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Abstract We obtain the fluctuations for the occupation time of one-dimensional symmetric
exclusion processes with speed change, where the transition rates (conductances) are driven
by a general function W . The approach does not require sharp bounds on the spectral gap
of the system nor the jump rates to be bounded from above or below. We present some
examples and for one of them, we observe that the fluctuations of the current are trivial,
but the fluctuations of the occupation time are given by a fractional Brownian Motion. This
shows that, in general, the fluctuations of the current and of the occupation time are not of
same order.
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976 T. Franco et al.

1 Introduction

Occupation time is the usual nomenclature for the additive functional
∫ t

0 ηs(x)ds, where
ηs(x) denotes the occupation variable at the site x at the time s. Namely, ηs(x) represents
how many particles stand at the site x and at the time s for some particle system {ηt : t ≥ 0}.
In this paper, we are concerned with a standard interacting particle system, the exclusion
process. Succinctly, the exclusion process consists in a system of random walks evolving
on a lattice under the rule that a particle can not jump to an already occupied site. This is
the so-called exclusion rule. Such model is of great importance in Probability and Statistical
Mechanics for several reasons. At the same time it has a simple interaction among particles
but its peculiarities allow to prove deep results which are shared by many other models.

We consider here one-dimensional speed change exclusion processes. The dynamics of
these process can be informally described as follows. A Poisson clock is associated to each
bond of the lattice, the parameter of which is given by a function W of the position of the bond,
in the same way as considered in [3–6]. When a clock rings the occupation variables at the
bonds are exchanged. The system is taken to start from the equilibrium state, which consists
in a Bernoulli product measure with constant parameter. Our main result is the derivation of
a functional central limit for the occupation time, when suitably re-scaled.

There is a vast literature on the fluctuations of the occupation time of symmetric parti-
cle systems, see for instance [8,13,14] and references therein. In this paper we follow the
approach proposed in [8], which consists in replacing the occupation time functional by an
additive functional of the density of particles. Then, as a consequence of the Central Limit
Theorem for the density of particles, we deduce the corresponding result for the occupation
time functional. We consider exclusion processes with speed change for which the Central
Limit Theorem for the density of particles has been derived [2]. Therefore, to complete our
goals we just need to justify the proper replacement of the aforementioned functionals. For
that purpose, we introduce what we call a local replacement which allows to substitute the
occupation time functional by an additive functional of the empirical average of particles on
a small macroscopic box. This local replacement avoids performing a multi-scale analysis
in order to derive a second order Boltzmann Gibbs Principle as in [8]. More than that, we
do not require sharp bounds on the spectral gap, nor the boundedness of the jump rates of
the system, as required in [8]. Therefore, our results are true for a general class of exclusion
processes, for which the methods of [8] do not apply directly. On the other hand, our results
are not as general as the results of [8], since they only hold for the occupation time functional
and no other additive functional. We believe that our method can be extended to more general
dynamics than the exclusion constrain, but this is left for future work.

We present here some particular cases of interest. First, we consider porous media models
which were analyzed in [9] and correspond to taking W as the identity function. These
models do not satisfy the spectral gap bound required in [8] but with our method we obtain
the fractional Brownian Motion ruling the fluctuations of the occupation time. Second, we
consider exclusion processes with a slow bond which were analyzed in [5]. These models do
not satisfy the boundedness of the jump rates as required in [8], but our method also fits these
models. We remark that exclusion processes with a slow bond is an interesting example of a
particle system for which the fluctuations of the current and the fluctuations of the occupation
time have completely different behaviors. This shows that, in general, the fluctuations of the
current and of the occupation time are not of same type.

This paper has the following outline. In Sect. 2 we define our models and we state our main
result, namely Theorem 2.2. In Sect. 3, we recall the hydrodynamic limit and the fluctuations
of the density from [6] and [2], respectively. In Sect. 4, we prove our main result. Section 5
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Occupation Time of Exclusion Processes 977

is devoted to examples: porous media models and exclusion processes with a slow bond. In
the appendix we present some technical lemmas.

2 The Main Result

Denote by T = R/Z = [0, 1) the one-dimensional continuous torus, and by Tn = Z/nZ =
{0, . . . , n − 1} the one-dimensional discrete torus with n points.

Fix W : R → R a strictly increasing right continuous function with left limits (càdlàg),
periodic in the sense that, for all u ∈ R,

W (u + 1)− W (u) = W (1)− W (0). (2.1)

Consider the state space �n := {0, 1}Tn . The speed change exclusion process with con-
ductances is the Markov process {ηt : t ≥ 0} whose infinitesimal generator acts on local
functions f : �n → R as

(Ln f )(η) =
∑

x∈Tn

ξn
x,x+1 cx,x+1(η) [ f (ηx,x+1)− f (η)],

where ηx,x+1 is the configuration obtained from η by exchanging the occupation variables
η(x) and η(x + 1):

(ηx,x+1)(y) =
⎧
⎨

⎩

η(x + 1), if y = x ,
η(x), if y = x + 1 ,
η(y), otherwise,

(2.2)

the conductantes ξn
x,x+1 are given by

ξn
x,x+1 = 1

n
(
W
( x+1

n

) − W
( x

n

))

and
cx,x+1(η) = 1 + b(η(x − 1)+ η(x + 2)),

with b > −1/2. The motivation for the choice of the conductances given as the inverse of
the discrete derivative of W is explained in [6]. Under this choice the hydrodynamic limit
can be obtained, the hydrodynamics being governed by a partial differential equation, which
depends on W , see [1,2,6].

We remark that due to the choice of the state space, in all the formulas above if x = n − 1
then x + 1 = 0.

Throughout this paper, we assume the following technical condition on the function W :
for any n ∈ N and any small ε > 0, there exists a constant θ > 0 such that

1

εn

εn−1∑

y=0

(
W

( y
n

) − W (0)
) ∼ O

(
εθ
)
, (2.3)

where f ∼ O(g) means that the function f is bounded from above by a constant times the
function g. Above, it is assumed that the constant θ does not depend on n ∈ N.

To exemplify the assumption (2.3), if W is a θ -Hölder function in a neighborhood of zero,
then (2.3) is satisfied, since for any n ∈ N

1

εn

εn−1∑

y=0

(
W
( y

n

) − W (0)
) ≤ CW

εn

εn−1∑

y=0

yθ

nθ
≤ CW

εn

εn−1∑

y=0

εθ = CW ε
θ ,
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978 T. Franco et al.

where CW is the Hölder constant.
The dynamics of the process {ηt : t ≥ 0} can be informally described as follows. At each

bond {x, x + 1} of Tn , there is an exponential clock of parameter ξn
x,x+1, all of them being

independent. Suppose the configuration at the present is η. After a ring of the clock at the
bond {x, x + 1}, the occupation variables η(x) and η(x + 1) are exchanged at rate cx,x+1(η).

We remark that the condition b > −1/2 is required to ensure that the system is ergodic
in the following sense. First, we notice that the dynamics introduced above conserves the
total number of particles. Therefore, the state space of the process can be written as �n :=⋃n

k=0 Hn,k , where Hn,k denotes the hyperplane of configurations in �n with k particles.
The ergodicity property means that on each hyperplane, with positive probability, we can
reach any configuration in the same hyperplane using the allowed jumps of the dynamics.
For instance, if b = −1/2 and for a configuration η having the sites x −1, x , x +2 occupied,
and the site x + 1 empty, then cx,x+1(η) = 1 + 2b = 0. Then, for this choice of b there
are blocked configurations, that is, configurations that do not evolve under the dynamics.
Therefore, the system is not ergodic, in the sense given above.

Also, it is well known that the Bernoulli product measures on�n with parameterρ ∈ [0, 1],
denoted by {νρ : 0 ≤ ρ ≤ 1}, are invariant for the dynamics introduced above. Moreover,
they are also reversible.

Fix T > 0 and ρ ∈ (0, 1). The trajectories of {ηt : t ≥ 0} live on the space D([0, T ],�n),
that is, the path space of càdlàg trajectories with values in �n . For a measure νρ on �n , we
denote by Pνρ the probability measure on D([0, T ],�n) induced by νρ and by {ηt : t ≥ 0}
and we denote by Eρ the expectation with respect to Pνρ .

Let C ([0, T ],R) be the path space of continuous trajectories with values in R.

Definition 2.1 The occupation time of the origin is defined as the additive functional

	n(t) := 1

n3/2

tn2∫

0

(ηs(0)− ρ) ds. (2.4)

The definition above has already the correct scaling in terms of n, in order to 	n(t) have
a non trivial limit when taking n to infinity. The occupation time at a site x ∈ Tn is defined
as above by replacing ηs(0) by ηs(x).

Our main result is the following

Theorem 2.2 (Fluctuations of the occupation time) As n goes to infinity, the sequence of
processes {	n(t) : t ∈ [0, T ]}n∈N converges in distribution, with respect to the uniform
topology of C ([0, T ],R), to a Gaussian process {	(t) : t ∈ [0, T ]}.
Remark 2.3 We notice that the previous result also holds for the occupation time of any site
x ∈ Tn , by replacing condition (2.3) for

1

εn

x+εn−1∑

y=x

(
W
( y

n

) − W
( x

n

)) ∼ O
(
εθ
)
. (2.5)

For ease of notation we opt to present the result for x = 0.

3 Scaling Limits: Hydrodynamics and Fluctuations

In this section we review the hydrodynamic limit and the equilibrium fluctuations of the
density, for the models introduced above.
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Occupation Time of Exclusion Processes 979

3.1 Hydrodynamic Limit

In words, the hydrodynamic limit consists in the analysis of the time evolution of the spatial
density of particles. This spatial density of particles is represented by the empirical measure
process πn

t (η, du) := πn(ηt , du) defined, for t ∈ [0, T ], by

πn(ηt , du) = 1
n

∑

x∈Tn

ηtn2(x)δ x
n
(du) ∈ M ,

where δy is the Dirac measure concentrated on y ∈ T. Above, M denotes the space of
positive measures on T with total mass bounded by one, endowed with the weak topology.
To uniquely characterize the time evolution of the empirical measure, some condition must
be imposed on the starting measures. This is the content of next definition.

Definition 3.1 A sequence of probability measures {μn}n∈N, whereμn is a probability mea-
sure on�n , is said to be associated to a profile ψ0 : T → [0, 1], if for every δ > 0 and every
continuous function H : T → R

lim
n→∞μn

{
η ∈ �n :

∣
∣
∣ 1

n

∑

x∈Tn

H( x
n ) η(x)−

∫

T

H(u) ψ0(u)du
∣
∣
∣ > δ

}
= 0. (3.1)

In [6] it was proved that:

Theorem 3.2 Fix a continuous profile ψ0 : T → [0, 1]. Let {μn}n≥1 be a sequence of
probability measures associated to ψ0. Then, for any t ∈ [0, T ], for every δ > 0 and every
continuous function H : T → R, it holds that

lim
n→∞ Pμn

{
η. :

∣
∣
∣ 1

n

∑

x∈Tn

H( x
n ) ηtn2(x)−

∫

T

H(u) ψ(t, u)du
∣
∣
∣ > δ

}
= 0 ,

where ψ : [0, T ] × T → R is the unique weak solution of
{
∂tψ = LWψ ,

ψ(0, u) = ψ0(u) ,∀u ∈ Tn .
(3.2)

The operator LW is defined in next subsection, as well as the notion of weak solution of (3.2).

In order to state properly what is a weak solution of (3.2) we need to introduce some defini-
tions.

3.2 The Operator LW

We detail here the operator LW : DW ⊂ L2(T) → L2(T). We start by defining its domain
DW . For that purpose, we consider W (dy) as the measure on the continuous torus associated
to the function W : R → R in the usual way, or else, as the unique measure such that

W ((a, b]) := W (b)− W (a) ∀ a, b ∈ T with a < b. (3.3)

Notice that the periodicity condition given in (2.1) guarantees that the measure above is well
defined.

The domain DW consists on the set of functions G in L2(T) such that

G(u) = a + b W (u)+
∫

(0,u]

( y∫

0

g(z) dz
)

W (dy), ∀ u ∈ T,
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980 T. Franco et al.

for some function g in L2(T) that satisfies

1∫

0

g(z) dz = 0 and
∫

(0,1]

(
b +

y∫

0

g(z) dz
)

W (dy) = 0.

The operator LW acts on G ∈ DW as LW G = g. An alternative definition of the operator
can be stated in the following way. Denote by ∂u the usual space derivative and define the
generalized derivative ∂W of a function G : T → R by

∂W G(u) = lim
ε→0

G(u + ε)− G(u)

W (u + ε)− W (u)
, (3.4)

when the above limit exists and is finite. Keeping this in mind, given G ∈ DW , we have
LW G(u) = ∂u∂W G(u), for all u ∈ T.

This operator LW is a Krein-Feller type operator (see e.g. [7] on the subject). In [6], it was
proved that LW satisfies the properties stated in the ensuing theorem. Below 〈〈·, ·〉〉 denotes
the inner product in L2(T) and ‖ · ‖ the corresponding norm.

Theorem 3.3 There exists an Hilbert space H 1
W compactly embedded in L2(T) such that

DW ⊂ H 1
W and LW can be extended to H 1

W such that the extension enjoys the following
properties:

(a) The domain H 1
W is dense in L2(T);

(b) The operator LW is self-adjoint and non-positive 〈〈H,−LW H〉〉 ≥ 0, for all H ∈ H 1
W ;

(c) Let I be the identity operator. The operator I − LW : H 1
W → L2(T) is bijective and

DW is a core of it;
(d) The operator LW is dissipative, i.e., ‖μH − LW H‖ ≥ μ‖H‖ , for some μ > 0 and for

all H ∈ H 1
W ;

(e) The eigenvalues of −LW form a countable set 0 = μ0 ≤ μ1 ≤ μ2 ≤ · · · with
limn→∞ μn = ∞, and all of them have finite multiplicity;

(f) There exists a complete orthonormal basis of L2(T) composed of eigenfunctions ϕn of
−LW associated to the eigenvalues μn.

In view of (a), (c) and (d), by the Hille–Yosida Theorem, LW is the generator of a strongly
continuous contraction semigroup in L2(T).

Finally, we state what is meant to be a weak solution to (3.2).

Definition 3.4 A bounded function ψ : [0, T ] × T → R is said to be a weak solution of the
parabolic differential equation (3.2) if, for any t ∈ [0, T ] and any H ∈ H 1

W , the function
ψ(t, ·) satisfies the integral equation

∫

T

ψ(t, u)H(u) du −
∫

T

ψ(0, u)H(u) du −
t∫

0

∫

T

ψ(s, u)LW H(u) du ds = 0.

3.3 Equilibrium Fluctuations and the Generalized Ornstein–Uhlenbeck Process

Following the ideas of [2], we define SW (T) = ⋂∞
n=0 Sn , where Sn is the Hilbert space

obtained by completing the space DW with respect to the inner product 〈·, ·〉n given by

〈 f, g〉n =
∞∑

k=1

(1 + μk)
2nk2n

∫

T

Pk f (u)Pk g(u)du, (3.5)
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Occupation Time of Exclusion Processes 981

where Pk is the orthogonal projection on the linear space generated by the eigenfunction ϕk

given in Theorem 3.3. Let S′
W (T) denote the dual space of SW (T), that is, the space of the

bounded linear functionals from SW (T) to R.
We define the density fluctuation field, which is an element of S′

W (T), as the linear func-
tional acting on functions H ∈ SW (T) as

Y n
t (H) = 1√

n

∑

x∈Tn

H
( x

n

)(
ηtn2(x)− ρ

)
. (3.6)

We will use the more compact notation η̄(x) to denote η(x) − ρ. The equilibrium density
fluctuations for these models was proved in Theorem 2.1 of [2] and is stated as follows.
Denote by D([0, T ], S′

W (T)) the path space of càdlàg trajectories with values in S′
W (T).

Theorem 3.5 As n goes to infinity, the sequence {Y n
t : t ∈ [0, T ]}n∈N converges, in the

Skorohod topology of D([0, T ], S′
W (T)), to {Yt : t ∈ [0, T ]} the generalized Ornstein-

Uhlenbeck process which is the stationary solution of the stochastic partial differential equa-
tion given by

dYt = c̃ ′(ρ)LW Yt dt + √
2χ(ρ)c̃ ′(ρ)dBt , (3.7)

where χ(ρ) = ρ(1 −ρ), c̃ ′(ρ) = 1 + 2bρ and Bt is a S′
W (T)-valued Brownian motion with

quadratic variation given by

〈B(H)〉t = t
∫

T

(∂W H(x))2 W (dx).

4 Proof of Theorem 2.2

The proof of this theorem relies on two steps. First, we claim that the occupation time is
close to an additive functional of the density fluctuation field Y n

t , this is what we called the
Local Replacement. Second, we use Theorem 3.5 to prove that the additive functional of
the density fluctuation field Y n

t converges to a Gaussian process. Before proving these two
claims we develop some crucial estimates that we need in due course.

4.1 The Local Replacement

For a function g ∈ L2(νρ), we denote by Dn(g) the Dirichlet form of the function g, defined
as: Dn(g) = − ∫

�n
g(η)Lng(η)νρ(dη). An elementary computation shows that

Dn(g) =
∑

x∈Tn

ξn
x,x+1

2

∫

�n

cx,x+1(η)
(

g
(
ηx,x+1) − g

(
η
))2

νρ(dη). (4.1)

Lemma 4.1 (Local Replacement) For any � ≥ 1, for any n ≥ 1 and t ∈ [0, T ], it holds that

Eρ

⎡

⎢
⎣

⎛

⎝
t∫

0

{η̄sn2(0)− η̄�sn2(0)}ds

⎞

⎠

2
⎤

⎥
⎦ ≤ 40 t

n2�
C(ρ)

�−1∑

y=0

y−1∑

z=0

1

ξn
z,z+1

,

where

η̄�sn2(0) = 1

�

�−1∑

y=0

η̄sn2(y)

and C(ρ) is a positive constant.
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982 T. Franco et al.

In order to prove the last lemma, we use the following result.

Lemma 4.2 For any � ≥ 1, for any n ≥ 1, for any g ∈ L2(νρ) and for a constant A > 0, it
holds that

∫

�n

{η̄(0)− η̄�(0)}g(η)νρ(dη) ≤ A

2�

�−1∑

y=0

y−1∑

z=0

1

ξn
z,z+1

∫

�n

1

cz,z+1(η)
νρ(dη)+ 1

A
Dn(g).

Proof By the definition of the empirical average η̄�(0), we can rewrite the integral on the
left hand side in the statement of the lemma as

1

�

�−1∑

y=0

y−1∑

z=0

∫

�n

{η(z)− η(z + 1)}g(η)νρ(dη).

Writing the previous expression as twice its half and performing the change of variables
η �→ ηz,z+1, for which the measure νρ is invariant, it equals to

1

2�

�−1∑

y=0

y−1∑

z=0

∫

�n

(η(z)− η(z + 1))(g(η)− g(ηz,z+1))νρ(dη).

By the Cauchy–Schwarz inequality we bound the expression above by

1

2�

�−1∑

y=0

y−1∑

z=0

1

ξn
z,z+1

∫

�n

A

cz,z+1(η)
(η(z)− η(z + 1))2νρ(dη)

+ 1

2�

�−1∑

y=0

y−1∑

z=0

ξn
z,z+1

∫

�n

cz,z+1(η)

A
(g(η)− g(ηz,z+1))2νρ(dη).

To finish the proof it is enough to recall (4.1). ��

Proof of Lemma 4.1. By Proposition A1.6.1 of [12], we have that

Eρ

[( t∫

0

{η̄sn2(0)− η̄�sn2(0)}ds

)2]

≤ 20 t sup
g∈L2(νρ)

{

2
∫

�n

{η̄(0)− η̄�(0)}g(η)νρ(dη)− n2Dn(g)

}

≤ 20 t sup
g∈L2(νρ)

{
A

�

�−1∑

y=0

y−1∑

z=0

1

ξn
z,z+1

∫

�n

1

cz,z+1(η)
νρ(dη)+ 2

A
Dn(g)− n2Dn(g)

}

.

In last inequality we used the previous lemma. Taking 1/A = n2/2 we get the bound

40 t

n2�

�−1∑

y=0

y−1∑

z=0

1

ξn
z,z+1

∫

�n

1

cz,z+1(η)
νρ(dη).
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Occupation Time of Exclusion Processes 983

To conclude it is enough to observe that
∫

�n

1

cz,z+1(η)
νρ(dη) = (1 − ρ)2 + 2

1 + b
ρ(1 − ρ)+ 1

1 + 2b
ρ2 := C(ρ). (4.2)

��
Corollary 4.3 For any ε > 0 and any t ∈ [0, T ], it holds that

Eρ

[( t∫

0

{η̄sn2(0)− η̄εnsn2(0)}ds

)2]

≤ 40 t

εn2 C(ρ)
εn−1∑

y=0

(
W
( y

n

) − W (0)
)
,

for a positive constant C(ρ).

Proof This result is a consequence of Lemma 4.1 with � = εn and the fact that ξn
x,x+1 =

1
n(W ( x+1

n )−W ( x
n ))

so that

εn−1∑

y=0

y−1∑

z=0

1

ξn
z,z+1

≤ n
εn−1∑

y=0

(
W
( y

n

) − W (0)
)
.

��
Corollary 4.4 For any ε > 0, for any n ≥ 1, for any W satisfying (2.3) for some θ > 0 and
for any t ∈ [0, T ], it holds that

Eρ

[(√
n

t∫

0

{η̄sn2(0)− η̄εnsn2(0)}ds

)2]

≤ 40 t C(ρ) εθ ,

for a positive constant C(ρ).

Proof By the previous corollary, the expectation above is bounded from above by

40 t

εn
C(ρ)

εn−1∑

y=0

(

W

(
y
n

)

− W (0)

)

,

and by the assumption (2.3) last term is smaller than 40 t C(ρ) εθ , where C(ρ) is a constant.
��

At this point we are able to use the local replacement in order to prove that the occupation
time is close to an additive functional of the density of particles. For that purpose, for ε ∈ (0, 1)
we denote by ιε the function y �→ ε−11[0,ε](y). The sequence {ιε ; ε ∈ (0, 1)} is therefore
an approximation of the identity.

Proposition 4.5 Fix t > 0. For any ε > 0 and for any n ≥ 1, it holds that

Eρ

[(

	n(t)−
t∫

0

Y n
s (ιε)ds

)2]

≤ Ctεθ , (4.3)

for a positive constant C.
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984 T. Franco et al.

Proof Observe that

	n(t)−
t∫

0

Y n
s (ιε)ds = 1

n3/2

tn2∫

0

η̄s(0)ds −
t∫

0

1

ε
√

n

εn∑

x=0

η̄sn2(x)ds

= √
n

t∫

0

(
η̄sn2(0)− η̄εnsn2(0)

)
ds.

In the first equality we used the definitions of 	n(t) and Y n
s given, respectively, in (2.4)

and (3.6) and the definition of ιε given above. In the second equality, we used a change of
variables in the time integral. Now, it is enough to recall Corollary 4.4 in order to finish the
proof. ��
4.2 The Approximation in the SW (T) Space

So far, we were able to show that the occupation time is close to the additive functional of
the density of particles evaluated at the function ιε . We would like to invoke Theorem 3.5 in
order to assure the convergence of the density fluctuation field Y n

t to some process Yt , as
n tends to infinity. However, the function ιε does not belong to the space of test functions
SW (T), therefore, we can not apply directly the Theorem 3.5 to Y n

t (ιε). To overcome this
problem, we approximate first the function ιε by a sequence of functions {ιkε}k∈N in the space
of test functions SW (T). This is the content of the next lemma.

Denote by 1A(u) the function that takes the value 1 if u ∈ A and 0 if u /∈ A.

Lemma 4.6 For fixed ε ∈ (0, 1), there exists a sequence of functions {ιkε}k∈N in the space of
test functions SW (T) converging to ιε in the L2(T)-norm, as k tends to infinity.

Proof In fact, we are going to approximate the function ιε by a sequence of functions on the
space DW , which is a subset of SW (T), as defined in Sect. 3.3.

Define

ιkε(u) :=
∫

(0,u]

( y∫

0

gk
ε (z) dz

)
W (dy), ∀ u ∈ T, (4.4)

where the function gk
ε (z) ∈ L2(T) is given by

gk
ε (z) := ck,+

ε gk,+
ε (z)− ck,−

ε gk,−
ε (z), ∀ z ∈ T,

with

gk,+
ε (z) := k

[

1(0,1/k](z)− 1(1/k,2/k](z)
]

, ∀ z ∈ T,

gk,−
ε (z) := k

[

1(ε−1/k,ε](z)− 1(ε,ε+1/k](z)
]

, ∀ z ∈ T,

ck,+
ε := 1

ε

( ∫

(0,1]

( y∫

0

gk,+
ε (z) dz

)

W (dy)

)−1

,

ck,−
ε := 1

ε

( ∫

(0,1]

( y∫

0

gk,−
ε (z) dz

)

W (dy)

)−1

.
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We consider k ∈ N such that k > 1/ε, in order that the formulas above make sense. We claim
that

1∫

0

gk
ε (z) dz = 0 and

∫

(0,1]

( y∫

0

gk
ε (z) dz

)

W (dy) = 0.

The first equality above follows from the fact that
∫ 1

0 gk,+
ε (z)dz = ∫ 1

0 gk,−
ε (z)dz = 0, which

can be easily checked. The second equality follows from a simple computation.
Under the choice of gk

ε , the function ιkε defined in (4.4) has the following behavior: for
u ∈ (2/k, ε−1/k], ιkε(u) is equal to ε−1 and for u ∈ (ε+1/k, 1], ιkε(u) vanishes. Therefore,
for each k ∈ N, the function ιkε differs from ιε only on the set (0, 2/k] ∪ (ε− 1/k, ε+ 1/k].

Since |ιkε − ιε| is bounded by a constant that does not depend on k, the Dominated Con-
vergence Theorem implies that ιkε converges to ιε in L2(T), as k goes to infinity, concluding
the proof. ��
4.3 The Gaussian limit

At this point we have all the needed ingredients in order to prove our main result, namely,
Theorem 2.2. In this subsection, we follow the ideas from the proof of the Theorem 2.9 of
[8].

We know that the occupation time is close to the additive functional of the density of par-
ticles evaluated on ιε , which in turn can be very well approximated by the additive functional
of the density of particles evaluated on a function in the space of test functions SW (T). At this
point, we can take the limit as n tends to infinity, because, by Theorem 3.5, the convergence
of Y n

t (H) to Yt (H) holds for any H ∈ SW (T).
Next, we prove that the additive functional associated to Yt (ιε) converges, as ε tends to

0, to a Gaussian process. For that purpose, define

	̃ε(t) =
t∫

0

Ys(ιε)ds, (4.5)

where Yt is the Ornstein–Uhlenbeck process given in (3.7).

Remark 4.7 We point out that definition above is, in principle, not well defined since ιε does
not belong to the space SW (T). To handle that, it is necessary to look at the limit of Cauchy
sequences {Y n

t (ι
k
ε)}k∈N, where {ιkε}k∈N is given in Lemma 4.6. By the convergence of Y n

t (ι
k
ε)

towards Yt (ι
k
ε) as n goes to infinity, and the fact that {Y n

t (ι
k
ε)}k∈N is a Cauchy sequence in

k (uniformly in n), a diagonal argument leads to a precise definition of 	̃ε(t). This was very
well detailed in [5] or [8] and to keep the present text short, we ask the reader to accept (4.5)
or to go into the details in these references.

The next lemma characterizes, for fixed t , the dependency of 	̃ε(t) on ε > 0.

Lemma 4.8 For any fixed t ∈ [0, T ] and any ε > δ > 0,

E

[(

	̃ε(t)− 	̃δ(t)

)2]

≤ Cεθ t, (4.6)

where C > 0 is some constant that does not depend on ε nor δ.
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Proof Fix ε > δ > 0. Repeatedly applying the inequality (x + y)2 ≤ 2(x2 + y2), we bound
the expectation in (4.6) by four times the sum of

E

[(

	̃ε(t)−
t∫

0

Y n
s (ιε)ds

)2]

, (4.7)

E

[(

	n(t)−
t∫

0

Y n
s (ιε)ds

)2]

, (4.8)

E

[(

	n(t)−
t∫

0

Y n
s (ιδ)ds

)2]

, (4.9)

and

E

[(

	̃δ(t)−
t∫

0

Y n
s (ιδ)ds

)2]

. (4.10)

The term in (4.8) can be estimated by using Proposition 4.5, from where we get that

E

[(

	n(t)−
t∫

0

Y n
s (ιε)ds

)2]

≤ Cεθ t.

Analogously, for (4.9), we have

E

[(

	n(t)−
t∫

0

Y n
s (ιδ)ds

)2]

≤ Cδθ t < Cεθ t.

The next step is to guarantee that (4.7) is arbitrarily small for large n. We do the following.
By Lemma 4.6 there exists a sequence of functions {ιkε}k∈N in the space of test functions
SW (T) approximating the function ιε in the L2(T)-norm, as k tends to infinity. By adding
and subtracting terms, we bound (4.7) by four times the sum of the terms below:

E

[(

	̃ε(t)−
t∫

0

Ys(ι
k
ε)ds

)2]

,

E

[( t∫

0

Ys(ι
k
ε)ds −

t∫

0

Y n
s (ι

k
ε)ds

)2]

,

E

[( t∫

0

Y n
s (ι

k
ε)ds −

t∫

0

Y n
s (ιε)ds

)2]

.

(4.11)
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The first expectation in (4.11) can be estimated by using the linearity of Yt together with
Lemma 6.1 (postponed to the appendix), from where we get that

E

[( t∫

0

[Ys(ιε)− Ys(ι
k
ε)]ds

)2]

= t2χ(ρ)

∫

T

(ιε(u)− ιkε(u))
2du.

By Lemma 4.6, the right hand-side of the previous equality goes to zero, as k goes to infinity.
The second expectation in (4.11) goes to zero, as n tends to infinity, as a consequence of

the Theorem 3.5 and of Lemma 4.6.
To bound the third expectation in (4.11) we apply the Cauchy–Schwarz inequality, leading

to

E

[( t∫

0

[Y n
s (ι

k
ε)− Y n

s (ιε)]ds

)2]

≤ t2 1

n

∑

x∈Tn

(ιkε − ιε)
2
(

x

n

)

χ(ρ).

Taking n sufficiently large, the right hand-side of the previous expression is close to

t2
∫

T

(ιkε(u)− ιε(u))
2du χ(ρ)

and again by Lemma 4.6, this expression is small for k sufficiently big.
Expression (4.10) can be treated in same way as (4.7), finishing the proof of the lemma. ��

Proposition 4.9 As ε goes to zero, the sequence of processes {	̃ε(t) : t ∈ [0, T ]}ε>0 con-
verges in distribution, with respect to the uniform topology of C ([0, T ],R), to a Gaussian
process {	̃(t) : t ∈ [0, T ]}.

Proof We begin by claiming that

E

[(
	̃ε(t)

)2]

≤ t2 χ(ρ)

ε
. (4.12)

By the Cauchy–Schwarz inequality,

E

[(

	̃ε(t)

)2]

≤ t E

[ t∫

0

(Ys(ιε))
2ds

]

.

By Fubini’s Theorem and Lemma 6.1 we get that

E

[(

	̃ε(t)

)2]

≤ t

t∫

0

E

[

(Ys(ιε))
2
]

ds = t2χ(ρ)

∫

T

(ιε(u))
2du = t2 χ(ρ)

ε
,

proving the claim. We observe that Lemma 6.1 is stated only for functions in the space SW (T).
Nevertheless, an aproximation procedure in L2 as described in the Remark 4.7 extends the
statement of the Lemma 6.1 for ιε as well.
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Fix ε > 0. For δ < ε, applying (4.6) and (4.12) we have that

E

[(
	̃δ(t)

)2] = E

[(
	̃δ(t)− 	̃ε(t)+ 	̃ε(t)

)2]

≤ 2E

[(
	̃δ(t)− 	̃ε(t)

)2] + 2E

[(
	̃ε(t)

)2]

≤ 2Cεθ t + 2t2 χ(ρ)

ε
. (4.13)

If t ≥ δ1+θ , taking ε = t1/1+θ we conclude that

E

[(
	̃δ(t)

)2] ≤ Ct
1+2θ
1+θ , (4.14)

where C does not depend on ε nor t . On the other hand, if t < δ1+θ , then t
1

1+θ < δ and
using (4.12), the previous inequality is also true. Therefore, by the stationarity of Yt and
since 	̃ε(0) = 0, we get that

E
[(
	̃ε(t)− 	̃ε(s)

)2] = E
[(
	̃ε(t − s)− 	̃ε(0)

)2]

= E
[(
	̃ε(t − s)

)2] ≤ C |t − s|
1+2θ
1+θ , (4.15)

for all t, s ∈ [0, T ]. Estimate (4.15) allows to invoke Kolmogorov-Centsov’s compactness
criterion (see problem 2.4.11 in [10]), assuring that the sequence of processes {	̃ε(t) : t ∈
[0, T ]}ε>0 is tight. Besides that, for fixed t , (4.6) implies that {	̃ε(t)}ε>0 is a Cauchy sequence
in L2, implying the uniqueness of limit points. This concludes the proof. ��

4.3.1 A Final Observation

Since we have, in general, no manageable formula for the semigroup {Pt : t ≥ 0} associated
to c̃′(ρ)LW , we are not able to explicitly characterize the covariance of the Gaussian process
{	̃(t) : t ∈ [0, T ]} obtained above (and hence we can not characterize the process itself
beyond of proving its existence). In next subsection we detail two cases where the covariances
can be computed explicitly.

5 Further Extensions and Examples

In this section we present the extension of the previous results for two models evolving in
the one-dimensional lattice Z. For that purpose we need to introduce some notation. From
now on, we take the state space � := {0, 1}Z and the Markov process {ηt : t ≥ 0} with
infinitesimal generator given on local functions f : � → R by

(Ln f )(η) =
∑

x∈Z

an
x,x+1(η)

[

f
(
ηx,x+1) − f

(
η
)
]

,

where an
x,x+1 will be defined later accordingly to the model we consider. Above, ηx,x+1

denotes the configuration obtained from η by exchanging the occupation variables η(x) and
η(x + 1), as in (2.2). For this process we define the occupation time of the origin 	n(t)
as in Definition 2.1. Below we present two examples for which we are able to characterize
completely the limiting Gaussian process appearing in the statement of Theorem 2.2.
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5.1 Porous Media Models

In this section we consider a collection of models whose scaling limits were studied in [9].
First, we consider the Markov process {ηt : t ≥ 0} with generator given by Ln as above
with

an
x,x+1(η) := ax,x+1(η) = 1 + b(η(x − 1)+ η(x + 2)),

where b > −1/2. In the particular case where b = 0, the process becomes the well known
symmetric simple exclusion process.

We notice that all the results of Sect. 4 are true for these models simply by rewriting the
proofs adapted to the infinite volume context. First, the results in Sect. 4.1 are true for this
choice of the jump rates: Lemma 4.1 holds in this case by making the simple choice of W
equal to the identity function which corresponds to conductances given by ξx,x+1 = 1 for
all x ∈ Z, therefore Proposition 4.5 is also true for this model. Second, to prove the results
of Sect. 4.2 we define the density fluctuation field Y n

t (see (3.6)) with the sum taken with
x ∈ Z and on the Schwarz space of test functions, that we denote by S (R). Therefore, by
the chosen space of test functions the approximation arguments of Sect. 4.2 are standard and
are left to the reader. Finally, the results of Sect. 4.3 are also simple to check in this setting,
for details we refer to [8]. We omitted the details of these proofs since they are basically a
modification of notation to fit the infinite volume setting. Moreover, since the equilibrium
fluctuations were proved for these models in [9], then Theorem 2.2 holds in this case with
the limiting process {	(t) : t ≥ 0} being a fractional Brownian motion of Hurst exponent
H = 3/4.

We remark that we can even take more general rates an
x,x+1(η) := ax,x+1(η) equal to

1 + b
( −1∏

j=−(m−1)

η(x + j)+
2∏

j=−(m−2)
j �=0,1

η(x + j)+ · · · +
m−1∏

j=−1
j �=0,1

η(x + j)+
m∏

j=2

η(x + j)
)
,

with b > −1/2 and m ∈ N\{1}. Under these rates, particles more likely hop to unoccupied
nearest-neighbor sites when there are at least m−1 ≥ 1 other neighboring sites fully occupied.

Summarizing, since in [9] the equilibrium fluctuations were obtained for these models,
the limit being a generalized Ornstein–Uhlenbeck process and since all the results of Sect. 4
are also true for these models, then we are able to show the following result.

Theorem 5.1 As n goes to infinity, the sequence of processes {	n(t) : t ∈ [0, T ]}n∈N

converges in distribution with respect to the uniform topology of C ([0, T ],R) to a fractional
Brownian motion of Hurst exponent H = 3/4.

5.2 Symmetric Exclusion with a Slow Bond

In this section, we consider the Markov process {ηt : t ≥ 0} with generator given by Ln as
above with

an
x,x+1(η) =

{
α

nβ
, if x = −1,

1, otherwise,
(5.1)

for α > 0 and β ∈ [0,∞].
These models correspond to the symmetric exclusion process with a slow bond, which

was extensively studied in [3–5]. We first notice that if we take the process evolving on T,
the case β = 1 and α = 1 corresponds to a particular case of the ones described above by
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simply taking W : R → R as W (x) = x + �x� , where �x� denotes the biggest integer
number smaller or equal to x . It is simple to check that this function W satisfies the conditions
imposed in Sect. 2, and for b = 0 the conductances are given by ξ−1,0 = 1

n+1 , while for
x �= −1, ξx,x+1 = 1. Therefore, asymptotically the behavior of this model is the same as
for the slow bond introduced above. We remark that when we take other values of β or α
we can only write the conductances in terms of a function W that depends on n and this is
not covered by the results we presented above, since there the function W is fixed. For these
models we are also able to prove the Theorem 2.2 for all the ranges of the parameters α > 0
and β ∈ [0,∞].

Now we sketch the proof of this result following the steps of Sect. 4. First, we notice
that all the results of Sect. 4.1 are true for these models by replacing there the jump rates
ξx,x+1cx,x+1 by our choice of an

x,x+1 given above. In order to prove the results of Sect. 4.2
we define the density fluctuation field Y n

t (see (3.6)) with the sum taken with x ∈ Z on the
space of test functions that we denote by Sβ(R) which is defined as follows.

First of all, we define first S (R\{0}) as the space of functions H : R → R, such that
H ∈ C∞(R\{0}) and H is continuous from the right at x = 0, with

‖H‖k,� := sup
x∈R\{0}

|(1 + |x |�) H (k)(x)| < ∞,

for all integers k, � ≥ 0 and H (k)(0−) = H (k)(0+), for all k integer, k ≥ 1, where

H(0+) := lim
u→0,
u>0

H(u) and H(0−) := lim
u→0,
u<0

H(u),

When the above limits exist.
Now, let Sβ(R) be the subset of S (R\{0}) composed of functions H satisfying:

• for β ∈ [0, 1), H(0−) = H(0+),
• for β = 1, H (1)(0+) = H (1)(0−) = α

(
H(0+)− H(0−)

)
,

• for β ∈ (1,∞], H (1)(0+) = H (1)(0−) = 0.

We remark that for β < 1, Sβ(R) coincides with the Schwarz space S (R). Since we
are working with different spaces for the test functions, we need to show that we are able
to approximate the function ιε by a suitable sequence of test functions Sβ(R). This is the
content of the next lemma.

Lemma 5.2 For fixed ε ∈ (0, 1), there exists a sequence of functions {ιkε}k∈N
in the space of

test functions Sβ(R) converging to ιε in the L2(T)-norm, as k tends to infinity.

Proof This proof is the same proof as in Lemma 4.6, if we consider

ιkε(u) :=
u∫

−∞

( y∫

−∞
hk
ε(z) dz

)

dy, ∀ u ∈ R,

where hk
ε is an approximation of the function gk

ε , defined above, in the space S (R\{0}).
Then the function ιkε belongs to space of test functions Sβ(R), and converges to ιε , as k

tends to infinity in the L2(T)-norm. ��
Moreover, all the results of Sect. 4.3 are of straight verification for these models, since the

equilibrium fluctuations for these models were proved in Theorem 2.6 of [5], the limit being
a generalized Ornstein–Uhlenbeck process. As a consequence we have the following result.
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Theorem 5.3 As n goes to infinity, the sequence of processes {	n(t) : t ∈ [0, T ]}n∈N

converges in distribution with respect to the uniform topology of C ([0, T ],R) to:

• For β ∈ [0, 1), a mean-zero Gaussian process {	∞(t) : t ∈ [0, T ]} with variance given
by

E
[(
	∞(t)

)2] = 4

3

χ(ρ)√
π

t3/2. (5.2)

Or else, {	∞(t) : t ∈ [0, T ]} is a fractional Brownian motion of Hurst exponent 3/4.
• For β = 1, a mean-zero Gaussian process {	α(t) : t ∈ [0, T ]} with variance given by

E
[(
	α(t)

)2] = 4

3

χ(ρ)√
π

t3/2 + 2χ(ρ)

t∫

0

s∫

0

Fα(s − r)√
4π(s − r)

drds, (5.3)

where

Fα(t) = 1

2t

+∞∫

0

z e−z2/4t−2αz dz. (5.4)

Moreover, this process {	α(t) : t ∈ [0, T ]} is not self-similar, hence it is not a fractional
Brownian motion.

• For β ∈ (1,∞], a mean-zero Gaussian process {	0(t) : t ∈ [0, T ]} with variance given
by

E
[(
	0(t)

)2] = 8

3

χ(ρ)√
π

t3/2. (5.5)

Or else, {	0(t) : t ∈ [0, T ]} is a fractional Brownian motion of Hurst exponent 3/4 with
twice the variance of {	∞(t) : t ∈ [0, T ]}.

Proof As mentioned above, the previous results can be obtained by following the proof in
Sect. 4 together with Theorem 2.6 of [5]. In order to characterize the limiting processes, by
stationarity, since they are mean-zero and equal to 0 for t = 0, it is enough to compute their
variances. For notational convenience let 	(t) be the limiting process for all the ranges of β.
Then, by symmetry, we get that

E
[(
	(t)

)2] = lim
ε→0

2

t∫

0

s∫

0

E[Ys(ιε)Yr (ιε)] dr ds,

where Yt is the stationary solution of

dYt = �βYt dt + √
2χ(ρ)∇βdWt , (5.6)

Wt being a space-time white noise of unit variance and the characteristic operators �β and
∇β were defined in [5]. By equation (33) in the proof of Theorem 2.7 of [5],

E[Ys(ιε)Yr (ιε)] = χ(ρ)

∫

R

(T βs−r ιε)(u)ιε(u)du,

where T βt is the semigroup associated to�β . It remains only to take the limit of the expression
above as ε goes to zero. Performing a simple but long computation we get the result. For the
sake of completeness we present this computation in the Lemma 6.2 of the appendix.

Finally, the fact that {	α(t) : t ∈ [0, T ]} is not self-similar it is a consequence of the fact
that its variance is not invariant under a time-transformation of a power type, see [11]. ��
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It is a folklore conjecture that the fluctuations of the current and of the occupation time
should be of same order. By means of the previous theorem, we offer a counter-example for
such idea. In [5], it was proved that the fluctuations for the current at the origin in the regime
β > 1 are null. Opposed to that, in the theorem above, we get that the fluctuations for the
occupation time at the origin are not null. Of course, this does not eliminate the possibility the
conjecture to be true under some additional hypothesis on the particle system. Anyway, the
particle system we have used here to present the counter-example has some strong properties
as reversibility and the order preservation of particles.

As a consequence of the Theorem 5.3 we discover also that the three processes obtained as
the limit of the occupation time are continuously related through the parameter α presented
in (5.1). This result is stated in the following corollary.

Corollary 5.4 The sequence of processes {	α(t) : t ∈ [0, T ]}α>0 converges, as α tends to
infinity, to the mean-zero Gaussian process {	∞(t) : t ∈ [0, T ]} with variance given by (5.2).
On the other hand, as α tends to zero, the sequence of processes {	α(t) : t ∈ [0, T ]}α>0

converges to the mean zero Gaussian process {	0(t) : t ∈ [0, T ]} with variance given by
(5.5). The convergence above is in the sense of finite dimensional distributions.

Proof Gaussian processes are characterized by their covariance. Reversibility in all cases
allows to characterize the covariance in terms of the variance. Therefore, it is enough to
show the convergence of the variances in each case which is a consequence of the Dominated
Convergence Theorem and the fact that

∀ t ≥ 0, lim
α→∞ Fα(t) = 0 and lim

α→0
Fα(t) = 1,

where Fα(t) was defined in (5.4). Both limits above are of straightforward verification and
are left to the reader. ��
Remark 5.5 We notice that the result of Theorem 2.2 can be extended for particle systems for
which Corollary 4.4, Lemma 4.6 and Theorem 3.5 hold. The characterization of the Gaussian
process would depend on the knowledge of the semigroup associated to the corresponding
operator LW in (3.7).

6 Appendix

We present in this appendix the proof of the following lemma, which is a standard one in
the area. Because we were not able to find it written anywhere in the literature, we include it
here for the sake of completeness.

Lemma 6.1 If {Yt : t ≥ 0} is a solution of (3.7), then for all H ∈ SW (T), it holds that

E
[
Yt (H)Ys(H)

] = χ(ρ)

∫

T

(Pt−s H)(u)H(u)du, (6.1)

where {Pt : t ≥ 0} is the semigroup associated to c̃′(ρ)LW .

Proof From [2], since Yt solves (3.7), Yt solves the following martingale problem: for every
H ∈ SW (T),

Mt (H) = Yt (H)− Y0(H)− c̃′(ρ)
t∫

0

Ys(LW H)ds (6.2)

123



Occupation Time of Exclusion Processes 993

is a martingale with respect to the natural filtration Ft := σ(ηs : 0 ≤ s ≤ t). At first, we
claim that

E

[

Yt (H)Y0(H)

]

= χ(ρ)

∫

T

(Pt H)(u)H(u)du. (6.3)

For this purpose, notice that

E
[
Yt (H)Y0(H)

] = E

[(
Mt (H)+ Y0(H)+ c̃′(ρ)

t∫

0

Ys(LW H)ds
)

Y0(H)
]

= E
[
Mt (H)Y0(H)

]+E
[
Y0(H)Y0(H)

]+E

[
Y0(H)c̃

′(ρ)
t∫

0

Ys(LW H)ds
]
.

(6.4)

The first expectation above vanishes because

E
[
Mt (H)Y0(H)

] = E
[
E
[
Mt (H)Y0(H)

∣
∣F0

]] = E
[
Y0(H)E

[
Mt (H)

∣
∣F0

]]

= E
[
Y0(H)M0(H)

] = 0,

where last equality above is due to M0(H) = 0.
The second term can be handled as follows. By computing the characteristic function of

Y n
0 (H) and by the Theorem 2.1 of [2], we get that

E
[
Y0(H)Y0(H)

] = χ(ρ)

∫

T

(H(u))2du. (6.5)

Now we develop the last expectation of (6.4) by using again (6.2), that is:

E

[
Y0(H)c̃

′(ρ)
t∫

0

Ys(LW H)ds
]

=
t∫

0

E

[
Y0(H)Ys

(
c̃′(ρ)LW H

)]
ds

=
t∫

0

E

[

Y0(H)Ms

(
c̃′(ρ)LW H

)
+Y0(H)Y0

(
c̃′(ρ)LW H

)

+ Y0(H)

s∫

0

Yr

(
(c̃′(ρ))2L 2

W H
)

dr

]

ds.

Repeating the same argument as above, last expression can be rewritten as

χ(ρ)

∫

T

t c̃′(ρ)(LW H)(u)H(u)du +
t∫

0

s∫

0

E

[
Y0(H)Yr

(
(c̃′(ρ))2L 2

W H
)]

dr ds.

Let us introduce the temporary notation G := (c̃′(ρ))2L 2
W H and rewrite the expression

above simply as

χ(ρ)

∫

T

t c̃′(ρ)(LW H)(u)H(u)du +
t∫

0

s∫

0

E
[
Yr (G)Y0(H)

]
dr ds. (6.6)
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We want to characterize the expectation in the second parcel above. Invoking (6.2) again we
have that

Mr (G) = Yr (G)− Y0(G)− c̃′(ρ)
r∫

0

Yl(LW G)dl

is a martingale. Provided by this fact and repeating the previous arguments, we are lead to

E
[
Yr (G)Y0(H)

] = χ(ρ)

∫

T

G(u)H(u)du + E

[

Y0(H) c̃′(ρ)
r∫

0

Yl(LW G)dl

]

(6.7)

Putting together (6.5), (6.7) and (6.6), we obtain:

E
[
Yt (H)Y0(H)

] = χ(ρ)

∫

T

(H(u))2du + χ(ρ)t
∫

T

c̃′(ρ)(LW H)(u)H(u)du

+χ(ρ) t2

2

∫

T

(c̃′(ρ))2(L 2
W H)(u)H(u)du + Mt (H),

where

Mt (H) :=
t∫

0

s∫

0

E

[
Y0(H) c̃′(ρ)

r∫

0

Yl(LW G)dl
]
dr ds.

From the Lemma 3.5 of [2], we have that LW : SW (T) → SW (T) is a bounded operator
with respect to the norm associated to the inner product defined in (3.5). Therefore, it makes
sense to define the exponential of this operator. A long, but elementary, induction argument
over the previous formula leads to

E
[
Yt (H)Y0(H)

] = χ(ρ)

∫

T

(etc̃′(ρ)LW H)(u)H(u)du

= χ(ρ)

∫

T

(Pt H)(u)H(u)du,

where {Pt : t ≥ 0} is the semigroup associated to c̃′(ρ)LW . Finally, since {Yt : t ≥ 0} is a
stationary process, we get that

E
[
Yt (H)Ys(H)

] = E
[
Yt−s(H)Y0(H)

] = χ(ρ)

∫

T

(Pt−s H)(u)H(u)du,

as desired. ��

We finish this appendix fulfilling some details in the proof of Theorem 5.3.
Let T βt be the semigroup associated to the operator�β . For β ∈ [0, 1) it is the semigroup

related to the heat equation in the line. Quite classical, it acts on g ∈ Sβ(R) as

Tt g(x) = 1√
4π t

∫

R

e− (x−y)2

4t g(y) dy, for x ∈ R. (6.8)
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For β ∈ (1,∞], the semigroup T βt is also known and it acts on g ∈ Sβ(R) as

T Neu
t g(x) =

⎧
⎪⎨

⎪⎩

1√
4π t

∫ +∞
0

[
e− (x−y)2

4t + e− (x+y)2

4t

]
g(y) dy, for x > 0 ,

1√
4π t

∫ +∞
0

[
e− (x−y)2

4t + e− (x+y)2

4t

]
g(−y) dy, for x < 0.

(6.9)

Denote by geven and godd the even and odd parts of a function g : R → R, respectively,
or else, for x ∈ R,

geven(x) = g(x)+ g(−x)

2
and godd(x) = g(x)− g(−x)

2
. (6.10)

As proved in [5], for β = 1, the semigroup T βt acts on g ∈ Sβ(R) as

T αt g(x) = 1√
4π t

{
∫

R
e− (x−y)2

4t geven(y) dy

+ e2αx
∫ +∞

x e−2αz
∫ +∞

0

[
(

z−y+4αt
2t )e− (z−y)2

4t + (
z+y−4αt

2t )e− (z+y)2

4t

]
godd(y) dy dz

}

,

(6.11)

for x > 0 and

T αt g(x) = 1√
4π t

{∫

R

e− (x−y)2

4t geven(y) dy

−e−2αx

+∞∫

−x

e−2αz

+∞∫

0

[
( z−y+4αt

2t

)
e− (z−y)2

4t + ( z+y−4αt
2t

)
e− (z+y)2

4t

]

godd(y) dy dz

}

,

for x < 0.
Below, we state and prove a lemma required in the proof of the Theorem 5.3.

Lemma 6.2 For β ∈ [0, 1),

lim
ε↘0

∫

R

(T βt ιε)(u)ιε(u)du = 1√
4π t

.

For β = 1,

lim
ε↘0

∫

R

(T βt ιε)(u)ιε(u)du = 1√
4π t

(

1 + 1

2t

+∞∫

0

ze− z2
4t −2αzdz

)

. (6.12)

Finally, for β ∈ (1,∞],
lim
ε↘0

∫

R

(T βt ιε)(u)ιε(u)du = 2√
4π t

.

Proof Consider β ∈ [0, 1). In this case,

lim
ε↘0

∫

R

(T βt ιε)(u)ιε(u)du = lim
ε↘0

1

ε2

ε∫

0

ε∫

0

e− (x−y)2

4t√
4π t

dx dy = 1√
4π t

,

(6.13)
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because the Gaussian kernel is a continuous function. The case β ∈ (1,∞] is quite similar.
Indeed, for this regime of β,

lim
ε↘0

∫

R

(T βt ιε)(u)ιε(u)du = lim
ε↘0

1

ε2

ε∫

0

ε∫

0

e− (x−y)2

4t + e− (x+y)2

4t√
4π t

dx dy = 2√
4π t

.

The case β = 1 deserves more attention. For g(u) = ιε(u), we have that

geven(u) = 1
2ε1[−ε,ε] and godd(u) = 1

2ε

(
1(0,ε] − 1[−ε,0)]

)
,

according to (6.10). Recalling formula (6.11), we obtain

∫

R

(T βt ιε)(u)ιε(u)du = 1√
4π t

( 1

ε2

ε∫

0

ε∫

0

e− (x−y)2

4t dy dx + S(ε)
ε2

)
, (6.14)

where S(ε) is

ε∫

0

(
e2αx

2

+∞∫

x

e−2αz

ε∫

0

[
(z−y+4αt)

2t e
−(z−y)2

4t + (z+y+4αt)
2t e

−(z+y)2

4t

]

dy dz

)

dx .

We want to precise the limit of (6.14) as ε ↘ 0. By (6.13), it only remains to evaluate the
limit of S(ε)/ε2 as ε goes to zero. A direct verification shows that

lim
ε↘0

1

ε2 S(ε) = 1

2t

∞∫

0

ze− z2
4t −2αzdz,

leading to (6.12) and hence finishing the proof. ��
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