nd−1

d∑
j=1

{ ∑
x∈Γj,right

N,+

[
∂ujH(u+) + αN1−β(H(u−)−H(u+)

)]
ηεNs (x)

+
∑

x∈Γj,left
N,+

[
αN1−β(H(u−)−H(u+)

)
− ∂ujH(u+)

]
ηεNs (x)

}
.

(2.65)

Since β ∈ (1,∞], we conclude that all terms above involving α disappear in the
limit as N → ∞. Noting that there are no surface integrals in (2.63) involving α,
it is a simple game to repeat the steps in the proof of Proposition 2.6.3 to finally
conclude (2.63).

2.7 Uniqueness of weak solutions
The hydrodynamic equation (2.4) is the classical heat equation, which does not

need any consideration about uniqueness of weak solutions. Thus, we only need to
guarantee that weak solutions of (2.6) and (2.7) are unique.

Let us trace the strategy for the proof of uniqueness, which works for both
(2.6) and (2.7). Considering in each case β = 1 or β ∈ (1,∞] a suitable set of test
functions, we can annul all surface integrals. Being more precise, consider the
following definitions:

Definition 4. Let DRob ⊂ L2(Td) be the set of functions H : Td → R such that
H(u) = h1(u)1Λ(u) + h2(u)1{Λ(u), where

(i) hi ∈ C2(Td) for i = {1, 2}.

(ii) 〈∇h1(u), ~ζ(u)〉 = 〈∇h2(u), ~ζ(u)〉 =
(
h2(u)− h1(u)

) d∑
j=1

|〈~ζ(u), ej〉| , ∀u ∈ ∂Λ.
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Define the operator LRob : DRob → L2(Td) by

LRobH(u) =

{
∆h1(u), if u ∈ Λ ,

∆h2(u), if u ∈ Λ{ .

Definition 5. Let DNeu ⊂ L2(Td) be the set of functions H : Td → R such that
H(u) = h1(u)1Λ(u) + h2(u)1{Λ(u), where:

(i) hi ∈ C2(Td) for i = {1, 2}.

(ii) 〈∇h1(u), ~ζ(u)〉 = 〈∇h2(u), ~ζ(u)〉 = 0 , ∀u ∈ ∂Λ.

Define the operator LNeu : DNeu → L2(Td) by

LNeuH(u) =

{
∆h1(u) if u ∈ Λ ,

∆h2(u) if u ∈ Λ{ .

It is straightforward to check that, if ρ is a weak solution of (2.6), then

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,LRobH〉 ds = 0 , ∀H ∈ DRob , ∀t ∈ [0, T ] , (2.66)

while, if ρ is a weak solution of (2.7), then

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,LNeuH〉 ds = 0 , ∀H ∈ DNeu , ∀t ∈ [0, T ] . (2.67)

In both cases, if an orthonormal basis of L2(Td) composed of eigenfunctions for
the corresponding operator (associated to nonpositive eigenvalues) is available,
this would easily lead to the proof of uniqueness, as we shall see later. However,
this is not the case. So, to overcome this situation we extend the corresponding
operator via a Friedrichs extension (see [26] on the subject) to achieve the desired
orthonormal basis.

Let us briefly explain the notion of Friedrichs extension. Let X be a Hilbert
space and denote by 〈·, ·〉 and ‖·‖ its inner product and norm, respectively. Consider
a linear, strongly monotone and symmetric operator A : D ⊂ X → X, where by
strongly monotone we mean that there exists c > 0 such that

〈AH,H〉 ≥ c‖H‖2 , ∀H ∈ D .

Denote by 〈·, ·〉E(A) the so-called energetic inner product on D associated toA, which
is defined by

〈F,G〉E(A) := 〈F, AG〉 .
Let HFried be the set of all functions F in X for which there exists a sequence
{Fn : n ≥ 1} in D such that Fn converges to F in X and Fn is Cauchy for the inner
product 〈·, ·〉E(A). A sequence {Fn : n ≥ 1} with these properties will be called an
admissible sequence for F . For F , G in HFried, let

〈F,G〉Fried := lim
n→∞
〈Fn, Gn〉E(A) , (2.68)
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where {Fn : n ≥ 1}, {Gn : n ≥ 1} are admissible sequences for F andG, respectively.
By [26, Proposition 5.3.3], the limit exists and does not depend on the admissible
sequence chosen and, moreover, the space HFried endowed with the scalar product
〈·, ·〉Fried is a real Hilbert space, usually called the energetic space associated to A.

The Friedrichs extension AFried : DFried → X of the operator A is then defined as
follows. Let DFried be the set of vectors in F ∈ HFried for which there exists a vector
f ∈ X such that

〈F,G〉Fried = 〈f,G〉 , ∀G ∈ HFried .

and let AFriedF = f . See the excellent book [26] for why this operator AFried :
DFried → X is indeed an extension of A : D→ X and more details on the construc-
tion. The main result about Friedrichs extensions and eigenfunctions we cite here
is the next one.

Theorem 2.7.1 ([26], Theorem 5.5C). Let A : D ⊆ X → X be a linear, symmetric
and strongly monotone operator and let AFried : DFried ⊆ X → X be its Friedrichs
extension. Assume additionally that the embedding HFried ↪→ X is compact. Then,

(a) The eigenvalues of −AFried form a countable set 0 < c ≤ µ1 ≤ µ2 ≤ · · · with
limn→∞ µn =∞, and all these eigenvalues have finite multiplicity.

(b) There exists a complete orthonormal basis of X composed of eigenvectors of
AFried.

Denote by I the identity operator. If L : D ⊆ X → X is a symmetric nonpositive
operator, then I − L : D → X is symmetric and strongly monotone with c = 1. In
fact,

〈(I− L)H,H〉 = ‖H‖2 + 〈−LH,H〉 ≥ ‖H‖2 , ∀H ∈ D .

Therefore, under the hypothesis that L : D ⊆ X → X is a symmetric and nonposi-
tive linear operator, we may consider the Friedrichs extension of (I− L).

Proposition 2.7.2. Let L : D ⊆ X → X be a symmetric nonpositive operator.
Denote by (I−L)Fried : DFried → X the Friedrichs extension of (I−L) : D→ X and by
HFried the corresponding energetic space. Assume that the embedding HFried ↪→ X
is compact. Then, there exists at most one measurable function ρ : [0, T ] → X such
that

sup
t∈[0,T ]

‖ρt‖ < ∞ (2.69)

and

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,LH〉 ds = 0 , ∀H ∈ D , ∀t ∈ [0, T ] .

where ρ0 is a fixed element of X.

Proof. Consider ρ1, ρ2 two solutions of above and write ρ = ρ1 − ρ2. By linearity,

〈ρt, H〉 −
∫ t

0

〈ρs,LH〉 ds = 0 , ∀H ∈ D , ∀t ∈ [0, T ] .
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which is the same as

〈ρt, H〉+

∫ t

0

〈ρs, (I− L)H〉 ds−
∫ t

0

〈ρs, H〉 ds = 0 , ∀H ∈ D , ∀t ∈ [0, T ] .

Since DFried ⊆ HFried, the last equation can be extended to

〈ρt, H〉+

∫ t

0

〈ρs, (I− L)FriedH〉 ds−
∫ t

0

〈ρs, H〉 ds = 0 , ∀H ∈ DFried , ∀t ∈ [0, T ] .

(2.70)
By Theorem 2.7.1, the Friedrichs extension (I−L)Fried : DFried → X has eigenvalues
1 ≤ λ1 ≤ λ2 ≤ · · · , all of them having finite multiplicity with limn→∞ λn = ∞, and
there exists a complete orthonormal basis {Ψj}i∈N of L2(Td) composed of eigenfunc-
tions. Denote

LFried := I− (I− L)Fried .

Thus, {Ψj}j∈N is also a set of eigenfunctions for the operator LFried whose eigenval-
ues are given by µj = 1− λj ≤ 0. Define

R(t) =
∞∑
j=1

1

j2(1− µj)
〈ρt,Ψj〉2 for t ∈ [0, T ] .

Since ρ satisfy (2.70), we have that

d

dt
〈ρt,Ψj〉2 = 2〈ρt,Ψj〉〈ρt,LFriedΨj〉 = 2µj〈ρt,Ψj〉2 . (2.71)

By (2.69) and the Cauchy-Schwarz inequality, we have that
∞∑
j=1

2|µj|
j2(1− µj)

〈ρt,Ψj〉2 ≤
∞∑
j=1

2|µj|
j2(1− µj)

(
sup
t∈[0,T ]

‖ρt‖2
)
< ∞ ,

which together with (2.71) implies that

d

dt
R(t) =

∞∑
j=1

2µj
j2(1− µj)

〈ρt,Ψj〉2 ≤ 0 .

Since R(t) ≥ 0, R(0) = 0, and dR/dt ≤ 0, we conclude that R(t) = 0 for all t ∈ [0, T ]
and hence 〈ρt,Ψj〉2 = 0 for any t ∈ [0, T ]. Due to {Ψj}j∈N be a complete orthonormal
basis of X, we deduce that ρ ≡ 0, finishing the proof.

In view of (2.66) and (2.67), considering X as the Hilbert space L2(Td) and
applying the last proposition, to achieve the uniqueness of weak solutions of (2.6)
and (2.7) it is enough to assure that

1. The operators I−LRob : DRob ⊆ L2(Td)→ L2(Td) and I−LNeu : DNeu ⊆ L2(Td)→
L2(Td) are symmetric nonpositive linear operators.

2. Denoting by HRob
Fried and HNeu

Fried their respective energetic spaces, the embed-
dings HRob

Fried ↪→ L2(Td) and HNeu
Fried ↪→ L2(Td) are compact.

35



This is precisely what we are going to do in the next four propositions. Denote
by ~ζ(u) = −~ζ(u) the normal exterior vector to the region Λ{ at u ∈ ∂Λ. Recall that
〈·, ·〉 is used for both the inner products in L2(Td) and in Rd.

Proposition 2.7.3. The operator −LRob : DRob → L2(Td) is symmetric and nonneg-
ative.

Proof. Let H,G ∈ DRob. We can write H = h11Λ + h21
{
Λ and G = g11Λ + g21

{
Λ, where

h1, h2, g1, g2 ∈ C2(Td). By the third Green identity (see Appendix 2.8, Theorem
2.8.2), ∫

Td

(
h∆g − g∆h

)
du =

∫
∂Λ

(
h〈∇g, ~ζ 〉 − g〈∇h, ~ζ 〉

)
dS ,

where dS is an infinitesimal volume element of ∂Λ. Thus,

〈H,−LRobG〉 =〈h11Λ + h21Λ{ ,−∆g11Λ −∆g21Λ{〉

=−
∫

Λ

h1∆g1 du−
∫

Λ{

h2∆g2 du

=−
∫

Λ

g1∆h1 du−
∫
∂Λ

(
h1〈∇g1, ~ζ 〉 − g1〈∇h1, ~ζ 〉

)
dS

−
∫

Λ{

g2∆h2 du−
∫
∂Λ{

(
h2〈∇g2, ~ζ 〉 − g2〈∇h2, ~ζ 〉

)
dS

=−
∫

Λ

g1∆h1 du−
∫
∂Λ

(
h1〈∇g1, ~ζ 〉 − g1〈∇h1, ~ζ 〉

)
dS

−
∫

Λ{

g2∆h2 du−
∫
∂Λ{

(
g2〈∇h2, ~ζ 〉 − h2〈∇g2, ~ζ 〉

)
dS .

Using the boundary condition in the item (ii) of Definition 4 and ∂Λ{ = ∂Λ, we
conclude that the last expression above is equal to

−
∫

Λ

g1∆h1 du−
∫

Λ{

g2∆h2 du

−
∫
∂Λ

(
(h1−h2)

d∑
j=1

|〈~ζ, ej〉|(g2−g1)−(g1 − g2)
d∑
j=1

|〈~ζ, ej〉|(h2 − h1)
)
dS

= −
∫

Λ

g1∆h1 du−
∫

Λ{

g2∆h2 du .

Then, 〈H,−LRobG〉 = −
∫

Λ
g1∆h1 du−

∫
Λ{ g2∆g2 du = 〈−LRobH,G〉. For the nonnega-

tiveness, note that

〈H,−LRobH〉 = −
∫

Λ

h1∆h1 du−
∫

Λ{

h2∆h2 du

=

∫
Λ

|∇h1|2 du+

∫
Λ{

|∇h2|2 du−
∫
∂Λ

(
〈∇h1, ~ζ 〉h1 + 〈∇h2, ~ζ 〉h2

)
dS

where the second equality above holds by the second Green identity, see Appendix,
Theorem 2.8.2, and ∂(Λ{) = ∂Λ. Since

∫
Λ
|∇hi|2 du ≥ 0, for i = 1, 2, it is enough to
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check that −
∫
∂Λ

(
〈∇h1, ~ζ 〉h1 + 〈∇h2, ~ζ 〉h2

)
dS ≥ 0. In fact,

−
∫
∂Λ

(
〈∇h1, ~ζ 〉h1 + 〈∇h2, ~ζ 〉h2

)
dS = −

∫
∂Λ

(
〈∇h1, ~ζ 〉h1 − 〈∇h2, ~ζ 〉h2

)
dS

=

∫
∂Λ

d∑
j=1

|〈~ζ, ej〉|
(

(h2 − h1)h2 − (h2 − h1)h1

)
dS

= 2

∫
∂Λ

d∑
j=1

|〈~ζ, ej〉|(h2 − h1)2 dS ≥ 0 ,

where the second equality holds by item (ii) of Definition 4.

Proposition 2.7.4. The embedding HRob
Fried ↪→ L2(Td) is compact.

Proof. Let {Hn} be a bounded sequence in HRob
Fried. Fix {Fn} a sequence in DRob such

that ‖Fn−Hn‖ → 0 when n→∞ and {Fn} is also bounded in HRob
Fried. Thus, to show

the compact embedding we need prove that {Hn} have a convergent subsequence in
L2(Td). To get a convergent subsequence of {Hn}, it is sufficient to find a convergent
subsequence of {Fn} in L2(Td). Write Fn = fn1Λ + f̃n1Λ{, with fn, f̃n ∈ C2(Td). Then,

〈Fn, Fn〉E(I−LRob)
= 〈Fn, Fn〉+ 〈Fn,−LRobFn〉

= 〈fn1Λ + f̃n1Λ{ , fn1Λ + f̃n1Λ{〉+ 〈fn1Λ + f̃n1Λ{ ,−∆fn1Λ −∆f̃n1Λ{〉 .

Expanding the right hand side of above and using Green identity (see Appendix 2.8,
Theorem 2.8.2), we get that∫

Λ

f 2
n du+

∫
Λ{

f̃n
2
du−

∫
Λ

fn∆fn du−
∫

Λ{

f̃n∆f̃n du

= ‖fn1Λ‖2 + ‖f̃n1Λ{‖2 + ‖∇fn1Λ‖2 + ‖∇f̃n1Λ{‖2

+ 2

∫
∂Λ

d∑
j=1

|〈~ζ, ej〉|(fn − f̃n)2dS .

Under the hypotheses of boundedness of the sequence {Fn} in the norm induced
by 〈·, ·〉E(I−LRob)

, the sequences {‖fn1Λ‖2}, {‖f̃n1Λ{‖2}, {‖∇fn1Λ‖2} and {‖∇f̃n1Λ{‖2}
are bounded. By the Rellich-Kondrachov compactness theorem (see [5, Theorem
5.7.1]), {fn1Λ}, {f̃n1Λ{} have a common convergent subsequence in L2(Td). This
implies that {Fn} has a convergent subsequence.

Proposition 2.7.5. The operator −LNeu : DNeu → L2(Td) is symmetric and nonneg-
ative.

Proof. Let H,G ∈ DNeu. We can write H = h11Λ + h21
{
Λ and G = g11Λ + g21

{
Λ, where

h1, h2, g1, g2 ∈ C2(Td). By the third Green identity, see Appendix 2.8, Theorem 2.8.2,
we have that∫

Td
h∆g du− g∆h du =

∫
∂Λ

h〈∇g, ~ζ 〉 − g〈∇h, ~ζ 〉 dS = 0 ,
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where dS is the infinitesimal volume element of ∂Λ. Thus,

〈H,−LNeuG〉 = 〈h11Λ + h21Λ{ ,−∆g11Λ −∆g21Λ{〉

= −
∫

Λ

h1∆g1du−
∫

Λ{

h2∆g2du = −
∫

Λ

g1∆h1du−
∫

Λ{

g2∆g2du = 〈−LNeuH,G〉.

For nonnegativeness,

〈H,−LΛH〉 = −
∫

Λ

h1∆h1 du−
∫

Λ{

h2∆h2 du =

∫
Λ

|∇h1|2 du+

∫
Λ{

|∇h2|2 du ≥ 0,

where the second equality above holds due to the second Green identity, see Ap-
pendix 2.8, Theorem 2.8.2.

Lemma 2.7.6. The embedding HNeu
Fried ↪→ L2(Td) is compact.

Proof. Let {Hn} be a bounded sequence in HNeu. Fix a sequence {Fn} of functions
in DNeu such that ‖Fn −Hn‖ → 0 when n → ∞ and {Fn} is also bounded in HNeu

Fried.
Thus, to show the compact embedding we need to prove that {Hn} has a convergent
subsequence in L2(Td). To get a convergent subsequence of {Hn}, it is sufficient to
find a convergent subsequence of {Fn} in L2(Td). Write Fn = fn1Λ + f̃n1Λ{, with
fn ∈ C2(Td). Then,

〈Fn, Fn〉E(I−LNeu) = 〈Fn, Fn〉+ 〈Fn,−LNeuFn〉

= 〈fn1Λ + f̃n1Λ{ , fn1Λ + f̃n1Λ{〉+ 〈fn1Λ + f̃n1Λ{ ,−∆fn1Λ −∆f̃n1Λ{〉.

Expanding the right hand side and using Green identity, see Appendix 2.8, Theo-
rem 2.8.2, we get that∫

Λ

f 2
n du+

∫
Λ{

f̃n
2
du−

∫
Λ

fn∆fn du−
∫

Λ{

f̃n
2
∆f̃n du

= ‖fn1Λ‖2 + ‖f̃n1Λ{‖2 + ‖∇fn1Λ‖2 + ‖∇f̃n1Λ{‖2 .

Under the hypotheses of boundedness of the sequence {Fn} in the norm induced
by 〈·, ·〉E(I−LNeu), the sequences {‖fn1Λ‖2}, {‖f̃n1Λ{‖2}, {‖∇fn1Λ‖2} and {‖∇f̃n1Λ{‖2}
are bounded. By the Rellich-Kondrachov Compactness Theorem, {fn1Λ}, {f̃n1Λ{}
have a common convergent subsequence in L2(Td). This implies that {Fn} has a
convergent subsequence.

2.8 Auxiliary results
Proposition 2.8.1 ([7]). Let G1, G2, G3 are continuous functions defined on the
torus d-dimensional Td. Then, the application fromD([0, T ],M) to R that associates
to a trajectory {πt : 0 ≤ t ≤ T} the number

sup
0≤t≤T

∣∣∣〈πt, G1〉 − 〈π0, G2〉 −
∫ t

0

〈πs, G3〉 ds
∣∣∣

is continuous in the Skorohod metric of D([0, T ],M).
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Theorem 2.8.2 (Green’s formulas, see for instance Appendix C of [5]). Let u, v ∈
C2(Ū), where U is a bounded open subset of Rn, and ∂U is C1. Denote by · the inner
product in Rn, and by ν the normal exterior unitary vector to U at ∂U . Then,

(i)
∫
U

∆udx =
∫
∂U

∂u
∂ν
dS,

(ii)
∫
U
∇v · ∇u dx = −

∫
U
u∆v dx+

∫
∂U

∂u
∂ν
u dS,

(iii)
∫
U
u∆v − v∆u dx =

∫
∂U
u∂u
∂ν
− v ∂u

∂ν
dS.
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Chapter 3

Non-equilibrium Fluctuations for
the SSEP with a slow bond

3.1 Introduction
One of the most challenging problems in the field of interacting particle sys-

tems is the derivation of the non-equilibrium fluctuations around the hydrody-
namic limit and up to now there is not a satisfactory and robust theory that one
can apply successfully. The main difficulty that one faces is to understand the pre-
cise asymptotic behavior of the long range correlations of the system. To be more
precise, when letting the interacting system start from a general measure (typi-
cally a non invariant measure for which the hydrodynamic limit can be obtained),
the correlations between any two sites are not null, but decay to zero as the scaling
parameter n grows.

In many situations a uniform bound on the correlation function of order O(1/n)
is sufficient to obtain the non-equilibrium fluctuations of the system (see [4, 22] for
instance). For the model that we are going to describe in the sequel, the uniform
bound on the correlation function happens to be of order O(log n/n), demanding
new efforts both on the derivation of such a bound and on the application of such
a bound on the proof of the non-equilibrium fluctuations.

To be more specific, here we study the symmetric simple exclusion process
(SSEP) evolving on Z when a slow bond is added to it. The dynamics of this model
is defined as follows. On Z, particles at the vertexes of the bond {x, x+1} exchange
positions at rate 1, except at the particular bond {0, 1}, where the rate of exchange
is given by α/n, with α ∈ (0,+∞). Since the rate at the bond {0, 1} is slower with
respect to the rates at other bonds, the bond {0, 1} coined the name slow bond.
Particles move on the one-dimensional lattice according to those rates of exchange
and they are not created nor annihilated, being the spatial disposition of particles
the object of interest.

The investigation on the behaviour of this process was initiated in [7] where
the hydrodynamic limit was derived (see also [12, 9]). By this we mean that the
density of particles of the system converges to a function ρt(·) which is a weak
solution to a partial differential equation, called the hydrodynamic equation. For
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the choice of the rates given above, the corresponding hydrodynamic equation is
the one-dimensional heat equation with a boundary condition of Robin type:

∂tρ(t, u) = ∂2
uuρ(t, u) , for u 6= 0,

∂uρ(t, 0+) = ∂uρ(t, 0−) = α
[
ρ(t, 0+)− ρ(t, 0−)

]
,

ρ(0, u) = ρ0(u),
(3.1)

where 0+ and 0− denote the side limits at zero from the right and from the left,
respectively.

In fact, in [7] a more general choice for the rates was considered, and three
different hydrodynamical behaviours were obtained. There, the slow bond was
taken as the bond {−1, 0} instead of {0, 1}, and the rate of exchange at that bond
was given by α

nβ
, with β ≥ 0 and α as given above. The choice of the slow bond

as {0, 1} or {−1, 0} is essentially a matter of notation, having no special relevance.
On the other hand, depending on the range of β, the boundary conditions of the
hydrodynamic equation can be of Neumann type (when β > 1), which corresponds
to (3.1) with α = 0; or there is an absence of boundary conditions (when β ∈ [0, 1)).
The model we approach here corresponds to the choice β = 1 in [7].

The effect of the slow bond at a microscopic level is obvious: it narrows down the
passage of particles across it. At a macroscopic level, its presence leads to bound-
ary conditions in the partial differential equation. By looking at the hydrodynamic
equation (3.1), we see that the boundary conditions characterize the current of the
system through the macroscopic position u = 0. The boundary conditions state
that the current is proportional to the difference of concentration of the intervals
(0,+∞) and (−∞, 0) near the boundary, which is in agreement with Fick’s Law.

The equilibrium fluctuations for this model were presented in [8] and three
different Ornstein-Uhlenbeck processes were obtained, which again had the cor-
responding boundary conditions as seen at the hydrodynamical level. We extend
here the results of [8] by allowing the system to start from any measure and not
necessarily from the stationary measure, namely the Bernoulli product measure,
as required in [8]. The choice of rates as described above is restricted to β = 1 so
that we are in the Robin’s regime.

As the main theorem, we prove the non-equilibrium fluctuations and show that
they are given by an Ornstein-Uhlenbeck process with Robin boundary conditions.
By an Ornstein-Uhlenbeck process with Robin boundary conditions it should be
understood, in the same spirit as in [8], that these boundary conditions are en-
coded in the space of test functions, see (3.7) below. Microscopically, the role of
the boundary conditions at the level of the test functions is to force some additive
functionals that appear in the Dynkin martingale to vanish as n grows. If we do
not impose the boundary conditions of (3.7) on the test functions, then we would
need some extra arguments to control those additive functionals. This is left to a
future work.

The proof ’s structure is the standard one in the theory of stochastic processes:
tightness for the sequence of density fields together with uniqueness of limit points.
Let us discuss next the features of the work, besides the non-equilibrium result it-
self. And at same time we give the outline of the paper.
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The biggest difficulty we face in our proof is undoubtedly the fact that the slow
bond decreases the speed at which correlations vanish. In the usual SSEP, where
all bonds have rate one, correlations are of order O(1/n). In our case however,
correlations are of order O(log n/n), therefore bigger than in the usual SSEP. For
sites on the same side of the slow bond this fact is intuitive: correlations should
actually increase since it is more difficult for particles to cross the slow bond. Curi-
ously, our proof shows that the same happens for sites at different sides of the slow
bond, that is, correlations are of order O(log n/n) on the entire line. An intuition
of why this happens is given in Remark 3.4.3, and a discussion of why the bound
O(log n/n) is sharp is made in Subsection 3.4.3.

In Section 3.2 we define the symmetric simple exclusion process in the presence
of a slow bond at {0, 1}, we introduce notations and we state the main results of
the article. At the end of this section, three related open problems are presented.

In Section 3.4 we establish connections between the two-point correlation func-
tion and the discrete derivative with the expected occupation time of a site of
two-dimensional and one-dimensional random walks, respectively, in an inhomo-
geneous medium. This is one of the features: the way itself to estimate correlations
via local times of random walks, which we believe may be applied to different con-
texts. The idea behind that is actually simple. We express both the discrete deriva-
tive and the correlation function as solutions to some discrete equations, then we
use Duhamel’s Principle to write each one of these solutions in terms of transi-
tion probabilities of random walks, in 1-d when looking at the discrete derivative
and in 2-d when looking at the correlation function. Then, the local times of these
random walks show up naturally from these arguments and we need to establish
optimal bounds for them.

Since the necessary estimates for local times of random walks were not yet
available in the literature, we derive them in Section 3.3 by means of projection of
Markov chains (also known as lumping) and couplings. The statements of those
estimates may look artificial at first glance, but they naturally appear when one
looks for estimates on the discrete derivative of the occupation average at a site
and for the two-point correlation function, as aforementioned.

An additional feature is about uniqueness of the Ornstein-Uhlenbeck process
with Robin boundary conditions in the non-equilibrium setting, where the vari-
ance is governed by the PDE (3.1). Suitably adapting the proofs of [14, 18], we give
a slightly more general version of uniqueness, which permits to consider more gen-
eral starting measures than the usual slowly varying product measure. The gener-
alization here consists on supposing that the density field associated to the initial
measure does not necessarily converge to a Gaussian field, but only to some field.
Moreover, this proof of uniqueness has a pedagogical importance, since the origi-
nal proof of uniqueness for the Ornstein-Uhlenbeck process in the non-equilibrium
setting, to the best of our knowledge, is not available in the literature.

Finally, in Section 3.5 we present the proof of the density fluctuations, which
relies on the estimates of the discrete derivative of expected occupation number at
a site, and on the two-point correlation function. A small but important detail is
the fact that the estimate on the discrete derivative is sufficient for our purposes.
In previous works ([4, 22]), the proof of non-equilibrium fluctuations was based on
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the convergence of the spatially discretized heat equation towards the continuum
heat equation. Such an approximation is quite good, of order O(n−2), and quite
hard to adapt to the non-homogeneous medium set up without some uniform ellip-
ticity assumption as in [17]. On the other hand, the discrete derivative estimate
for the spatially discretized PDE is much easier to reach, as seen here. This idea on
making use of the discrete derivative first appeared in [11], but its utility becomes
more evident now.

3.2 Statement of results

3.2.1 The model
We fix a parameter α > 0, and we consider the symmetric simple exclusion

process {ηt : t ≥ 0} with a slow bound as defined in [7]. More precisely, {ηt : t ≥ 0}
is the Markov process with state space Ω

def
= {0, 1}Z, and infinitesimal generator Ln

acting on local functions f : Ω→ R via

(Lnf)(η) =
∑
x∈Z

ξnx,x+1

(
f(ηx,x+1)− f(η)

)
(3.2)

where

ξnx,x+1
def
=

{
1 , if x 6= 0 ,
α
n
, if x = 0 .

(3.3)

Here, for any x ∈ Z, the configuration ηx,x+1 is obtained from η by exchanging the
occupation variables η(x) and η(x+ 1), i.e.,

(ηx,x+1)(y) =


η(x+ 1) , if y = x ,
η(x) , if y = x+ 1 ,
η(y) , otherwise,

see Figure 3.1 for an illustration of the jump rates. Given η ∈ {0, 1}Z, we then say
that the site x ∈ Z is vacant if η(x) = 0 and occupied if η(x) = 1.

−3 −2 −1 0 1 2 3 4

1

1

1

1

α/n

1

1

1

1

α/n

Figure 3.1: Jump rates. The bond {0, 1} has a particular jump rate associated to
it, which is given by α/n.
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3.2.2 Hydrodynamic limit
Fix a measurable density profile ρ0 : R → [0, 1]. For each n ∈ N, let µn be a

probability measure on Ω. We say that the sequence {µn}n∈N is associated with
the profile ρ0(·) if, for any δ > 0 and any continuous function of compact support
f : R→ R, the following holds:

lim
n→∞

µn

[
η :
∣∣∣ 1
n

∑
x∈Z

f(x
n
) η(x)−

∫
f(u) ρ0(u) du

∣∣∣ > δ

]
= 0 . (3.4)

Fix T > 0, and let D([0, T ],Ω) be the space of trajectories which are right continu-
ous, with left limits and taking values in Ω. Denote by Pµn the probability measure
on D([0, T ],Ω) induced by the SSEP with a slow bond accelerated by n2, i.e., the
Markov process with generator n2Ln, and initial measure µn. With a slight abuse
of notation, we also use the notation {ηt : t ∈ [0, T ]} for the accelerated process.
Denote by Eµn the expectation with respect to Pµn. In [7, 9] the hydrodynamical
behaviour was studied. We note that the process there was studied in finite volume,
i.e., the model was considered on the discrete torus embedded into the continuous
one-dimensional torus. However, since the extension to infinite volume is just a
topological issue, the statement below can be obtained via an adaptation of the
original approach:

Theorem 3.2.1 ([7, 9]). Suppose that the sequence {µn}n∈N is associated to the pro-
file ρ0(·) in the sense of (3.4). Then, for each t ∈ [0, T ], for any δ > 0 and any
continuous function f : R→ R with compact support,

lim
n→+∞

Pµn

[
η· :
∣∣∣ 1
n

∑
x∈Z

f(x
n
) ηt(x)−

∫
R
f(u) ρ(t, u) du

∣∣∣ > δ

]
= 0 ,

where ρ(t, ·) is the unique weak solution of the heat equation with Robin boundary
conditions given by

∂tρ(t, u) = ∂2
uuρ(t, u), t ≥ 0, u ∈ R\{0},

∂uρ(t, 0+) = ∂uρ(t, 0−) = α
[
ρ(t, 0+)− ρ(t, 0−)

]
, t ≥ 0,

ρ(0, u) = ρ0(u), u ∈ R.
(3.5)

Here, ρ(t, 0+) and ρ(t, 0−) denote the limit from the right and from the left at
zero, respectively. The notation 0± will be used throughout the article.

3.2.3 Space of test functions and semigroup
In this section we introduce a space of test functions, that is suitable for our

purposes, and which, basically, coincides with the one in [10]. Here, functions are
continuous from the left at zero, while in [10] functions are continuous from the
right. This subtle difference is due to choice of slow bond’s position, which is {0, 1}
here and {−1, 0} in [10].

Definition 6. We denote by Sα(R) the space of functions f : R→ R such that:
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(i) f is smooth on R\{0}, i.e. f ∈ C∞(R\{0}),

(ii) f is continuous from the left at 0,

(iii) for all non-negative integers k, `, the function f satisfies

‖f‖k,` := sup
u6=0

∣∣∣(1 + |u|`)d
kf

duk
(u)
∣∣∣ < ∞ . (3.6)

(iv) for any integer k ≥ 0,

d2k+1f

du2k+1
(0+) =

d2k+1f

du2k+1
(0−) = α

(
d2kf

du2k
(0+)− d2kf

du2k
(0−)

)
. (3.7)

Moreover, S ′α(R) denotes the topological dual of Sα(R).

In plain words, Sα(R) essentially consists of the space of functions in the Schwartz
space S(R) that are not necessarily smooth at the origin. It is a consequence of (3.6)
that dkf

duk
(0+) and dkf

duk
(0−) exist for all integers k ≥ 0. As in [8], one may show that

Sα(R) is a Fréchet space (this fact was only used when showing tightness, see
[21]). We recall below the explicit formula for the semigroup that corresponds to
the PDE (3.5).

Proposition 3.2.2 ([8]). Denote by geven and godd the even and odd parts of a func-
tion g : R→ R, respectively. That is, for u ∈ R,

geven(u) =
g(u) + g(−u)

2
and godd(u) =

g(u)− g(−u)

2
.

The solution of (3.5) with initial condition g ∈ Sα(R) is given by

Tαt g(u) =
1√
4πt

{∫
R
e−

(u−y)2

4t geven(y) dy

+ e2αu

∫ +∞

u

e−2αz

∫ +∞

0

[
( z−y+4αt

2t
)e−

(z−y)2

4t + ( z+y−4αt
2t

)e−
(z+y)2

4t

]
godd(y) dy dz

}
,

for u > 0, and

Tαt g(u) =
1√
4πt

{∫
R
e−

(u−y)2

4t geven(y) dy

− e−2αu

∫ +∞

−u
e−2αz

∫ +∞

0

[
( z−y+4αt

2t
)e−

(z−y)2

4t + ( z+y−4αt
2t

)e−
(z+y)2

4t

]
godd(y) dy dz

}
,

for u < 0.

The next proposition connects Tαt with the space of test functions Sα(R).
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Proposition 3.2.3 ([10]). The operator Tαt defines a semigroup Tαt : Sα(R)→ Sα(R).
That is, for any given g ∈ Sα(R) and any time t > 0, the solution Tαt g of the PDE
(3.5) starting from g also belongs to Sα(R).

Definition 7. Let ∆α : Sα(R) → Sα(R) be the Laplacian on Sα(R), i.e., for any
f ∈ Sα(R),

∆αf(u) =

{
∂2
uuf(u) , if u 6= 0 ,

∂2
uuf(0+) , if u = 0 .

(3.8)

The definition of the operator ∇α : Sα(R)→ C∞[0, 1] is analogous.

3.2.4 Discrete derivatives and covariance estimatives
Fix an initial measure µn on Ω. For x ∈ Z and t ≥ 0, let

ρnt (x)
def
= Eµn

[
ηt(x)

]
. (3.9)

A simple computation shows that ρnt (·) is a solution of the discrete equation

∂tρ
n
t (x) =

(
n2Anρnt

)
(x) , x ∈ Z , t ≥ 0 , (3.10)

where the operator An acts on functions f : Z→ R as

(Anf)(x) := ξnx,x+1

(
f(x+ 1)− f(x)

)
+ ξnx−1,x

(
f(x− 1)− f(x)

)
, ∀x ∈ Z , (3.11)

with ξx,x+1 as defined in (3.3).

Definition 8. For x, y ∈ Z, and t ∈ [0, T ], define the two-point correlation function

ϕnt (x, y)
def
= Eµn

[
ηt(x)ηt(y)

]
− ρnt (x)ρnt (y) . (3.12)

We now state two results that are fundamental for the study of density fluctu-
ations, which are interesting by themselves.

Theorem 3.2.4 (Discrete derivative estimate). Assume that there exists a constant
c > 0 that does not depend on n such that

sup
x∈Z
|ρn0 (x)− ρ0

(
x
n

)
| ≤ c

n
. (3.13)

Then, there exists c > 0 such that, for all t ∈ [0, T ], and all n ∈ N,

∣∣ρnt (x+ 1)− ρnt (x)
∣∣ ≤ {

c
n
, if x 6= 0,

c, if x = 0.

Note that the second inequality above is obvious, but we kept in the statement
of the theorem for the sake of clarity.
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Theorem 3.2.5 (Correlation estimate). Assume that there exists a constant c > 0
that does not depend on n such that

sup
(x,y)∈V

|ϕn0 (x, y)| ≤ c

n
. (3.14)

Moreover, assume that (3.13) is satisfied. Then, there exists ĉ > 0 such that for all
n ∈ N,

sup
t≤T

sup
(x,y)∈V

|ϕnt (x, y)| ≤ ĉ log n

n
, (3.15)

where V := {(x, y) ∈ Z× Z : y ≥ x+ 1}.

Remark 3.2.6. Note that by the symmetry of the correlation function, Theorem 3.2.5
immediately implies (3.15) for x 6= y.

3.2.5 Ornstein-Uhlenbeck process
Let ρ(t, ·) be the unique solution of the hydrodynamic equation (3.5). In what

follows, D([0, T ],S ′α(R)) (resp.
C([0, T ],S ′α(R))) denotes the space of càdlàg (resp. continuous) S ′α(R) valued func-
tions endowed with the Skohorod topology. We also denote by χ the static com-
pressibility defined by χ(ρ) = ρ(1 − ρ). Denote by

〈
·, ·〉ρt(·) the inner product with

respect to L2
Λt

(R), where the measure Λt(du) is given by

Λt(du)
def
= 2χ(ρt(u))du+

1

α

[
ρt(0

−)(1− ρt(0+)) + ρt(0
+)(1− ρt(0−))

]
δ0(du) , (3.16)

where δ0(du) denotes the Dirac measure at zero. More precisely, for f, g ∈ Sα(R),

〈
f, g
〉
ρt(·)

=

∫
R

2χ(ρt(u)) f(u)g(u) du

+
1

α

[
ρt(0

−)(1− ρt(0+)) + ρt(0
+)(1− ρt(0−))

]
f(0)g(0) .

Proposition 3.2.7. There exists a unique (in distribution) random element Y tak-
ing values in the space C([0, T ],S ′α(R)) such that the following two conditions hold:

i) For every function f ∈ Sα(R), the stochastic processesMt(f) and Nt(f) given
by

Mt(f) = Yt(f)− Y0(f)−
∫ t

0

Ys(∆αf)ds , (3.17)

Nt(f) =
(
Mt(f)

)2 −
∫ t

0

‖∇αf‖2
ρs(·) ds (3.18)

are Ft-martingales, where for each t ∈ [0, T ], Ft := σ(Ys(f); s ≤ t, f ∈ Sα(R)).

ii) Y0 is a random element taking values in S ′α(R) with a fixed distribution.

Moreover, if i) and ii) hold, then:
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• for each f ∈ Sα(R), conditionally to Fs with s < t, the distribution of Yt(f) is
normal of mean Ys(Tαt−sf) and variance

∫ t
s
‖∇αT

α
r f‖2

ρr(·) dr.

• If Y0 is a Gaussian field, then the stochastic process {Yt(f) ; t ≥ 0} will be
Gaussian indeed.

In other words, if Y1 and Y2 are random elements taking values on C([0, T ],S ′α(R))
and satisfying the martingale problem described above by i) and ii), then Y1 and
Y2 must have the same distribution.

It is common in the literature to write the martingale problem stated above as
a formal solution of some generalized stochastic partial differential equation. We
discuss it with no mathematical rigor, aiming only at giving some intuition on the
fluctuations’ global behavior.

We call the random element Y a generalized Ornstein-Uhlenbeck process, de-
fined via Proposition 3.2.7, which takes values on C([0, T ],S ′α(R)) and it is the for-
mal solution of

dYt = ∆αYtdt+∇α dWt , (3.19)

where:
• The operators ∆α and ∇α have been given in Definition 7 and are usually

referred to as the characteristics of the Ornstein-Uhlenbeck process.
• W is a space-time white noise with respect to the measure Λs(du), i.e.,W is a

mean-zero Gaussian random element taking values in the dual space of L2
Λ([0,∞)×

R) with covariances given by

E
[
W(F )W(G)

]
=

∫ ∞
0

∫
R
F (s, u)G(s, u) dΛ(s, u) , ∀F,G ∈ L2

Λ([0,∞)× R) ,

where dΛ(s, u) = dΛs(u)× ds, and Λs has been defined in (3.16).
• For f ∈ Sα(R), we defineWt(f) :=W(f1[0,t]). In particular, {Wt(f) : f ∈ Sα(R)}

is a Gaussian process with covariance given on f, g ∈ Sα(R) by

E
[
Wt(f)Wt(g)

]
=

∫ t

0

〈f, g〉ρs(·)ds .

3.2.6 Non-equilibrium fluctuations
We define the density fluctuation field Yn as the time-trajectory of a linear func-

tional acting on functions f ∈ Sα(R) via

Ynt (f)
def
=

1√
n

∑
x∈Z

f(x
n
)
(
ηt(x)− ρnt (x)

)
. (3.20)

For each n ≥ 1, let Qn be the probability measure on D([0, T ],S ′α(R)) induced by
the density fluctuation field Yn and a measure µn. We now state the main result of
this paper:

Theorem 3.2.8 (Non-equilibrium fluctuations). Consider the Markov processes
{ηt : t ≥ 0} starting from a sequence of probability measures {µn}n∈N associated
with a profile as in (3.4), and assume:
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(A) Conditions (3.13) and (3.14) on mean and covariance, respectively.

(B) There exists a S ′α(R)-valued random variable Y0 such that Yn0 converges in dis-
tribution to Y0, whose law we denote by L.

Then, the sequence of processes {Ynt }n∈N converges in distribution, as n → +∞,
with respect to the Skorohod topology of D([0, T ],S ′α(R)) to a random element Y in
C([0, T ],S ′α(R)), the generalized Ornstein-Uhlenbeck which is a solution of (3.19),
and Y0 has law L.

It is of worth to give examples of sequences {µn}n∈N of initial measures sat-
isfying assumptions (A) and (B). Next, we present two examples of such initial
measures and we leave an open question on the subject.

The first example we present is the standard one for non-equilibrium fluctua-
tions: take {µn}n∈N as the slowly varying Bernoulli product measure
{νnρ0(·)}n∈N associated with a smooth profile ρ0 : R→ [0, 1], that is, νnρ0(·) is a product
measure on {0, 1}Z such that

νnρ0(·)
{
η ∈ {0, 1}Z : η(x) = 1

}
= ρ0

(
x
n
) .

Obviously, (A) is satisfied. The proof that (B) holds is just an adaptation of the
analogous result for the SSEP, being included in Proposition 3.7.1 for the sake of
completeness.

The second example we discuss is somewhat artificial, but, in any case, illus-
trates the existence of a sequence of non-product measures satisfying (A) and (B).
Let µn be the measure on Ω induced by the distribution at the time rn2, where
r > 0 is fixed, of the (homogeneous) one-dimensional SSEP started from the slowly
varying measure νnρ0(·) defined above.

From the propagation of local equilibrium for the SSEP (see [18] and references
therein), one can check that condition (3.13) holds. Besides that, it is well known
that the SSEP has longe range correlations of order O(1/n), giving (3.14). Thus,
assumption (A) is satisfied. From the non equilibrium fluctuations for the homo-
geneous SSEP (see [4, 22]) one can deduce that (B) is satisfied, where the law L is
determined by the distribution of the Ornstein-Uhlenbeck process at time r > 0.

We now debate the issue of which properties a sequence of initial measures
should have in order to satisfy (A) and (B). Assume, for the moment, that the
initial measures {µn}n∈N for the Markov processes {ηt : t ≥ 0} satisfy:

(i) Condition (3.13) holds.

(ii) For each n ∈ N, the correlation at the initial time is of order O(1/n) times a
bounded profile ζn, that is,

ϕn0 (x, y) =
ζn(x

n
, y
n
)

n
, ∀x, y ∈ Z , ∀n ∈ N ,

where the sequence of functions ζn : R × R → R+ converge uniformly to a
bounded continuous function ζ : R × R → R+ as n → ∞. Note that this
implies (3.14).
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Under (i) and (ii), condition (A) holds. Moreover, under (i) and (ii), and following
the same steps of Subsection 3.5.2, one can obtain tightness of {Yn0 }n∈N. Hence,
in order to achieve (B), it is only missing the convergence in distribution of the
sequence of initial density fields {Yn0 }n∈N. Let f, g ∈ Sα(R). By simple calculations,

Eµn
[
Yn0 (f)Yn0 (g)

]
=

1

n

∑
x∈Z

f(x
n
)g(x

n
)Eµn

[(
η0(x)

)2
]

+
1

n

∑
x 6=y
x,y∈Z

f(x
n
)g( y

n
)ϕn0 (x, y) .

Above η̄ denotes the centered random variable η : η̄t(x) := ηt(x) − ρnt (x). Under (i)
and (ii), it is easy to check that expression above converges to∫

R
χ(ρ0(u))f(u)g(u) du+

∫
R

∫
R
ζ(w, r)f(w)g(r) dw dr

as n → ∞. Note that the limit above indicates that 1/n is the right order on the
decay of correlations in order to exist a limiting non zero effect on the distribution
of initial density field Y0. However, convergence of means and decay of correlations
do not suffice to assure that Yn0 (f) actually converges in distribution: some special
central limit theorem is required here. This CLT is not an easy subject due to the
slow decay of correlations and due to the fact that for each n, the random variables
η0(x) may have different distributions. We therefore leave it as an open question:

Open Question 1. Given assumption (A) of Theorem 3.2.8, which additional hy-
potheses are necessary for (B) to hold?

Without going into details, we affirm that a natural strategy to prove cur-
rent/tagged particle fluctuations relies in a decay of correlations of order
O(1/n), see [16]. However, the correlations of the non equilibrium SSEP with a
slow bond here considered are of order O(log n/n), see Theorem 3.2.5. Moreover,
the current/ tagged particle fluctuations for the equilibrium scenario with a slow
bond are already understood, see [8]. This leads us to:

Open Question 2. How to prove current/tagged particle fluctuations for the non
equilibrium SSEP with a slow bond? May (or must) a different scaling be consid-
ered?

Finally, naturally inspired by [8], we state:

Open Question 3. Consider β > 0 with β 6= 1. How to prove non-equilibrium
fluctuations for the one-dimensional SSEP with a slow bond of rate αn−β?

We believe that this last open problem shall be solved by the methods of this
paper, and we leave it for a future work. For the first two problems, we have no
clear strategy to solve it.

3.3 Estimates on local times
In this section we derive estimates on the local times of a random walk with

inhomogeneous rates, which will be later used in Section 3.4 in the proofs of The-
orems 3.2.4 and 3.2.5. In the sequel, given any Markov chain Z and a set A, we
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denote by Lt(A) the local time of Z in A until time t:

Lt(A)
def
=

∫ t

0

1{Zs∈A}ds . (3.21)

3.3.1 Estimates in dimension two
We denote by {(Xt,Yt); t ≥ 0} the random walk on the set V = {(x, y) ∈ Z× Z :

y ≥ x+ 1} with generator Bn acting on local functions f : V → R via(
Bnf

)
(u)

def
=
∑
v∈V

cn(u, v)
[
f(v)− f(u)

]
, ∀u ∈ V . (3.22)

Here, the rates are defined as pictured in Figure 3.2. More precisely, for u = (u1, u2)
and v = (v1, v2) such that the L1-norm1 satisfies ‖u− v‖1 = 1, we define

cn(u, v)
def
=

{
α
n
, if (u, v) ∈ U ,

1, if u /∈ U or v /∈ U.

and cn(u, v) = 0 if the L1-distance of u and v is not equal to one. Here, U is the
subset of V given by

U
def
=
{

(x, y) ∈ V : x ∈ {0, 1} and y ≥ 2
}
∪
{

(x, y) ∈ V : x ≤ −1 and y ∈ {0, 1}
}
,

and U is the subset of U⊗2 defined via

U def
=
{

(u, v) ∈ U⊗2 : ‖u− v‖ = 1, |u1 − v1| = 1 and u2, v2 ≥ 2
}

∪
{

(u, v) ∈ U⊗2 : ‖u− v‖ = 1, |u2 − v2| = 1 and u1, v1 ≤ −1
}
.

(3.23)

We furthermore denote by D the “upper diagonal” defined by D def
=
{

(x, y) ∈ Z2 :
y = x+ 1

}
, see Figure 3.2 below.

x

y

Figure 3.2: Sets V , D and U and U . Sites of V are the ones laying on the light
gray region. Sites in D lay on the dotted line and sites of U are marked as gray
balls. Elements of U are edges marked with a thick black segment having jump
rate equal to α/n (slow bonds). Any other edges have rate 1.

1We write ‖ · ‖1 for the L1-norm on Z2, that is, ‖(u1, u2)‖1 = |u1|+ |u2|.
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By E(x,y), and P(x,y) we denote the corresponding probability and expectation when
starting from (x, y) ∈ V . The goal of this section is to prove the following result.

Proposition 3.3.1. There exists a constant c > 0 such that for all (x, y) ∈ V , all
n ∈ N, and all t ≥ 0,

E(x,y)

[
Ltn2

(
D\{(0, 1)}

)]
≤ cn

√
t, and

E(x,y)

[
Ltn2

(
{(0, 1)}

)]
≤ c log(tn2).

(3.24)

To prove Proposition 3.3.1, we estimate first in Lemma 3.3.2 the local time of a
simple random walk confined to the boundary of the set

W
def
= {(x, y) ∈ Z2 : 0 ≤ x ≤ y} ,

which is V intersected with the first quadrant shifted by the vector (1, 2). In plain
words we identified the vertex (1, 2) in V with the origin, which is a change only of
notational nature. Its proof consists on a comparison argument, which is the con-
tent of Proposition 3.3.3. Afterwards, in Lemma 3.3.5, we show that the expected
number of jumps over the set of slow bonds (i.e., those with rates α/n) is finite.
Finally, with all that at hand, we are able to finish the proof.

We denote by (X ,Y ) the continuous time simple random walk on W that
jumps from a site z1 ∈ W to any fixed neighbouring site z2 ∈ W at rate 1, i.e.,
the simple random walk reflected at the boundary of W (which takes a triangular
shape, see Figure 3.3). In particular the total jump rate out of z1 ∈ W is equal to
the number of nearest neighbours of z1 that lay inside W . Expectation with respect
to (X ,Y ) conditioned to start at (x, y) ∈ W is denoted by E(x,y).

x

y

1

1

1

1

1

Figure 3.3: For (X ,Y ) any jump rate is equal to 1.

Lemma 3.3.2. There exists a constant c > 0 such that for all t ≥ 0 and all (x, y) ∈
W ,

E(x,y)

[
Lt(∂W )

]
≤ c
√
t . (3.25)

To prove the above lemma we will need two additional results. To introduce the
first one, we remind the reader that a continuous time Markov chain on a count-
able set E can be constructed from a transition probability p on E and a bounded
function λ : E → (0,∞) as follows:
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(1) sample a discrete time Markov chain (ξn)n≥0 with transition probability p;

(2) sample a sequence of independent random variables (τn)n≥0 such that τn is
exponentially distributed with rate λ(ξn) and define the successive sequence
of jump times via T0 = 0 and Tn = τn + Tn−1 for n ≥ 1;

(3) finally, define the continuous time Markov chain Z via

Zt = ξn1{Tn≤t<Tn+1} .

To continue, we fix a transition probability p on E and for any a, b such that 0 <
a ≤ b < ∞, we denote by Z [a,b] the continuous time Markov chain with transition
probability p and such that its field of rates (λ[a,b](x))x∈G is such that λ[a,b](x) ∈ [a, b]
for all x ∈ G. We denote the expectation with respect to Z [a,b] started in z ∈ E by
E

[a,b]
z .

Proposition 3.3.3. Fix 0 < a < b < c < d < ∞, and define Λ
def
= supx∈E

λ[c,d](x)

λ[a,b](x)
. For

any A ⊆ E and any z ∈ E ,

E[c,d]
z

[
Lt(A)

]
≤ E[a,b]

z

[
LΛt(A)

]
. (3.26)

The second result is about projections (also called lumping) of continuous time
Markov chains.

Proposition 3.3.4. Let E be a countable set, and consider a bounded function ζ :
E × E → [0,∞). Let (Xt)t≥0 be the continuous time Markov chain with state space E
and jump rates {ζ(x, y)}x,y∈Ω. Fix an equivalence relation ∼ on E with equivalence
classes E ] = {[x] : x ∈ E} and assume that ξ satisfies∑

y′∼y

ζ(x, y′) =
∑
y′∼y

ζ(x′, y′) (3.27)

whenever x ∼ x′. Then, ([Xt])t≥0 is a Markov chain with state space E ] and jump
rates ζ([x], [y]) =

∑
y′∼y ζ(x, y′).

We first prove Proposition 3.3.3, afterwards Proposition 3.3.4 and finally we
prove Lemma 3.3.2.

Proof of Proposition 3.3.3. To prove (3.26) we use a coupling argument. We do so
by first sampling the discrete time Markov chain (ξn)n≥0 as alluded above, and we
intend to construct Z [a,b] and Z [c,d] both from the same realization of (ξn)n≥0. To that
end, we consider an independent field of Poisson clocks (N

[c,d]
x )x∈E such that for any

x ∈ E the rate of N [c,d]
x equals λ[c,d](x). We further define

N [a,b]
x (t)

def
= N [c,d]

x

( t

λ[c,d](x)
λ[a,b](x)

)
and it readily follows that for each x ∈ E the process N [a,b]

x is a Poisson process with
rate λ[a,b](x). Hence, it follows from the construction outlined before the statement
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of Proposition 3.3.3 that the construction above yields indeed a coupling of Z [a,b]

and Z [c,d].
This coupling has the following two properties, which immediately proves (3.26).

Denote by Z [c,d]
[0,t] the sequence of visited points by the process Z[0,t] until time t, with

an analogous definition for Z [a,b]
[0,Λt].

(1) There exists some u ∈ [0,Λt] such that Z [c,d]
[0,t] = Z

[a,b]
[0,u]. That is, the sequence

Z
[c,d]
[0,t] is an initial piece of Z [a,b]

[0,Λt].

(2) Given x ∈ Z
[c,d]
[0,t] , then at its k-th visit to x the holding time at that point of

Z [a,b] is larger than the one of Z [c,d].

Proof of Proposition 3.3.4. Let P be the transition matrix of the skeleton chain of
(Xt)t≥0 (i.e., of the underlying discrete time Markov chain). Assumption (3.27)
implies that

P (x, [y]) = P (x′, [y])

whenever x ∼ x′. It then follows from [20, Lemma 2.5, pp. 25] that the skeleton
chain of ([Xt])t≥0 is a discrete time Markov chain with transition matrix given by
P ]([x], [y]) := P (x, [y]). Thus, it remains to show that the holding times of ([Xt])t≥0

are exponentially distributed with rates
{∑

[y] ζ([x], [y])
}

[x]∈E]
. Yet, this is, as well,

a consequence of (3.27). Hence, we can conclude the proof.

Proof of Lemma 3.3.2. The proof comes in two steps.

x

y

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Rates of
(
X�,Y�

)
are

everywhere equal to 1/2.

x

y

1

1

1
2

1
2

1
2

(
[X�], [Y�]

)
only lives on the upper

triangle. The rates out of diagonal
are doubled, but the rates towards
the diagonal remain 1/2.

Figure 3.4: Relation between
(
X�,Y�

)
and

(
[X�], [Y�]

)
.
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1st Step. In this step we show that it is sufficient to estimate the local time of a
simple random walk on

Z2
≥0

def
= {(x, y) ∈ Z2 : x, y ≥ 0} ,

and we refer the reader to Figure 3.3 and 3.4 for an illustration of the various ran-
dom walks that will appear in this part of the proof. To that end, let (X2,Y2) be a
simple random walk defined on Z2

≥0 that jumps from z1 ∈ Z2
≥0 to a fixed neighbour-

ing site z2 ∈ Z2
≥0 at rate 1

2
. Write

∂Wdiag
def
= {(x, y) ∈ W : x = y} . (3.28)

Our aim is to show that for any (x, y) ∈ W ,

E(x,y)

[
Lt(∂W )

]
≤ E2

(x,y)

[
L2t(∂Z2

≥0)
]

+ E2
(x,y)

[
L2t(∂Wdiag)

]
, (3.29)

where the expectations on the right hand side of the display above denote the
expectation with respect to (X2,Y2) started at (x, y). To see that (3.29) is true we
consider the function T : Z2

≥0 → Z2
≥0 that maps each z ∈ Z2

≥0 to its reflection with
respect to the diagonal ∂Wdiag. Note in particular that T is its own inverse, so that
we can define an equivalence relation on Z2

≥0 via

z1 ∼ z2 ⇐⇒ ∃n ∈ {1, 2} such that T n(z1) = z2 . (3.30)

Writing P2 for the transition matrix corresponding to the underlying discrete time
random walk of (X2,Y2), and by {ζ(x, y)}x,y∈Z2

≥0
its field of rates, it is easy to see

that for any z1 ∼ z2 and any z3 ∈ Z2
≥0∑

z′3∼z3

ζ(z1, z
′
3) =

∑
z′3∼z3

ζ(z2, z
′
3) . (3.31)

Hence, by Proposition 3.3.4 and the fact that the set Z2
≥0/∼ equals W , the process

([X2], [Y2]) can be identified with a simple random walk on W such that its jump
rate out of each fixed edge equals 1

2
except for those attached to ∂Wdiag, where the

jump rate is 1. Note in particular that this makes the set of edges directed. Indeed,
the jump rate from x ∈ ∂Wdiag to any neighbour y is 1, whereas the jump rate from
y to x is 1

2
.

Denoting by E
[2]
([x],[y]) the expectation with respect to ([X2], [Y2]) when

started at ([x], [y]), we see that as a consequence of Proposition 3.3.3,

E(x,y)

[
Lt(∂W )

]
≤ E

[2]
([x],[y])

[
L2t([∂W ])

]
. (3.32)

Thus, (3.29) readily follows from last inequality.

2nd Step. We now show that it is sufficient to estimate certain local times of a
simple random walk (X, Y ) on Z2 jumping at total rate 2 (i.e., the jump rate over
any fixed edge is 1

2
), which will then yield the claim. To that end we define an
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x

y

0

Figure 3.5: Ilustration of equivalence relation in the 2nd Step of the proof of
Lemma 3.3.2. ∂Wdiag gets identified with the points on dashed lines. The four
points marked with black balls compose a single equivalence class. Non-zero jump
rates between any two equivalence classes are everywhere equal to 1/2.

equivalence relation by imposing that (x, y) ∼ (x,−y − 1) and (x, y) ∼ (−x − 1, y),
for any x, y ∈ Z. We then note that in this way ∂Wdiag gets identified with[

∂Wdiag
] def

=
{

(x, y) ∈ Z2 : x = y
}

∪
{

(x, y) ∈ Z2 : x = −y − 1, y ≥ 0 or y = −x− 1, x ≥ 0
}
,

see Figure 3.5. Note that by Proposition 3.3.4 the random walk (X2,Y2) can be
identified with ([X], [Y ]). This shows that it is sufficient to bound

E
(X,Y )
(x,y)

[
L2t(A)

]
, (3.33)

where A = A1 ∪ A2 ∪ A3 with

A1
def
=
{

(x, y) ∈ Z2 : x = y
}
,

A2
def
=
{

(x, y) ∈ Z2 : x = −y − 1, y ≥ 0 or y = −x− 1, x ≥ 0
}
, and

A3
def
=
{

(x, y) ∈ Z2 : x ∈ {0,−1}, or y ∈ {0,−1}
}
.

(3.34)

Since X − Y has the same law as a one-dimensional symmetric simple random
walk, we conclude that L2t(A1) equals in law to the local time at zero of a one-
dimensional symmetric simple random walk, for which the statement of this lemma
is well known, and for completeness, we provide a short proof of it in Proposi-
tion 3.6.1. A similar argument may be used for A2, and A3. Therefore, we can
finish the proof.

We now come back to the original problem, i.e., estimating local times of the
random walk (X,Y) defined on the set V . An important ingredient in the analysis
will be an estimate on the number of jumps of (X,Y) over the set of slow edges,
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i.e., those that are depicted with thick black segments in Figure 3.2. We denote
the set of these edges by S, and we define a sequence of stopping times via

τ1 = inf
{
t ≥ 0 : (Xt,Yt) crossed an edge in S

}
, and for i ≥ 2,

τi = inf
{
t ≥ τi−1 : (Xt,Yt) crossed an edge in S

}
.

(3.35)

Finally, we define the number of crossings until the time tn2 via

Ctn2 = sup
{
i ≥ 0 : τi ≤ tn2

}
. (3.36)

Lemma 3.3.5. There exists a constant c > 0 such that uniformly over all starting
points (x, y) ∈ V , all t ≥ 0, and all n ∈ N,

E(x,y)[Ctn2 ] ≤ c . (3.37)

Proof. We first show that for all i ≥ 1,

inf
(x,y)

P(x,y)[τi − τi−1 ≥ tn2] > 0 . (3.38)

To that end, assume without loss of generality that (x, y) is in the first quadrant.
In this case τ1 can be interpreted as a first success of the simple random walk
(X ,Y ), which with a slight abuse of notation is now considered on the set W
given by the intersection of V with the first quadrant, in the following way: when-
ever (X ,Y ) is on a vertex z that is attached to a slow bond it realizes the follow-
ing experiment: besides its three (one if the vertex is (1, 2)) independent Poisson
clocks N1

z , N
2
z , and N3

z ringing at rate 1 that are needed for its graphical construc-
tion, it considers an additional independent Poisson clock Nz(α) ringing at rate
α/n. We then say that the experiment is successful if Nz(α) rings before any of the
other three clocks. It then follows from the construction that the time of the first
success equals in law the time of the first jump of (X,Y) over a slow bond. Indeed,
one may couple (X,Y) and (X ,Y ) such that they move together until the first
time of success. Thus, using the fact that each experiment is independent of the
evolution of (X ,Y ), and that the set of vertices that are attached to S is a subset
of ∂W , we see that for any constant c ∈ (0, 1),

P(x,y)[τ1 ≥ tn2] ≥ P(x,y)

[
Ltn2(∂W ) ≤ c

√
tn,all experiments are unsuccessful

]
≥ P(x,y)

[
Ltn2(∂W ) ≤ c

√
tn] ·P

[
exp(α/n) ≥ c

√
tn
]
,

(3.39)
where exp(α/n) denotes an exponentially distributed random variable with rate
α/n. It now follows from Lemma 3.3.2 and Markov’s inequality that there exists c ∈
(0, 1) such that the right hand-side of (3.39) is strictly larger than zero, uniformly
in (x, y). With similar arguments we may derive the same statement for all i ≥ 2.
We next introduce the random variable

N = inf
{
i ≥ 1 : τi − τi−1 ≥ tn2

}
. (3.40)

Then, using the strong Markov property at time τi−1, bounding the probability of
the event {τi − τi−1 ≥ tn2} by 1, and then once again using the strong Markov
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property at time τi−2, we can estimate for any i ≥ 1,

P(x,y)[N = i] ≤ P(x,y)

[ i−1⋂
j=1

{τj − τj−1 < tn2}
]

= E(x,y)

[ i−2∏
j=1

1{τj−τj−1<tn2}E(Xτi−2 ,Yτi−2 )[1{τ1<tn2}]
]
.

(3.41)

Using (3.38), we see that there exists c ∈ [0, 1) that is independent of the starting
point (x, y), such that the latter term above is bounded from above by

cE(x,y)

[ i−2∏
j=1

1{τj−τj−1<tn2}

]
. (3.42)

Iterating the above procedure we can get that

sup
(x,y)∈V

P(x,y)[N = i] ≤ ci−1 , (3.43)

which in turn implies the uniform boundedness in (x, y) ∈ V of the expectation of
N . Since Ctn2 ≤ N , this implies the claim.

We present now the proof of Proposition 3.3.1, and we focus first on the local
time of the set D \{(0, 1)}. For definiteness we assume that (X,Y) starts in (x, y) ∈
W , where we recall that, abusing of notation, W denotes V intersected with the
first quadrant. All other cases follow by a straightforward adaptation of this proof.
Note that the event {(Xs,Ys) ∈ D \ {(0, 1)}} is only possible, if s ∈ ∪∞i=0[τ2i, τ2i+1),
where τ0 = 0. Hence, we can write

E(x,y)

[
Ltn2

(
D\{(0, 1)}

)]
= E(x,y)

[ ∫ tn2

0

1{(Xs,Ys)∈D\{(0,1)}} ds
]

=
∞∑
i=0

E(x,y)

[ ∫ τ2i+1∧tn2

τ2i∧tn2

1{(Xs,Ys)∈D\{(0,1)}} ds
]
.

(3.44)

Fix i ∈ N. Applying the strong Markov property at time τ2i we can rewrite each
summand in the display above as

E(x,y)

[
1{τ2i<tn2}E(Xτ2i ,Yτ2i)

[ ∫ τ1∧tn2−τ2i

0

1{(Xs,Ys)∈D\{(0,1)}} ds
]]
, (3.45)

where (X,Y) denotes an independent copy of (X,Y) and τ 1 is the corresponding
stopping time, defined in the same way as τ1 in (3.35). We now recall that as a
consequence of the proof of Lemma 3.3.5 until the time τ 1 the walk (X,Y) can be
coupled with (X ,Y ). Hence, we see that (3.45) is at most

E(x,y)

[
1{τ2i<tn2}

]
sup

(x,y)∈W
E(x,y)

[ ∫ tn2

0

1{(Xs ,Ys )∈D\{(0,1)}} ds
]
. (3.46)
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Making use of Lemma 3.3.2 we see that there exists a constant c ∈ (0,∞) such
that for all starting points, all t ≥ 0 and all n ∈ N, the term on the left hand-side
of (3.44) is bounded from above by

c
√
tnE(x,y)

[
Ctn2

]
. (3.47)

Hence, an application of Lemma 3.3.5 is enough to conclude the claim. To estimate
the local time of the vertex (0, 1) we can proceed almost exactly as above, and we
see that there exists a constant c ∈ (0,+∞) such that

E(x,y)

[
Ltn2

(
{(0, 1)}

)]
=

∫ tn2

0

P(x,y)

[
(Xs,Ys) = (0, 1)

]
ds

≤ c
∑
z∈A

∫ 2tn2

0

P(x,y)

[
(Xs, Ys) = z

]
ds ,

(3.48)

where we recall that (X, Y ) denotes the simple random walk on Z2 jumping at
total rate 2, and A = {(0, 1), (1, 1), (0, 0), (1, 0)}. The proof now follows from the
local central limit theorem, see for instance [19, Theorem 2.5.6] (this result is
stated for one-dimensional continuous time random walks, however using the fact
that a d-dimensional continuous time random walk consists of d independent one-
dimensional random walks, it may be easily adapted to our setting), or alterna-
tively from Proposition 3.6.2.

3.3.2 Estimates in dimension one
We denote by {Xt; t ≥ 0} the random walk on Z with a slow bond, that is, the

random walk with infinitesimal generator An given in (3.11) and we use Ex,Px to
denote the corresponding expectation and probability, starting from x ∈ Z.

Lemma 3.3.6. For all x, y ∈ Z, and for all t ≥ 0 we have the equality

Px

(
Xt = y

)
+ Px

(
Xt = −y + 1

)
= Px

(
Xt = y

)
+ Px

(
Xt = −y + 1

)
, (3.49)

where (Xt)t≥0 denotes a one-dimensional symmetric simple random walk jumping
at total rate 2.

Proof. The proof comes in two steps.
1st Step. In this step we rewrite the left hand-side in (3.49) in terms of the tran-
sition probabilities of a symmetric simple random walk that is reflected at 1. To
that end, we define the following equivalence relation:

x ∼ y ⇐⇒ y = −x+ 1 or y = x . (3.50)

Note that in particular in this way 0 gets identified with 1, so that jumps between
these two vertices “do not count”. One may then readily check that condition (3.27)
is satisfied, so that ([Xt])t≥0 defines a continuous time Markov chain. It is then
plain to see that for all x ∈ Z and all t ≥ 0 the following relation holds:

[Xt] = [x] ⇐⇒ Xt ∈ {x,−x+ 1} . (3.51)
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Thus,
Px(Xt ∈ {y,−y + 1}) = P[x]([Xt] = [y]) . (3.52)

Choosing only representants in the set Z≥1
def
= {x ∈ Z : x ≥ 1} we see that ([Xt])t≥0

may be identified with a simple random walk (XR
t )t≥0 on Z≥1 that jumps from

any vertex x ∈ Z≥1 to a fixed neighboring vertex in Z≥1 at rate 1. Thus, for any
x, y ≥ 1, (3.52) becomes

Px(Xt ∈ {y,−y + 1}) = Px(X
R
t = y) . (3.53)

2nd Step. In this step we show that the right hand-side of (3.53) may be rewritten
in terms of a symmetric simple random walk on Z jumping at total rate 2. To that
end we use the same equivalence relation as above and we note that (Xt)t≥0 can be,
in the same way, identified with (XR

t )t≥0 as (Xt)t≥0 can be identified with ([Xt])t≥0.
This finishes the proof.

3.4 Estimates on the discrete derivative and cor-
relations

In the next two subsections, we present the proofs of Theorems 3.2.4 and 3.2.5,
respectively.

3.4.1 Estimate on the discrete derivative
This section is devoted to the proof of Theorem 3.2.4.

Proof. Recall that ρnt is a solution of (3.10). Since the statement is clear for x = 0,
we only need to deal with the case x 6= 0. Let ρt be the solution of the equation
(3.5), and define γn : [0, T ]× Zd → R via

γnt (x)
def
=

{
ρnt (x)− ρt

(
x
n

)
, if x 6= 0,

ρnt (0)− ρt
(−1
n2

)
, otherwise.

(3.54)

The reason for the previous definition is that it distinguishes two cases, since at
x = 0 the time derivative of ρ is not related to its spatial derivatives in a way that
is helpful for our purposes. However, with the above choice of γn we see that for all
x ∈ Z,

∂tγ
n
t (x) = n2Anγnt (x) + F n

t (x) , (3.55)

where

F n
t (x)

def
=

{(
n2An − ∂2

u

)
ρt
(
x
n

)
if x 6= 0,

n2Anρt(0)− ∂2
uρt
(−1
n2

)
otherwise.

(3.56)

Observe that, by the definition of An in (3.11), for x ∈ Z\{0, 1}, F n
t accounts for the

difference between the discrete and the continuous Laplacian. To continue, we add
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and subtract ρt
(
x
n

)
and ρt

(
x+1
n

)
to
∣∣ρnt (x+ 1)− ρnt (x)

∣∣ and use the triangle inequality
which yields∣∣ρnt (x+ 1)− ρnt (x)

∣∣ ≤ |γnt (x+ 1)|+ |γnt (x)|+
∣∣ρt(x+1

n

)
− ρt

(
x
n

)∣∣ . (3.57)

We first treat the rightmost term above. Since x 7→ ρt(x) is differentiable in any
neighborhood outside of zero, and ρt has one sided spatial derivatives at zero, we
see that ∣∣ρt(x+1

n

)
− ρt

(
x
n

)∣∣ = O
(

1
n

)
.

Recall that {Xt; t ≥ 0} denotes the random walk on Z generated by An. Applying
Duhamel’s principle we see that we can write the solution of (3.55) as

γnt (x) = Ex

[
γn0 (Xtn2) +

∫ t

0

F n
t−s(Xsn2) ds

]
.

Therefore,

sup
t≤T

sup
x∈Z
|γnt (x)| ≤ sup

x∈Z
|γn0 (x)| + sup

t≤T
sup
x∈Z

∣∣∣Ex

[ ∫ t

0

F n
t−s(Xsn2) ds

]∣∣∣ .
Since |γn0 (x)| = |ρn0 (x)−ρ0(x)|, by Assumption (3.13) we only need to control the sec-
ond term on the right hand-side of the previous expression. By Fubini’s Theorem,
we see that

Ex

[ ∫ t

0

F n
t−s(Xsn2) ds

]
=

∫ t

0

∑
z∈Z

Px

[
Xsn2 = z

]
F n
t−s(z) ds . (3.58)

Since the discrete Laplacian approximates the continuous Laplacian, we conclude
that |F n

t (x)| ≤ C/n2 for any x ∈ Z\{0, 1} and for any t ≥ 0. Therefore, we can bound
the absolute value of (3.58) by

t
C

n2
+

∫ t

0

∑
z∈{0,1}

Px

[
Xsn2 = z

]∣∣F n
t−s(z)

∣∣ ds . (3.59)

Moreover, we also have that

F n
t−s(1) = n2

(
ρt
(

2
n

)
− ρt

(
1
n

)
+
α

n

(
ρt
(

0
n

)
− ρt

(
1
n

)))
− ∂2

uρt
(

1
n

)
= n

(
n
(
ρt
(

2
n

)
− ρt

(
1
n

))
+ α

(
ρt
(

0
n

)
− ρt

(
1
n

)))
− ∂2

uρt
(

1
n

)
.

Summing and subtracting αρ(0+), using the Robin boundary conditions and Taylor
expansion, the last equation becomes bounded from above by∣∣∣n( 1

n
∂2
uρt
(

1
n

)
+O(1/n2)

)
+ 1

2
∂2
uρt
(

1
n

)
− α∂uρt(0+) +O(1/n)− ∂2

uρt
(

1
n

)∣∣∣,
from where we get that |F n

t (1)| ≤ C for any t ≥ 0. For z = 0 we obtain, in a similar
way, a bound of the same order. Therefore, (3.59) is bounded from above by

t
C

n2
+ C

∫ t

0

(
Px

[
Xsn2 = 0

]
+ Px

[
Xsn2 = 1

])
ds .

Thus, applying Lemma 3.4.1 below the result follows.
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Lemma 3.4.1. Let X be as in Subsection 3.3.2. There exists a constant C > 0 such
that the following estimate holds for all t ≥ 0:∫ t

0

Px

[
Xsn2 ∈ {0, 1}

]
ds ≤ C

√
t

n
.

Proof. Denote the symmetric simple random walk on Z jumping at rate 2 by {Xt; t ≥
0}. It is then well known that for all t ≥ 0 the map x ∈ Z 7→ Px[Xt = 0] is max-
imized at x = 0. Hence, Lemma 3.4.1 is a consequence of Lemma 3.3.6 together
with Proposition 3.6.1.

3.4.2 Estimate on the correlation function
In this section we prove Theorem 3.2.5. To that end, we show that the corre-

lation function ϕn introduced in Definition 8 can be estimated from above by the
local times of the random walk {(Xt,Yt); t ≥ 0}, introduced in Subsection 3.3.1.
This is the content of Proposition 3.4.2. Proposition 3.3.1 then immediately yields
the result. Given a set A ⊆ V , similarly as in Section 3.3 we denote by Lt(A) the
local time of {(Xt,Yt); t ≥ 0} until time t in A, see (3.21).

Proposition 3.4.2. There exists C > 0 such that

sup
t≤T
|ϕnt (x, y)|

≤ C

n
+ C

( 1

n2
(E(x,y)[Ln2T (D \ {(0, 1)})] +

1

n
E(x,y)[Ln2T ({(0, 1)})]

)
.

(3.60)

Proof. First, observe that from Kolmogorov’s forward equation, we have that

∂tϕ
n
t (x, y) = Eµn

[
n2Ln(ηt(x)ηt(y))

]
− ∂t(ρnt (x)ρnt (y)) .

Applying (3.2) and (3.9) and performing some long, but simple, calculations, one
can deduce that ϕnt solves the following equation:

∂tϕ
n
t (x, y) = n2Bnϕ

n
t (x, y) + gnt (x, y) ,

where Bn was defined in (3.22) and

gnt (x, y) = −(∇+
n ρ

n
t (x))2

(
1{D\(0,1)} +

α

n
1{(0,1)}

)
. (3.61)

Here, ∇+
n denotes the rescaled discrete right derivative which, for any function

f : Z→ R, is defined via ∇+
n f(x)

def
= n(f(x+ 1)− f(x)). By Duhamel’s Principle,

ϕnt (x, y) = E(x,y)

[
ϕn0 (Xtn2 ,Ytn2) +

∫ t

0

gnt−s(Xsn2 ,Ysn2) ds
]
,

where {(Xt,Yt); t ≥ 0} is the random walk with generator Bn. In order to prove
the proposition we just have to estimate the right hand-side of the last equation.
We see that

sup
t≤T
|ϕnt (x, y)| ≤ |ϕn0 (x, y)|+ sup

t≤T

∣∣∣E(x,y)

[ ∫ t

0

gnt−s(Xsn2 ,Ysn2) ds
]∣∣∣. (3.62)
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By Assumption (3.14), the first term on the right hand-side of the last expression
is bounded from above by C/n. Thus, to finish the proof we only need to estimate
the rightmost term in the display above.

Applying the definition of gn, and rewriting the expectation above in terms of
transition probabilities, we see that for any s ≤ t,

E(x,y)[g
n
t−s(Xsn2 ,Ysn2)] =

∑
z 6=0

[
− (∇+

n ρ
n
t−s(z))2

]
P(x,y)[(Xsn2 ,Ysn2) = (z, z + 1)]

+
α

n

[
− (∇+

n ρ
n
t−s(0))2

]
P(x,y)[(Xsn2 ,Ysn2) = (0, 1)] .

Consequently, for all (x, y) ∈ V , the rightmost term in (3.62) is bounded from above
by

Sn

∫ t

0

(
P(x,y)[(Xsn2 ,Ysn2) ∈ D\{(0, 1)}] + Sn,0

α

n
P(x,y)[(Xsn2 ,Ysn2) = (0, 1)]

)
ds, (3.63)

where
Sn = sup

t≥0
sup

z∈Z\{0}
(∇+

n ρ
n
t (z))2 and Sn,0 = sup

t≥0
(∇+

n ρ
n
t (0))2 . (3.64)

Recalling Theorem 3.2.4, we easily deduce that Sn ≤ C and Sn,0 ≤ Cn2. Substitut-
ing (3.64) into (3.63), together with a change of variables, the result follows.

The proof of Theorem 3.2.5 is now an immediate consequence of Proposition 3.3.1.

3.4.3 Comments on the lower bound
In the usual symmetric simple exclusion process the correlation function is of

order O( 1
n
). Since intuitively one could expect that the presence of the slow bond

increases the correlation between sites which are located both on the positive half-
line or both the negative half-line, the above result does not come as a total sur-
prise.

However, for two sites x and y such that x ≤ 0 < 1 ≤ y, then at first sight it
seems to be a reasonable guess that the correlations decrease, and they should be
at most of order O( 1

n
). Yet, our proof yields the same bound as above when one

restricts only to such kind of pairs of vertices (x, y). A natural question therefore
is if a matching lower bound in (3.15) holds. Since our assumptions on the initial
measure do not exclude the choice of a product Bernoulli measure with constant
intensity, in which case at any time t ≥ 0 the covariance between two distinct
points is zero, such a lower bound certainly cannot hold in general.

Nevertheless, we argue that there are indeed choices of the various parameters
in our model for which |ϕnt (x, y)| is bounded from below by a constant times log n/n
uniformly in t ∈ [0, T ]. We will not provide all the details, yet the gaps can be filled
by an adaptation of the techniques used in Section ??. We choose µn ∼ ⊗x∈ZBer(ρx),
where

ρx =

{
1
2
, if x ≤ 0,

1
4
, otherwise.

(3.65)
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Analyzing carefully the proof of Theorem 3.2.5, we see that in order to establish
the desired lower bound it is enough to show that there exists a constant c > 0
such that for all t ∈ [0, T ]

|ρnt (0)− ρnt (1)| ≥ c , (3.66)

and that the rightmost local time term in (3.60) is bounded from below by a con-
stant times log n. We only provide a sketch of the argument for the former state-
ment, the latter as mentioned above can be deduced by an application of the tech-
niques developed in Section ??. We note that it is possible to show that

ρnt (0) =
∑
x∈Z

P0

[
Xt = x

]
ρn0 (x) and ρnt (1) =

∑
x∈Z

P1

[
Xt = x

]
ρn0 (x), (3.67)

where X denotes a random walk with generator n2An, and for z ∈ Z we denoted by
Pz the distribution of X when started in z. Using that by symmetry P1[Xt ≥ 1] =
P0[Xt ≤ 0] and P1[Xt ≤ 0] = P0[Xt ≥ 1], as well as our choice of µn, we see that

ρnt (0)− ρnt (1) = 1
4

(
P0

[
Xt ≤ 0

]
− P0

[
Xt ≥ 1

])
. (3.68)

It is now possible to argue that a random walk that starts at zero, and that is
reflected at zero has a local time of order n up to times of order n2 at the origin.
Using a coupling argument one may then show that one can choose α small enough
so that the probability that X, when started at 0, crosses the bond (0, 1) before time
Tn2 becomes arbitrarily small. This readily yields that (3.68) is indeed strictly
bounded away from zero uniformly in t ∈ [0, T ], and consequently we obtain a
lower bound that matches the order of the upper bound in (3.15).

Remark 3.4.3. As argued above, at first sight it seems counterintuitive that ϕt(x, y)
is of order log n/n if x ≤ 0 < 1 ≤ y. Yet, an intuitive explanation for that phe-
nomenon could be as follows: given an exclusion particle starting at x ≤ 0, then
up to time say t

2
n2 there is a strictly positive probability that it will cross the bond

{0, 1}, and afterwards it will have interaction with a particle started at y ≥ 1 of
same order as if it had started at a site x ≥ 1.

3.5 Proof of density fluctuations
In this section we prove Theorem 3.2.8. We follow the usual procedure to estab-

lish such a result, i.e., first we establish tightness of the sequence of density fields
{Ynt : t ∈ [0, T ]}n∈N and afterwards we characterize the limit. Before proceeding,
we introduce in the next subsection some martingales associated with the density
fluctuation field defined in (3.20).

3.5.1 Associated martingales
Fix a test function f ∈ Sα(R). By Dynkin’s formula,

Mn
t (f) := Ynt (f)− Yn0 (f)−

∫ t

0

(n2Ln + ∂s)Yns (f) ds (3.69)
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is a martingale with respect to the natural filtration Ft = σ(ηs, s ≤ t). Our aim is
to write this martingale in a more suitable form. Recall (3.3). Performing simple
calculations,

n2LnYns (f) =

= n2
∑
x∈Z

ξnx,x+1

[
1√
n

∑
y∈Z

f( y
n
)(ηx,x+1

s (y)− ρns (y))− 1√
n

∑
y∈Z

f( y
n
)(ηs(y)− ρns (y))

]
= 1√

n

∑
x∈Z

n2ξnx,x+1

{
ηs(x)

[
f(x+1

n
)− f

(
x
n

)]
+ ηs(x+ 1)

[
f
(
x
n

)
− f(x+1

n
)
]}

= 1√
n

∑
x∈Z

n2
{
ξnx,x+1

[
f(x+1

n
)− f

(
x
n

)]
+ ξnx−1,x

[
f(x−1

n
)− f

(
x
n

)]}
ηs(x)

= 1√
n

∑
x∈Z

n2Anf
(
x
n

)
ηs(x) ,

where the operator An has been defined in (3.11). Recalling (3.10) we get that

∂s Yns (f) = − 1√
n

∑
x∈Z

f
(
x
n

)
∂sρ

n
s (x)=− 1√

n

∑
x∈Z

n2Anf
(
x
n

)
ρns (x) . (3.70)

Combining the previous equalities, we see that

Mn
t (f) = Ynt (f)− Yn0 (f)−

∫ t

0

1√
n

∑
x∈Z

n2Anf
(
x
n

)
ηs(x) ds. (3.71)

Adding and subtracting the term
∫ t

0
Yns (∆αf)ds, we can rewrite the martingale

Mn
t (f) as

Mn
t (f) = Ynt (f)− Yn0 (f)−

∫ t

0

Yns (∆αf)ds−Rn
t (f) , (3.72)

where

Rn
t (f) :=

∫ t

0

1√
n

∑
x∈Z

{
n2Anf

(
x
n

)
− (∆αf)

(
x
n

)}
ηs(x) ds .

The next lemma allows us to control the error term Rn
t (f) defined in the previous

display, which is obtained by replacing the discrete operator An defined in (3.11)
by the continuous Laplacian ∆α defined in (3.8).

Lemma 3.5.1. For any f ∈ Sα(R), almost surely there exists a constant c > 0 such
that for all t ∈ [0, T ] and all n ∈ N the estimate |Rn

t (f)| ≤ ct√
n

holds.

Proof. We begin by splitting Rn
t (f) as the sum

Rn
t (f) =

∫ t

0

1√
n

∑
x 6=0,1

{
n2Anf

(
x
n

)
− (∆αf)

(
x
n

)}
ηs(x) ds (3.73)

+

∫ t

0

1√
n

{
n2Anf

(
0
n

)
− (∆αf)

(
0
n

)}
ηs(0) ds (3.74)

+

∫ t

0

1√
n

{
n2Anf

(
1
n

)
− (∆αf)

(
1
n

)}
ηs(1) ds . (3.75)
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We begin by dealing with (3.73). Recall that f ∈ Sα(R) and note that |ηs(x)| ≤ 2.
Thus, taking advantage of the fact that for x /∈ {0, 1}, the term n2Anf

(
x
n

)
is the

discrete Laplacian, and applying a Taylor expansion up to second order with the
Lagrangian form of the remainder, we see that (3.73) is bounded by

t√
n

∑
x 6=0,1

∣∣∣n2
{[

1
n
f ′
(
x
n

)
+ 1

2n2f
′′(x

n

)
+

f ′′′
(
ϑ+( x

n
)
)

3!n3

]
−
[

1
n
f ′
(
x
n

)
− 1

2n2f
′′(x

n

)
+

f ′′′
(
ϑ−( x

n
)
)

3!n3

]}
−
(
∆αf

)(
x
n

)∣∣∣
=

t√
n

∑
x 6=0,1

∣∣∣f ′′′(ϑ+( x
n

)
)

3!n3 − f ′′′
(
ϑ−( x

n
)
)

3!n3

}∣∣∣ ,
where ϑ+(x

n
) ∈ [x

n
, x+1

n
] and ϑ−(x

n
) ∈ [x−1

n
, x
n
]. Since f ′′′ is integrable, we conclude

that (3.73) is of order O(tn−5/2), and vanishes as n tends to infinity. Since ∆αf is
bounded, we can see that the sum of (3.74) and (3.75) is equal to∫ t

0

1√
n

{
n2Anf

(
0
n

)}
ηs(0) ds+

∫ t

0

1√
n

{
n2Anf

(
1
n

)}
ηs(1) ds

plus a term of order O( t√
n
). Applying the definition of An, the expression above is

equal to ∫ t

0

n2

√
n

{α
n

(
f
(

1
n

)
− f

(
0
n

))
+
(
f
(−1
n

)
− f

(
0
n

))}
ηs(0) ds

+

∫ t

0

n2

√
n

{α
n

(
f
(

0
n

)
− f

(
1
n

))
+
(
f
(

2
n

)
− f

(
1
n

))}
ηs(1) ds ,

and we can see that the absolute value of expression above is bounded by

t
√
n
{ ∣∣∣α(f( 1

n

)
− f

(
0
n

))
+ n
(
f
(−1
n

)
− f

(
0
n

))∣∣∣
+
∣∣∣α(f( 0

n

)
− f

(
1
n

))
+ n
(
f
(

2
n

)
− f

(
1
n

))∣∣∣ } . (3.76)

Since f ∈ Sα(R), we have the boundary conditions α
(
f(0+) − f(0−)

)
= ∂uf(0+)

= ∂uf(0−) and also that f is left continuous at zero, hence

f
(

1
n

)
− f

(
0
n

)
=
[
f(0+)− f(0−)

]
+O(1/n) ,

n
[
f
(−1
n

)
− f

(
0
n

)]
= −∂uf(0−) +O(1/n) ,

f
(

0
n

)
− f

(
1
n

)
= −

[
f(0+)− f(0−)

]
+O(1/n) ,

n
[
f
(

2
n

)
− f

(
1
n

)]
= ∂uf(0+) +O(1/n) ,

which permits to conclude that (3.76) is of order O( t√
n
), finishing the proof.

Now we study the convergence of the sequence of martingales {Mn
t (f) : t ∈

[0, T ]}n∈N. This is the content of the next lemma.
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Lemma 3.5.2. For any f ∈ Sα(R), the sequence of martingales {Mn
t (f) : t ∈

[0, T ]}n∈N converges in distribution under the topology of D([0, T ],R), as n → ∞,
to a mean-zero Gaussian process {Mt(f) : t ∈ [0, T ]} of quadratic variation given
by

〈M(f)〉t =

∫ t

0

∫
R

2χ(ρs(u))(∇αf(u))2 du ds

+

∫ t

0

[
ρs(0

−)(1− ρs(0+)) + ρs(0
+)(1− ρs(0−))

]
∇αf(0+) ds .

(3.77)

Proof. The proof of this lemma consists on applying [15, Theorem VIII.3.12, page
473]. According to that theorem, we have to check:

i) condition (3.14), defined in [15, page 474],

ii) condition [δ̂5-D], defined in [15, 3.4, page 470],

iii) condition [γ5-D], defined in [15, 3.3, page 470].

By [15, Assertion VIII.3.5, page 470], both conditions [δ̂5-D] and (3.14) are a
consequence of

lim
n→∞

Eµn
[

sup
s≤t

∣∣Mn
s (f)−Mn

s−(f)
∣∣] = 0. (3.78)

To show (3.78), note that only two sites of the configuration η change its values
when a jump occurs. Therefore,

sup
s≤t

∣∣Mn
s (f)−Mn

s−(f)
∣∣ = sup

s≤t

∣∣Yns (f)− Yns−(f)
∣∣ ≤ 2‖f‖∞√

n
,

leading to (3.78). It remains to check Condition [γ5-D], i.e., the convergence in
probability of the quadratic variation ofMt(f), which is given by

〈Mn(f)〉t =

∫ t

0

n2
[
LnYns (f)2 − 2Yns (f)LnYns (f)

]
ds .

After some elementary computations, the right hand-side of the display above can
be rewritten as ∫ t

0

1

n

∑
x 6=0

(ηs(x)− ηs(x+ 1))2
[
n
(
f
(
x+1
n

)
− f

(
x
n

))]2

ds

+α

∫ t

0

(ηs(0)− ηs(1))2
(
f
(

1
n

)
− f

(
0
n

))2

ds .

(3.79)

which is an additive functional of the exclusion process ηt. It is almost folklore
in the literature that Theorem 3.2.1 together with a suitable Replacement Lemma
and standard computations yield that (3.79) converges in distribution to the right
hand-side of (3.77) as n → ∞. Since this is not the main issue of the proof, and
since such a Replacement Lemma under the slow bond’s presence has been studied
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in previous works (as in [7, Lemma 5.4] for instance), we do not present the proof
of this result with full details, but only a sketch instead.

By a Replacement Lemma we mean a result allowing to replace the time inte-
gral of the occupation number ηt(x) by an average on a box around x. The only
difference with respect to the usual Replacement Lemma (see [18]), is the fact that
we should avoid an intersection between this box and the slow bond in our setting.
Hence, we define

η`(x) =


1

`

x+`−1∑
y=x

η(y) , for x ≥ 1 ,

1

`

x∑
y=x−`+1

η(y) , for x ≤ 0 ,

which is related to the side limits appearing in (3.77). Taking into account these
definitions, the fact that ηt(x)2 = ηt(x), and the boundary condition of f at zero,
one can show that the limit in distribution of (3.79) is in fact the right hand-side
of (3.77).

Since the right hand-side of (3.77) is deterministic, the convergence in distri-
bution implies the convergence in probability, and this finishes the proof of the
lemma.

3.5.2 Tightness
Let S be a Frechét space (see [23] for a definition of a Frechét space) and denote

by S ′ its topological dual. We cite here the following useful criterion:

Proposition 3.5.3 (Mitoma’s criterion, [21]). A sequence of processes {xt; t ∈
[0, T ]}n∈N in D([0, T ],S ′) is tight with respect to the Skorohod topology if, and only
if, the sequence {xt(f); t ∈ [0, T ]}n∈N of real-valued processes is tight with respect to
the Skorohod topology of D([0, T ],R), for any f ∈ S.

Since Sα(R) is a Frechét space (see [8]), tightness of the density field is reduced
to showing tightness of a family of real-valued processes. For that purpose, let
f ∈ Sα(R). Since the sum of tight processes is also tight, in order to prove tightness
of {Ynt (f) : t ∈ [0, T ]}n∈N it is enough to prove tightness of the remaining processes
appearing in (3.72), namely {Yn0 (f)}n∈N, {

∫ t
0
Yns (∆αf) ds : t ∈ [0, T ]}n∈N, {Mn

t (f) : t ∈
[0, T ]}n∈N and {Rn

t (f) : t ∈ [0, T ]}n∈N. We deal with all of them separately.
Observe that

Eνnρ0 (·)

[(
Yn0 (f)

)2]
=

1

n

∑
x∈Z

f 2
(x
n

)
χ(ρn0 (x)) +

2

n

∑
x<y

f
(x
n

)
f
(y
n

)
ϕn0 (x, y)

is bounded. As a consequence of Assumption (B) in Theorem 3.2.8 the sequence of
initial conditions Yn0 converges, therefore it is also tight.

By Lemma 3.5.1, the sequence of processes {Rn
t (f) : t ∈ [0, T ]}n∈N is negligible,

thus it is tight.
By Lemma 3.5.2 the sequence of martingales {Mn

t (f) : t ∈ [0, T ]}n∈N converges,
hence it is tight as well.

68



It remains to prove tightness of the integral terms {
∫ t

0
Yns (∆αf) ds : t ∈ [0, T ]}n∈N.

At this point we invoke Aldous’ criterion:

Proposition 3.5.4 (Aldous’ criterion). A sequence {xnt : t ∈ [0, T ]}n∈N of real-valued
processes is tight with respect to the Skorohod topology of D([0, T ],R) if:

i) lim
A→+∞

lim sup
n→+∞

P
(

sup
0≤t≤T

|xnt | > A
)

= 0 ,

ii) for any ε > 0 , lim
δ→0

lim sup
n→+∞

sup
λ≤δ

sup
τ∈TT

P(|xnτ+λ − xnτ | > ε) = 0 ,

where TT is the set of stopping times bounded by T .

We first check the first item of Aldous’ criterion. By the Cauchy-Schwarz in-
equality,

Eµn
[

sup
t≤T

(∫ t

0

Yns (∆αf) ds
)2]

≤ T

∫ T

0

Eµn
[( 1√

n

∑
x∈Z

∆αf(x
n
)(ηs(x)− ρns (x))

)2]
ds .

Observe that the right hand-side of the display above is bounded by T 2 times

1

n

∑
x∈Z

(
∆αf(x

n
)
)2

sup
t≤T

χ(ρnt (x)) +
2

n

∑
x<y

∆αf(x
n
)∆αf( y

n
) sup
t≤T

ϕnt (x, y) , (3.80)

where χ(ρnt (x)) was defined above (3.16) and ϕnt (x, y) is given in Definition 8. Since
f ∈ Sα(R), the first term in (3.80) may be easily shown to be bounded in n. As for
the second term the estimate provided by Theorem 3.2.5 is unfortunately not quite
enough. Yet, Proposition 3.4.2 in combination with Proposition 3.3.1 show that for
some constants c1, c2 > 0 that do not depend on t, and (x, y) we have that for all
n ∈ N,

ϕnt (x, y) ≤ c1

n
+
c2

n

∫ Tn2

0

P(x,y)

[
(Xs,Ys) = (0, 1)

]
ds , (3.81)

where {(Xt,Yt); t ≥ 0} is defined in Subsection 3.3.1. Plugging the first term on
the right hand-side of the display above into the second term in (3.80) gives the
desired estimate. To deal with the second term on the right hand-side of (3.81) we
use the fact that by (3.48) we can estimate the integral term from above by

c
∑
z∈A

∫ 2Tn2

0

P(x,y)

[
(Xs, Ys) = z

]
ds , (3.82)

where (X, Y ) denotes simple random walk on Z2 jumping at total rate 2, A denotes
the set {(0, 1), (1, 1), (0, 0), (1, 0)}, and c ∈ (0,+∞) is some constant. Plugging this
into the second term in (3.80), and using the reversibility of (X, Y ) we see that we
obtain a term that is bounded from above by a constant times

1

n2

∑
z∈A

∫ 2Tn2

0

Ez
[
|∆αf(Xs

n
)∆αf(Ys

n
)|
]
ds . (3.83)
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Since |∆αf(x
n
)∆αf( y

n
)| is uniformly bounded in x and y we finally obtain that (3.80)

is bounded by a constant, which implies condition i) of Aldous’ criterion via Cheby-
chev’s inequality.

We now check ii). For this purpose, fix a stopping time τ ∈ TT . By Chebychev’s
inequality and repeating the argument above, we have that

Pµn
(∣∣∣ ∫ τ+λ

τ

Yns (∆αf) ds
∣∣∣ > ε

)
≤ 1

ε2
Eµn
[( ∫ τ+λ

τ

Yns (∆αf) ds
)2]

≤ δ2c

ε2
,

which vanishes as δ → 0, and yields tightness of the integral term, and concludes
therefore the proof.

3.5.3 Uniqueness of the Ornstein-Uhlenbeck process
The existence of the Ornstein-Uhlenbeck process solution of (3.19) is a conse-

quence of tightness proved in Subsection 3.5.2. This subsection is devoted to the
proof of uniqueness of this process, as stated in Proposition 3.2.7. The guideline is
mainly inspired by [14, 18].

In the proof of Proposition 3.2.7 we make use of the following result, which is a
standard fact about local martingales.

Proposition 3.5.5. If Mt is a local martingale with respect to a filtration Ft and

E
[

sup
0≤s≤t

|Ms|
]
< +∞ (3.84)

for any t ≥ 0, then Mt is a martingale.

Proof. Let τn be a sequence of stopping times such that τn →∞ as n→∞ and such
that the stopped process (Mt∧τn)t≥0 is a martingale for each n. Let s < t, it then
follows that for any A ∈ Fs,

E
[
Mt∧τn1A

]
= E

[
Ms∧τn1A

]
.

Letting n → ∞, using (3.84) and the Dominated Convergence Theorem, we con-
clude that

E
[
Mt1A

]
= E

[
Ms1A

]
,

thus finishing the proof.

Proof of Proposition 3.2.7. Fix f ∈ Sα(R) and s > 0. Recall the definition of the
martingalesMt(f) and Nt(f) given in (3.17) and (3.18), respectively.

We claim that the process {Xs
t (f) : t ≥ s} defined by

Xs
t (f) = exp

{
1

2

∫ t

s

‖∇αf‖2
ρr(·) dr + i

(
Yt(f)− Ys(f)−

∫ t

s

Yr(∆αf) dr
)}
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is a (complex) martingale. By [24, pp. 148, Proposition 3.4] it is immediate that
Xs
t (f) is a local martingale. Therefore, if we show that

E
[

sup
s≤u≤t

|Xs
u(f)|

]
< +∞ , (3.85)

then, by Proposition 3.5.5, we conclude that Xs
t (f) is a martingale. But (3.85) is a

simple consequence of the fact that the function t 7→ 1
2

∫ t
0
‖∇αf‖2

ρs(·)ds is continuous,
hence bounded on compact sets. Therefore, the claim is proved.

Fix S > 0. We claim now that the process {Zt : 0 ≤ t ≤ S} defined by

Zt(f) = exp
{1

2

∫ t

0

‖∇αT
α
S−rf‖2

ρr(·) dr + iYt(TαS−tf)
}

is also a martingale. To prove this second claim, consider two times 0 ≤ t1 < t2 ≤ S
and a partition of the interval [t1, t2] in n intervals of equal size, that is, t1 = s0 <
s1 < · · · < sn = t2 , with sj+1 − sj = (t2 − t1)/n. Observe now that

n−1∏
j=0

Xsj
sj+1

(TαS−sjf) = exp

{
n−1∑
j=0

1

2

∫ sj+1

sj

‖∇αT
α
S−sjf‖

2
ρs(·) ds

+ i
n−1∑
j=0

(
Ysj+1

(TαS−sjf)− Ysj(TαS−sjf)−
∫ sj+1

sj

Yr(∆αT
α
S−sjf) dr

)}
.

Due to smoothness of Tαt f , the first sum in the exponential above converges to

1

2

∫ t2

t1

‖∇αT
α
S−rf‖2

ρs(·) dr,

as n→ +∞. The second sum inside the exponential is the same as

Yt2(Tα
S−t2+ 1

n
f)− Yt1(TαS−t1f)

+
n−1∑
j=1

(
Ysj(TαS−sj−1

f − TαS−sjf)−
∫ sj+1

sj

Yr(∆αT
α
S−sjf) dr

)
.

Since Y ∈ C([0, T ],S ′α(R)), since Tαt f is continuous in time and applying the expan-
sion Tαt+εf − Tαt f = ε∆αT

α
t f + o(ε), one can show that the almost sure limit of the

previous expression is Yt2(TαS−t2f) − Yt1(TαS−t1f), see [8, 10] for more details. We
have henceforth deduced that

lim
n→+∞

n−1∏
j=0

Xsj
sj+1

(TαS−sjf)

= exp

{
1

2

∫ t2

t1

‖∇αT
α
S−rf‖2

ρs(·) dr + i
(
Yt2(TαS−t2f)− Yt1(TαS−t1f)

)}
=

Zt2
Zt1

.

71



Since the complex exponential is bounded, the Dominated Convergence Theorem
ensures also the convergence in L1. Thus,

E
[
g
Zt2
Zt1

]
= lim

n→+∞
E
[
g

n−1∏
j=0

Xsj
sj+1

(TαS−sjf)
]
,

for any bounded function g. Take g bounded and Ft1-measurable. For any f ∈
Sα(R), the process Xs

t (f) is a martingale. Thus, taking the conditional expectation
with respect to Fsn−1, we get

E
[
g
n−1∏
j=0

Xsj
sj+1

(TαS−sjf)
]

= E
[
g
n−2∏
j=0

Xsj
sj+1

(TαS−sjf)
]
.

By induction, we conclude that

E
[
g
Zt2
Zt1

]
= E

[
g
]
,

for any bounded and Ft1-measurable function g. This assures that {Zt : t ≥ 0} is a
martingale. From E[Zt|Fs] = Zs, we get

E
[

exp
{1

2

∫ t

0

‖∇αT
α
S−rf‖2

ρr(·) dr + iYt(TαS−tf)
}∣∣∣Fs]

= exp
{1

2

∫ s

0

‖∇αT
α
S−rf‖2

ρr(·) dr + iYs(TαS−sf)
}
,

which leads to

E
[

exp
{
iYt(TαS−tf)

}∣∣∣Fs] = exp
{
− 1

2

∫ t

s

‖∇αT
α
S−rf‖2

ρr(·) dr + iYs(TαS−sf)
}
.

Choosing S = t and replacing f by λf , we achieve

E
[

exp
{
i λYt(f)

}∣∣∣Fs] = exp
{
− λ2

2

∫ t

s

‖∇αT
α
t−rf‖2

ρr(·) dr + i λYs(Tαt−sf)
}
,

meaning that, conditionally to Fs, the random variable Yt(f) has Gaussian distri-
bution of mean Ys(Tαt−sf) and variance

∫ t
s
‖∇αT

α
r f‖2

ρs(·) dr.
We claim now that this last result implies the uniqueness of the finite dimen-

sional distributions of the process {Yt(f) : t ∈ [0, T ]}. For the sake of clarity,
consider only two times, t0 = 0 and t1 > 0, two test functions f0, f1 ∈ Sα(R) and two
Lebesgue measurable sets A0 and A1. By conditioning,

P
[
Yt1(f1) ∈ A1,Yt0(f0) ∈ A0

]
= E

[
E
[
1[Yt1 (f1)∈A1]

∣∣F0

]
·
[
1[Yt0 (f0)∈A0]

]]
.

Since the conditional expectation E
[
1[Yt1 (f1)∈A1]

∣∣F0

]
is a function of Yt0(f1) and Yt0

is uniquely distributed as a random element of S ′α(R) (by assumption ii) of Propo-
sition 3.2.7), we get that the distribution of the vector (Yt1(f1),Yt0(f0)) is also
uniquely distributed. The generalization for a general finite number of times is
straightforward.

This proves the claim, implying the uniqueness in law of the random element
Y and hence finishing the proof.
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3.5.4 Characterization of limit points
From the results of the previous subsection we know that the sequence {Ynt :

t ∈ [0, T ]}n∈N has limit points. Let {Yt : t ∈ [0, T ]} be the limit in distribution of
{Ynt : t ∈ [0, T ]}n∈N along some subsequence nk considering the uniform topology
of D([0, T ],S ′α(R)). Abusing of notation, we denote this subsequence simply by n.
Our goal here is to prove that {Yt : t ∈ [0, T ]} satisfies the conditions i) and ii) of
Proposition 3.2.7. Since Proposition 3.7.1 gives us condition ii), it only remains to
prove condition i).

For f ∈ Sα(R), letMt and Nt be the processes defined by

Mt(f) = Yt(f)− Y0(f)−
∫ t

0

Ys(∆αf)ds ,

Nt(f) =
(
Mt(f)

)2 −
∫ t

0

‖∇αf‖2
ρs(·) ds .

Since Ynt is assumed to converge in distribution to Yt as n → +∞, by (3.72) and
Lemma 3.5.1, we conclude that Mt(f) defined above coincides with the limit of
Mn

t (f) as in Lemma 3.5.2, which was denoted byMt(f) as well.
By Lemma 3.5.2, we already know that Mt(f) has quadratic variation given

by
∫ t

0
‖∇αf‖2

ρs(·) ds. Therefore, if we show thatMt(f) is a martingale, then we will
immediately get that Nt(f) is also a martingale.

Hence, we claim that Mt(f) is a martingale. First of all, we fix the filtration,
which will be the natural one: Ft = {σ(Ys(g)) : s ≤ t and g ∈ Sα(R)}. Thus,Mt(f) is
Ft-measurable. The fact thatMt(f) is in L1 for any time t ∈ [0, T ] is a consequence
thatMt(f) is a Gaussian process, which was proved in Lemma 3.5.2. Thus, if we
prove that

E
[
Mt(f)1U

]
= E

[
Ms(f)1U

]
, ∀U ∈ Fs , (3.86)

we will conclude thatMt(f) is a martingale. To assure (3.86) it is enough to verify
it for sets U of the form

U =
k⋂
i=1

[
Ysi(fi) ∈ Ai

]
for 0 ≤ s1 ≤ · · · ≤ sk ≤ s, fi ∈ Sα(R) and Ai measurable sets of R. SinceMn

t (f) is a
martingale,

E
[
Mn

t (f)1Un
]

= E
[
Mn

s (f)1Un
]
, ∀U ∈ Fs , (3.87)

where

Un =
k⋂
i=1

[
Ynsi(fi) ∈ Ai

]
for 0 ≤ s1 ≤ · · · ≤ sk ≤ s, fi ∈ Sα(R) and Ai are measurable sets of R. Therefore, in
order to show (3.86) it is enough to prove the claim that the expectations in (3.87)
converge to the respective expectations in (3.86).

Since Ynt (f) converges to Yt(f) as n → +∞, which is concentrated on continu-
ous paths, then Mn

t (f)1Un converges in distribution to Mt(f)1U . Thus, by [3, pp

73



32, Theorem 5.4] in order to get convergence of expectations, it is enough to assure
that {Mn

t (f)1Un}n∈N is a uniformly integrable sequence. In its hand, the uniform
integrability can be guaranteed by showing that the L2 norm ofMn

t (f)1Un is uni-
formly bounded in n ∈ N. Since the indicator function is bounded by one, we can
deal only with the L2 norm of the martingaleMn

t (f). Now, applying the Minkowksi
inequality to (3.71), we get

Eµn
[(
Mn

t (f)
)2]1/2 ≤ Eµn

[(
Ynt (f)

)2]1/2
+ Eµn

[(
Yn0 (f)

)2]1/2
+ Eµn

[( ∫ t

0

1√
n

∑
x∈Z

n2Anf
(
x
n

)
ηs(x) ds

)2]1/2

.
(3.88)

The first term on the right hand-side of (3.88) is bounded by

1

n

∑
x∈Z

(
f(x

n
)
)2

χ(ρnt (x)) +
2

n

∑
x<y

f(x
n
)f( y

n
)ϕnt (x, y) .

Since |ρnt (x)| ≤ 1, the first parcel in the display above is uniformly bounded in n.
To treat the second term of the last display, we use a similar argument to the one
used below (3.80). The second term on the RHS of (3.88) is bounded by

1

n

∑
x∈Z

(
f(x

n
)
)2
χ(ρn0 (x)) +

2

n

∑
x<y

f(x
n
)f( y

n
)ϕn0 (x, y) ,

which is uniformly bounded on n ∈ N due to conditions (3.13) and (3.14). Again by
a similar argument to the one presented for tightness below (3.80), the third term
on the right hand-side of (3.88) is bounded by t2 times

1

n

∑
x∈Z

(
f(x

n
)
)2

sup
t≤T

χ(ρnt (x)) +
2

n

∑
x<y

f(x
n
)f( y

n
) sup
t≤T

ϕnt (x, y) ,

thus concluding the characterization of limit points.

3.6 Auxiliary results on random walks
The next result is quite classical, but hard to find in the literature. It is included

here for sake of completeness.

Proposition 3.6.1. Let X be the symmetric simple one-dimensional continuous
time random walk. Then, ∫ t

0

P
[
Xs = 0

]
ds ≤ c

√
t ,

where c > 0 is a constant which does not depend on t.

74



Proof. Let N := N2s a Poisson distribution with parameter 2s.

P
[
Xs = 0

]
=
∞∑
k=0

P
[
Xk = 0|N = k

]
· P
[
N = k

]
=
∞∑
k=0

1[k is even]
1

2k

(
k
k/2

)
P[N = k]

= e−2s +

bsc∑
k=1

1[k is even]
1

2k

(
k
k/2

)
P[N = k]

+
∞∑

k=bsc+1

1[k is even]
1

2k

(
k
k/2

)
P[N = k] .

(3.89)

Using the Stirling Formula (seefor example Feller, Vol I.), it is easy to check that

1

2k

(
k

k/2

)
≤ 1√

πk
≤ 1 . (3.90)

Applying the second inequality of (3.90) in the first sum of (3.89) and the first
inequality of (3.90) in the second sum in (3.89), we obtain that P

[
Xs = 0

]
is bounded

from above by

e−2s + P
[
N ≤ bsc

]
+

c1√
s

∞∑
k=bsc+1

P[N = k] ≤ e−2s + P
[
N ≤ bsc

]
+

c1√
s
. (3.91)

In the sequel, we will get an exponential bound P
[
N ≤ bsc

]
by a standard large

deviations technique. In this way, note that, for any θ > 0,

P
[
N ≤ bsc

]
= E

[
1[N≤s]e

θNe−θN
]
≤ eθs E

[
1[N≤s]e

−θN ]
≤ eθs E

[
e−θN

]
= eθse2s(e−θ−1) = es(2e

−θ−2+θ) .

Denote f(θ) = 2e−θ − 2 + θ and note that f assumes its minimum at θ0 = log 2 > 0,
and f(θ0) = log 2− 1 < 0. Therefore, choosing θ = θ0, we get

P
[
N ≤ bsc

]
≤ es(log 2−1) .

Looking at (3.91) and then to (3.89), we conclude that

P
[
Xs = 0

]
≤ e−2s + es(log 2−1) +

c1√
s
.

Integrating, we get∫ t

0

P
[
Xs = 0

]
ds ≤

∫ t

0

(
e−2s + es(log 2−1) +

c1√
s

)
ds ≤ c2

√
t ,

for some constant c2 not depending on t.
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Proposition 3.6.2. Let (X, Y ) be the symmetric simple two-dimensional continu-
ous time random walk. Then,∫ t

0

P
[

(Xs, Ys) = (0, 0)
]
ds ≤ c log t ,

where c > 0 is a constant which does not depend on t.

The proof of the statement above can be adapted from the one of Proposi-
tion 3.6.1.

3.7 Fluctuations at the initial time
Proposition 3.7.1. Let νnρ0(·) be the slowly varying Bernoulli product measure as-
sociated with a smooth profile ρ0. Then, Yn0 converges in distribution to Y0, where
Y0 is a mean zero Gaussian field of covariance given by

E
[
Y0(g)Y0(f)

]
=

∫
R
χ
(
ρ0(u)

)
g(u) f(u) du , (3.92)

for any f, g ∈ Sα(R).

Proof. As argued in Subsection 3.5.2, for each f ∈ Sα(R), the sequence{
Y0(f)

}
n∈N is tight, hence

{
Y0

}
n∈N is tight due to Mitoma’s criterion (Proposi-

tion 3.5.3). Thus, it remains only to characterize the joint limit in distribution
for the vectors of the form

(
Y0(f1), . . . ,Y0(fk)

)
, with fi ∈ Sα(R), for i = 1, · · · , k.

Since νnρ0
is a product measure,

logEνnρ0 (·)

[
exp

{
iθYn0 (f)

}]
=
∑
x∈Z

logEνnρ0 (·)

[
exp

{ iθ√
n
η̄0(x)f

(x
n

)}]
=
∑
x∈Z

log
[
ρ0(x

n
) exp

{
iθ√
n
f(x

n
)
(
1− ρ0(x

n
)
)}

+
(
1− ρ0(x

n
)
)

exp
{
− iθ√

n
f(x

n
)ρ0(x

n
)
}]
.

Since f ∈ Sα(R), we have smoothness of f except possibly at x = 0, together with
fast decaying. Keeping this in mind, Taylor’s expansion on the exponential func-
tion permits to conclude that the expression above is equal to

− θ
2

2n

∑
x∈Z

f 2
(x
n

)
χ(ρ0(x

n
)) +O( 1√

n
) ,

which gives us that

lim
n→+∞

logEνnρ0 (·)

[
exp

{
iθYn0 (f)

}]
= −θ

2

2

∫
R
χ
(
ρ0(u)

)
f 2(u) du .

Replacing f by a linear combination of functions and then applying the
Crámer-Wold device, the proof ends.
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[7] T. Franco, P. Gonçalves, and A. Neumann. Hydrodynamical behavior of sym-
metric exclusion with slow bonds. Ann. Inst. H. Poincaré Probab. Statist.,
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[10] T. Franco, P. Gonçalves, and A. Neumann. Corrigendum to: Phase transition
in equilibrium fluctuations of symmetric slowed exclusion. Stoch. Proc. Appl.,
126(10):3235–3242, 2016.

77
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