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PHASE TRANSITION OF A HEAT EQUATION

WITH ROBIN’S BOUNDARY CONDITIONS

AND EXCLUSION PROCESS

TERTULIANO FRANCO, PATRÍCIA GONÇALVES, AND ADRIANA NEUMANN

Abstract. For a heat equation with Robin’s boundary conditions which de-
pends on a parameter α > 0, we prove that its unique weak solution ρα

converges, when α goes to zero or to infinity, to the unique weak solution of
the heat equation with Neumann’s boundary conditions or the heat equation
with periodic boundary conditions, respectively. To this end, we use uniform
bounds on a Sobolev norm of ρα obtained from the hydrodynamic limit of the
symmetric slowed exclusion process, plus a careful analysis of boundary terms.

1. Introduction

Scaling limits of discrete particle systems is a central question in statistical me-
chanics. In the case of interacting particle systems, where particles evolve according
to some rule of interaction, it is of interest to characterize, in the continuum limit,
the time trajectory of the spatial density of particles. Such limits are given in terms
of solutions of partial differential equations, and different particle systems are gov-
erned by different types of partial differential equations, with a large literature on
the subject. As a reference, we cite the book [7].

In this work we are concerned with convergence of solutions of a particular
partial differential equation emerging from particle systems that we describe as
follows. Given α > 0, denote by ρα the unique weak solution of the heat equation
with Robin’s boundary conditions given by⎧⎨

⎩
∂tρ(t, u) = Δρ(t, u) , t ≥ 0, u ∈ (0, 1) ,
∂uρ(t, 0) = ∂uρ(t, 1) = α(ρ(t, 0)− ρ(t, 1)) , t ≥ 0 ,
ρ(0, u) = ρ0(u), u ∈ (0, 1) .

Such an equation is related to a particle system with exclusion dynamics (see [3,4])
in a sense which will be precise later. We notice that the boundary conditions of
Robin’s type as given above mean a passage of mass between u = 0 and u = 1.
These boundary conditions arise from considering the particle systems evolving on
the discrete torus. Moreover, they reflect Fick’s Law: the rate at which the mass
crosses the boundary is proportional to the difference of densities in each medium.

The main theorem we present here is the following convergence in L2:

lim
α→0

ρα = ρ0 and lim
α→∞

ρα = ρ∞ ,
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2 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

where ρ0 is the unique weak solution of the heat equation with Neumann’s boundary
conditions ⎧⎪⎨

⎪⎩
∂tρ(t, u) = Δρ(t, u) , t ≥ 0, u ∈ (0, 1) ,

∂uρ(t, 0) = ∂uρ(t, 1) = 0 , t ≥ 0 ,

ρ(0, u) = ρ0(u) , u ∈ (0, 1) ,

and ρ∞ is the unique weak solution of the heat equation with periodic boundary
conditions {

∂tρ(t, u) = Δρ(t, u) , t ≥ 0, u ∈ T ,

ρ(0, u) = ρ0(u) , u ∈ T ,

where T above is the continuous torus. The outline of its proof is the following.
Based on energy estimates coming from the particle system, we obtain that the set
{ρα ; α > 0} is bounded in a Sobolev type norm, implying its relative compactness.
On the other hand, a careful analysis shows that the limit along subsequences of
ρα are concentrated on weak solutions of the corresponding equations, when α
goes to zero or to infinity. Uniqueness of weak solutions in each case ensures the
convergence.

When α goes to zero or to infinity, the corresponding limits of ρα are driven by
solutions of partial differential equations of a different kind from the original one.
For this reason, we employ the term phase transition. To the best of our knowl-
edge, this type of result is not a standard one in the partial differential equations
literature, without previous nomenclature on it.

One of the novelties of this work, besides the aforementioned theorem, is the
approach itself: it is used here in the framework of probability theory to obtain
knowledge on the behavior of solutions for a class of heat equations with Robin’s
boundary conditions as given above.

Next, we describe the particle system which provides the bounding on a Sobolev
type norm for ρα. This particle system belongs to the class of Markov processes
and evolves on the one-dimensional discrete torus with n sites. The elements of
its state space are called configurations and are such that at each site of the torus,
there is at most a particle per site; therefore it coined the name exclusion process.
Its dynamics can be informally described as follows. At each bond of the torus is
associated an exponential clock in such a way that clocks associated to different
bonds are independent. When a clock rings at a bond, the occupations at the
vertices of that bond are interchanged. Of course, if both vertices are occupied or
empty, nothing happens. All the clocks have parameter one, except one particular
bond, whose parameter is given by αn−β, where α, β > 0. Or else, this bond slows
down the passage of particles across it. It is the existence of this special bond that
gives rise to the boundary conditions of its associated partial differential equation.

For β = 1, the hydrodynamic limit of this exclusion process is a particular
case of the processes studied in [4]. There, it was proved that the hydrodynamic
limit is driven by a generalized partial differential equation involving a Radon-
Nikodym derivative with respect to the Lebesgue measure plus a delta of Dirac.
As an additional result, we deduce here another proof of this hydrodynamic limit,
identifying ρα as a solution of a classical equation, namely the heat equation with
Robin’s boundary conditions as given above. Furthermore, by the results proved in
[3,4], we get that ρα has a Sobolev type norm bounded by a constant that does not
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PHASE TRANSITION OF A HEAT EQUATION 3

depend on α. Such a constant corresponds to the entropy bound of any measure
defined in the state space of the process with respect to its invariant measure.

We point out that, despite knowing the hydrodynamic limit for this process,
this different characterization of the limit density of particles, given in terms of a
classical partial differential equation, is new. The most delicate step in the proof
of the last result is the proof of uniqueness of weak solutions of the heat equation
with Robin’s boundary conditions, requiring the construction of an inverse of the
laplacian operator acting on a suitable domain.

The motivation of this work came from [3] where the hydrodynamic limit for the
exclusion process with a slow bond was shown to be given by the heat equation
with periodic boundary conditions or the heat equation with Neumann’s boundary
conditions, depending whether β < 1 or β > 1, respectively. This suggested to us
that, when taking the limit in α in the partial differential equation corresponding
to β = 1, one should recover both these equations.

The paper is divided as follows. We give definitions and state our results in
Section 2. In Section 3, we prove uniqueness of weak solutions of the heat equation
with Robin’s boundary conditions. In Section 4, we introduce the exclusion process
with a slow bond, we state and sketch the proof of its hydrodynamic limit and we
obtain bounds on a Sobolev type norm of ρα. In Section 5, we prove our main
result, namely the phase transition for the heat equation with Robin’s boundary
conditions. In the Appendix, we present some results that are needed in due course.

Notation. We denote by T the continuous one-dimensional torus R/Z. By an abuse
of notation, we denote by 〈·, ·〉 both the inner product in L2(T) and in L2[0, 1], and
we denote by ‖ · ‖L2[0,1] its norm. We denote by 1A(x) the function which is equal
to one if x ∈ A and zero if x /∈ A and by Δ the second space derivative.

2. Statement of results

In this section, we begin by defining weak solutions of the partial differential
equations that we deal with, namely the heat equation with periodic, Robin’s and
Neumann’s boundary conditions. In the sequence, we present the exclusion process
with a slow bond, we explain its relation with those equations, and how to obtain
from it the boundedness of a Sobolev type norm of weak solutions of the heat
equation with Robin’s boundary conditions. At last, we state our main result.

Definition 1. For n,m ∈ N and A,B intervals of R or T, let Cn,m(A×B) be the
space of real valued functions defined on A×B of class Cn in the first variable and
of class Cm in the second variable. For functions of one variable, we simply write
Cn(A).

Now, we define weak solutions of the partial differential equations that we deal
with.

Definition 2. Let ρ0 : T → [0, 1] be a measurable function. We say that ρ is a
weak solution of the heat equation with periodic boundary conditions

(2.1)

{
∂tρ(t, u) = Δρ(t, u) , t ≥ 0, u ∈ T ,
ρ(0, u) = ρ0(u), u ∈ T,

if ρ is measurable and, for any t ∈ [0, T ] and any H ∈ C1,2([0, T ]× T),

〈ρt, Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈
ρs, ∂sHs +ΔHs

〉
ds = 0 .(2.2)
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4 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

Above and in the sequel, a subindex in a function means a variable, not a deriv-
ative. For instance, in the above by Hs(u) we mean H(s, u).

To define a weak solution of the heat equation with Robin’s or Neumann’s bound-
ary conditions it is necessary to introduce the notion of Sobolev spaces.

Definition 3. Let H1 be the set of all locally summable functions ζ : [0, 1] → R

such that there exists a function ∂uζ ∈ L2[0, 1] satisfying

〈∂uG, ζ〉 = −〈G, ∂uζ〉 ,
for all G ∈ C∞(0, 1) with compact support. For ζ ∈ H1, we define the norm

‖ζ‖H1 :=
(
‖ζ‖2L2[0,1] + ‖∂uζ‖2L2[0,1]

)1/2

.

Let L2(0, T ;H1) be the space of all measurable functions ξ : [0, T ] → H1 such that

‖ξ‖2L2(0,T ;H1) :=

∫ T

0

‖ξt‖2H1 dt < ∞ .

Definition 4. Let ρ0 : T → [0, 1] be a measurable function. We say that ρ is a
weak solution of the heat equation with Robin’s boundary conditions given by

(2.3)

⎧⎨
⎩

∂tρ(t, u) = Δρ(t, u) , t ≥ 0, u ∈ (0, 1) ,
∂uρ(t, 0) = ∂uρ(t, 1) = α(ρ(t, 0)− ρ(t, 1)) , t ≥ 0,
ρ(0, u) = ρ0(u), u ∈ (0, 1),

if ρ belongs to L2(0, T ;H1) and, for all t ∈ [0, T ] and for all H ∈ C1,2([0, T ]× [0, 1]),

〈ρt, Ht〉−〈ρ0, H0〉−
∫ t

0

〈
ρs, ∂sHs+ΔHs

〉
ds−

∫ t

0

(ρs(0)∂uHs(0)− ρs(1)∂uHs(1)) ds

+

∫ t

0

α(ρs(0)− ρs(1))(Hs(0)−Hs(1)) ds = 0 .

(2.4)

Definition 5. Let ρ0 : T → [0, 1] be a measurable function. We say that ρ is a
weak solution of the heat equation with Neumann’s boundary conditions

(2.5)

⎧⎨
⎩

∂tρ(t, u) = Δρ(t, u) , t ≥ 0, u ∈ (0, 1) ,
∂uρ(t, 0) = ∂uρ(t, 1) = 0 , t ≥ 0 ,
ρ(0, u) = ρ0(u), u ∈ (0, 1),

if ρ belongs to L2(0, T ;H1) and, for all t ∈ [0, T ] and for all H ∈ C1,2([0, T ]× [0, 1]),

〈ρt, Ht〉−〈ρ0, H0〉−
∫ t

0

〈
ρs, ∂sHs+ΔHs

〉
ds−

∫ t

0

(ρs(0)∂uHs(0)−ρs(1)∂uHs(1))ds = 0.

(2.6)

Since in Definitions 4 and 5 we required that ρ ∈ L2(0, T ;H1), the integrals at
boundary points are well defined. For more details on Sobolev spaces, we refer the
reader to [1, 5].

Heuristically, in order to establish the integral equation for the weak solution of
each one of the equations above, one should multiply both sides of the differential
equation by a test function H, then integrate both in space and time and finally,
perform twice a formal integration by parts. Then, applying the respective bound-
ary conditions we are led to the corresponding integral equation. This reasoning
also shows that any strong solution is a weak solution of the respective equation.
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PHASE TRANSITION OF A HEAT EQUATION 5

We define a measure Wα on T by

(2.7) Wα(du) = du+
1

α
δ0(du) ,

that is, Wα is the sum of the Lebesgue measure and the Dirac measure concentrated
on 0 ∈ T with weight 1/α. We denote by 〈·, ·〉α the inner product in L2 of T with
respect to the measure Wα.

Definition 6. Let L2
Wα

([0, T ] × T) be the Hilbert space composed of measurable

functions f : [0, T ]×T → R with ‖f‖2α := 〈〈f, f〉〉α < ∞, where for f, g : [0, T ]×T →
R,

〈〈f, g〉〉α =

∫ T

0

∫
T

fs(u) gs(u)Wα(du) ds .

By 〈〈·, ·〉〉 we denote the usual inner product corresponding to the Hilbert space
L2([0, T ]× T). Or else,

〈〈f, g〉〉 =

∫ T

0

∫
T

fs(u) gs(u) du ds .

By abuse of notation, we will use the same notation 〈〈·, ·〉〉 for the inner product on
the Hilbert space L2([0, T ]× [0, 1]).

Proposition 2.1. For any α > 0, there exists a weak solution ρα : [0, T ]× [0, 1] →
[0, 1] of (2.3). Moreover, such a solution is unique and satisfies the inequality

sup
H

{
〈〈ρα, ∂uH〉〉 − 2〈〈H,H〉〉α

}
≤ K0 ,

where K0 is a constant that does not depend on α and the supremum is taken over
functions H ∈ C 0,1([0, T ]× T); see Definition 1.

The uniqueness of weak solutions stated in the proposition above is proved in
Section 3 via the construction of the inverse of the laplacian operator defined on
a suitable domain. The existence of a weak solution and the inequality above are
proved through the hydrodynamic limit of the symmetric exclusion process with a
slow bond, as shown in Section 4.

We state now our main result:

Theorem 2.2. Let ρ0 : T → [0, 1] be a measurable function. For each α > 0, let
ρα : [0, T ]× [0, 1] → [0, 1] be the unique weak solution of (2.3) with initial condition
ρ0. Then,

lim
α→0

ρα = ρ0 and lim
α→∞

ρα = ρ∞

in L2([0, T ] × [0, 1]), where ρ0 and ρ∞ are the unique weak solutions of equations
(2.5) and (2.1), respectively, both with initial condition ρ0.

3. Uniqueness of weak solutions

We present here the proof of uniqueness of weak solutions of (2.3). Since the
equation is linear, it is sufficient to consider the initial condition ρ0(·) ≡ 0.

We begin by defining the inverse of the laplacian operator on a suitable domain.
Denote by L2[0, 1]⊥1 the set of functions g ∈ L2[0, 1] such that∫ 1

0

g(u) du = 0 .
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6 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

Definition 7. Let Hα be the space of functions H : [0, 1] → R satisfying

• H ∈ C1([0, 1]) and, moreover, the derivative ∂uH is absolutely continuous;
• ΔH(u) exists Lebesgue almost surely and ΔH ∈ L2[0, 1]⊥1;
• H satisfies the boundary conditions

(3.1) ∂uH(0) = ∂uH(1) = α(H(0)−H(1)) .

In order to obtain the uniqueness of weak solutions, we will construct an inverse
of the laplacian operator. However, the laplacian operator is not injective in the
domain Hα. For this reason, let us define Hα

0 as the set of functions H ∈ Hα such
that H(0) = 0.

Proposition 3.1. The operator Δ : Hα
0 → L2[0, 1]⊥1 is injective.

Proof. Since the operator is linear it is enough to show that its kernel reduces to the
null function. For that purpose, let H ∈ Hα

0 be such that ΔH ≡ 0 Lebesgue almost
surely. Since ∂uH is absolutely continuous, this implies that ∂uH is constant.
Hence, H(u) = a + bu. The unique value of b for which H of this form satisfies
(3.1) is b = 0. Since H(0) = 0 we have that a = 0, thus H is zero. �

For g ∈ L2[0, 1]⊥1, define

[(−Δ)−1
α g](u) :=

∫ 1

0

Gα(u, r) g(r) dr ,

where the function Gα : [0, 1]× [0, 1] → R is given by

Gα(u, r) =
α

α+ 1
u(1− r)− (u− r)1{0≤r≤u≤1} .

Proposition 3.2. Let g ∈ L2[0, 1]⊥1. The operator (−Δ)−1
α enjoys the following

properties:

(a) (−Δ)−1
α g ∈ C1([0, 1]). Moreover, its first derivative is absolutely continu-

ous.
(b) ∂u[(−Δ)−1

α g](0) = ∂u[(−Δ)−1
α g](1) = α([(−Δ)−1

α g](0)− [(−Δ)−1
α g](1)).

(c) (−Δ)−1
α g ∈ Hα

0 .
(d) (−Δ)

[
(−Δ)−1

α g
]
= g.

(e) The operators (−Δ) : Hα
0 → L2[0, 1]⊥1 and (−Δ)−1

α : L2[0, 1]⊥1 → Hα
0 are

symmetric and non-negative.

Proof. By the definition of (−Δ)−1
α ,

[(−Δ)−1
α g](u) =

α

α+ 1
u

∫ 1

0

(1− r)g(r) dr − u

∫ u

0

g(r) dr +

∫ u

0

r g(r) dr .

By differentiation, we obtain

∂u[(−Δ)−1
α g](u) =

α

α+ 1

∫ 1

0

(1− r)g(r) dr −
∫ u

0

g(r)dr ,

implying (a). Item (b) follows from the assumption g ∈ L2[0, 1]⊥1. Items (a) and
(b) together imply (c). By differentiating again the previous equality and recalling
(c) we are led to (d).

It remains to prove (e). Fix G,H ∈ Hα
0 . Integration by parts gives

〈−ΔG,H〉 = 〈∂uG, ∂uH〉+ ∂uG(0)H(0)− ∂uG(1)H(1) .
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Since G,H ∈ Hα, these functions satisfy (3.1). As a consequence,

〈−ΔG,H〉 = 〈∂uG, ∂uH〉+ 1

α
∂uG(0)∂uH(0) ,

which implies symmetry and non-negativity of Δ. The same argument applies for
(−Δ)−1

α , by item (d). �

Lemma 3.3. Let ρ be a weak solution of (2.3). Then, for all H ∈ Hα and for all
t ∈ [0, T ] ,

(3.2) 〈ρt, H〉 − 〈ρ0, H〉 =

∫ t

0

〈ρs,ΔH〉 ds .

Proof. Fix H ∈ Hα. Let {gn}n∈N ⊂ C([0, 1]) be a sequence of functions converging

to ΔH in L2[0, 1] such that
∫ 1

0
gn(u) du = 0 for all n ∈ N. Notice that this is

possible because ΔH has zero mean.
Define

Gn(u) := H(0) + ∂uH(0) u+

∫ u

0

∫ v

0

gn(r) dr dv .

Since gn has zero mean, then ∂uGn(0) = ∂uGn(1) = ∂uH(0) = ∂uH(1). Besides
that, Gn(0) = H(0). It is easy to verify that Gn ∈ C1,2([0, T ]×[0, 1]); see Definition
1. Since ρ(·) is a weak solution of equation (2.3) and Gn ∈ C1,2([0, T ]× [0, 1]), then
we get that

〈ρt, Gn〉 − 〈ρ0, Gn〉 =

∫ t

0

〈ρs, gn〉 ds+
∫ t

0

(ρs(0)− ρs(1))∂uH(1) ds

+

∫ t

0

α(ρs(0)− ρs(1))(H(0)−Gn(1)) ds .

(3.3)

We want to take the limit n → ∞ in the previous equation. To this end, notice
that Gn(1) converges to

H(0) + ∂uH(0) +

∫ 1

0

∫ v

0

ΔH(r) dr dv .

Since ΔH is absolutely continuous, the Fundamental Theorem of Calculus can be
applied twice, showing that the previous expression is equal to H(1). Therefore,
taking the limit n → ∞ in (3.3), we obtain that

〈ρt, H〉 − 〈ρ0, H〉 =

∫ t

0

〈ρs,ΔH〉 ds+
∫ t

0

(ρs(0)− ρs(1))∂uH(1) ds

−
∫ t

0

α(ρs(0)− ρs(1))(H(0)−H(1)) ds .

By (3.1) the last two integral terms on the right hand side of the previous expression
cancel, which ends the proof. �

Proposition 3.4. Let ρ be a weak solution of (2.3) with ρ0(·) ≡ 0. Then, for all
t ∈ [0, T ], it holds that

(3.4)
〈
ρt, (−Δ)−1

α ρt
〉
= −2

∫ t

0

〈ρs, ρs〉 ds .

In particular, since equation (2.3) is linear, there exists at most one weak solution
with initial condition ρ0(·).
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8 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

Proof. We first claim that 〈ρt, 1〉 = 0 for any time t ∈ [0, T ], if ρ0(·) ≡ 0. This is
a consequence of taking a function H ≡ 1 in the integral equation (2.4). Since ρ is
bounded, we have also that ρ ∈ L2[0, 1]⊥1. Or else, the function ρ is in the domain
of the operator (−Δ)−1

α .
Take a partition 0 = t0 < t1 < · · · < tn = t of the interval [0, t]. Writing a

telescopic sum, we get

〈ρt, (−Δ)−1
α ρt〉 − 〈ρ0, (−Δ)−1

α ρ0〉 =
n−1∑
k=0

〈ρtk+1
, (−Δ)−1

α ρtk+1
〉 − 〈ρtk , (−Δ)−1

α ρtk〉 .

By summing and subtracting the term 〈ρtk+1
, (−Δ)−1

α ρtk〉 for each k, the right hand
side of the previous expression can be rewritten as

n−1∑
k=0

〈ρtk+1
, (−Δ)−1

α ρtk+1
〉 − 〈ρtk+1

, (−Δ)−1
α ρtk〉

+
n−1∑
k=0

〈ρtk+1
, (−Δ)−1

α ρtk〉 − 〈ρtk , (−Δ)−1
α ρtk〉 .

(3.5)

We begin by estimating the second sum above. The first one can be estimated in a
similar way because (−Δ)−1

α is a symmetric operator.
From item (c) of Proposition 3.2 and Lemma 3.3 we get that

〈ρtk+1
, (−Δ)−1

α ρtk〉 − 〈ρtk , (−Δ)−1
α ρtk〉 = −

∫ tk+1

tk

〈ρs, ρs〉 ds+
∫ tk+1

tk

〈ρs, ρs − ρtk〉 ds.

(3.6)

The sum over k of the first integral on the right side of the last equality is exactly

−
∫ t

0
〈ρs, ρs〉ds.

We claim now that the sum in k of the last integral on the right hand of the
expression above goes to zero as the mesh of the partition goes to zero. To this end,
we approximate ρ by a smooth function vanishing simultaneously in a neighborhood
of 0 and 1.

Let ιδ : R → R be a smooth approximation of the identity. We extend ρs(·) as
being zero outside of the interval [0, 1]. It is classical that the convolution ρs ∗ ιδ
is smooth and converges to ρs(·) in L2[0, 1] as δ → 0. Let Φδ : [0, 1] → R be a
smooth function bounded by one, equal to zero in [0, δ)∪ (1− δ, 1] and equal to one
in (2δ, 1− 2δ). Define

ρδs(u) = (ρs ∗ ιδ)(u) Φδ(u) .

Then, ρδs(·) converges to ρs(·) in L2[0, 1]. Furthermore, since ρδs(·) is smooth and
vanishes near 0 and 1, it is simple to verify that ρδs ∈ Hα

0 .
Adding and subtracting ρδ, the second integral on the right hand side of equality

(3.6) can be written as∫ tk+1

tk

〈ρs − ρδs, ρs − ρtk〉 ds+
∫ tk+1

tk

〈ρδs, ρs − ρtk〉 ds .

Fix ε > 0. Since ρδ approximates ρ, the Dominated Convergence Theorem gives us
that the absolute value of the sum in k of the first integral in the expression above
is bounded in modulus by ε for some δ(ε) small. Now take δ = δ(ε). Since ρδs ∈ Hα

0 ,
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applying Lemma 3.3 we get that the second integral above is equal to∫ tk+1

tk

∫ s

tk

〈ρr,Δρδs〉 dr ds ,

whose absolute value is bounded from above by C(ρ, δ)(tk+1− tk)
2. This is enough

to conclude the proof of (3.4).
Let us now prove the uniqueness of weak solutions. We notice that as above, we

take ρ0(·) ≡ 0, and therefore we want to prove that ρt(·) ≡ 0. Since ρt ∈ L2[0, 1]⊥,
by item (e) of Proposition 3.2, we have that 〈ρt, (−Δ)−1

α ρt〉 ≥ 0, for all t ∈ [0, T ].
From (3.4) and Gronwall’s inequality, we conclude that 〈ρt, (−Δ)−1

α ρt〉 = 0, for all
t ∈ [0, T ]. From item (d), with fixed t ∈ [0, T ], there exists ft ∈ Hα

0 such that
ρt = (−Δ)ft. Hence,

〈ρt, (−Δ)−1
α ρt〉 = 〈−Δft, ft〉 = 〈∂uft, ∂uft〉 .

Thus, for all t ∈ [0, T ], ∂uft(·) = 0 Lebesgue almost surely. Coming back to
ρt = (−Δ)ft we get that ρ(·) is equal to zero. This concludes the proof. �

4. Hydrodynamics and energy estimates

In this section we introduce a particle system whose scaling limits are driven by
the partial differential equations introduced above. We first describe the model,
then we state the hydrodynamics result and finally we obtain energy estimates
which are crucial for the proof of Proposition 2.1.

4.1. Symmetric slowed exclusion. The symmetric exclusion process with a slow
bond is a Markov process {ηt : t ≥ 0} evolving on Ω := {0, 1}Tn , where Tn = Z/nZ
is the one-dimensional discrete torus with n points. It is characterized via its
infinitesimal generator Ln which acts on functions f : Ω → R as

Lnf(η) =
∑
x∈Tn

ξnx,x+1

[
f(ηx,x+1)− f(η)

]
,

being the rates given by

ξnx,x+1 =

{
αn−β, if x = −1 ,
1, otherwise ,

and ηx,x+1 is the configuration obtained from η by exchanging the variables η(x)
and η(x+ 1), namely

ηx,x+1(y) =

⎧⎨
⎩

η(x+ 1), if y = x ,
η(x), if y = x+ 1 ,
η(y), otherwise .

The dynamics of this process can be informally described as follows. At each
bond {x, x+1}, there is an exponential clock of parameter ξnx,x+1. When this clock
rings, the value of η at the vertices of this bond are exchanged. This means that
particles can cross all the bonds at rate 1, except the bond {−1, 0}, whose dynamics
are slowed down as αn−β, with α > 0 and β ∈ [0,∞]. It is understood here that
n−∞ = 0 and ∞ · 0 = 0.

It is well known that the Bernoulli product measures on Ω with parameter γ ∈
[0, 1], denoted by {νnγ : 0 ≤ γ ≤ 1}, are invariant for the dynamics introduced above.
This means that if η0 is distributed according to νnγ , then ηt is also distributed
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10 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

according to νnγ for any t > 0. Moreover, the measures {νnγ : 0 ≤ γ ≤ 1} are also
reversible.

In order to keep the notation simple, we write ηt := ηtn2 so that {ηt : t ≥ 0}
turns out to be the Markov process on Ω associated to the generator Ln speeded
up by n2. We notice that we do not index the process either in β or in α.

The trajectories of {ηt : t ≥ 0} live on the space D(R+,Ω), i.e., the path space
of càdlàg trajectories with values in Ω. For a measure μn on Ω, we denote by Pα,β

μn

the probability measure on D(R+,Ω) induced by μn and {ηt : t ≥ 0} and we denote
by Eα,β

μn
the expectation with respect to Pα,β

μn
.

4.2. Hydrodynamical phase transition. In order to state the hydrodynamical
limit we introduce the empirical measure process as follows. We denote by M the
space of positive measures on T with total mass bounded by one, endowed with the
weak topology. For η ∈ Ω, let πn(η, ·) ∈ M be given by

πn(η, du) = 1
n

∑
x∈Tn

η(x) δx/n(du) ,

where δy is the Dirac measure concentrated on y ∈ T. For t ∈ [0, T ], let πn
t (η, du) :=

πn(ηt, du).
For a test function H : T → R we use the following notation:

〈πn
t , H〉 :=

∫
H(u)πn

t (η, du) = 1
n

∑
x∈Tn

H( xn ) ηt(x) .

We use this notation since for πt absolutely continuous with respect to the Lebesgue
measure with density ρt, we write 〈ρt, H〉 for 〈πt, H〉.

Fix T > 0. Let D([0, T ],M) be the space of càdlàg trajectories with values in
M and endowed with the Skorohod topology. For each probability measure μn on
Ω, denote by Qα,β

n,μn
the measure on the path space D([0, T ],M) induced by μn and

the empirical process πn
t introduced above.

In order to state our first result related to the hydrodynamics of this model, we
need to impose some conditions on the initial distribution of the process.

Definition 8. A sequence of probability measures {μn}n∈N on Ω is said to be
associated to a profile ρ0 : T → [0, 1] if, for every δ > 0 and every H ∈ C(T),

(4.1) lim
n→∞

μn

[
η :

∣∣∣ 1n ∑
x∈Tn

H( xn ) η(x)−
∫
T

H(u) ρ0(u)du
∣∣∣ > δ

]
= 0 .

Now, we state the dynamical phase transition at the hydrodynamics level for the
slowed exclusion process introduce above. We notice that this result is an improve-
ment of the main theorem of [3], since we are able to identify the hydrodynamic
equation for β = 1 as being the heat equation with Robin’s boundary conditions as
given in (2.3).

Theorem 4.1. Fix β ∈ [0,∞] and let ρ0 : T → [0, 1] be a measurable function. Let
{μn}n∈N be a sequence of probability measures on Ω associated to ρ0. Then, for
any t ∈ [0, T ], for every δ > 0 and every H ∈ C(T),

lim
n→∞

Pα,β
μn

[
η. :

∣∣∣ 1n ∑
x∈Tn

H
(
x
n

)
ηt(x)−

∫
T

H(u)ρ(t, u)du
∣∣∣ > δ

]
= 0 ,
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PHASE TRANSITION OF A HEAT EQUATION 11

where:

• if β ∈ [0, 1), ρ(t, ·) is the unique weak solution of (2.1);
• if β = 1, ρ(t, ·) is the unique weak solution of (2.3);
• if β ∈ (1,∞], ρ(t, ·) is the unique weak solution of (2.5).

Proof. The proof of the last result is given in [3] for β ∈ [0, 1) and β ∈ (1,∞). We
also notice that for β = ∞, the same arguments as used in [3] for β ∈ (1,∞) fit the
case β = ∞, and for that reason we also omit the proof in this case.

Finally, for β = 1, the proof of the hydrodynamic limit can be almost all adapted
from the strategy of [3] and is the usual in stochastic process: tightness, which
means relative compactness, plus uniqueness of limit points. We recall that the
proof of tightness is very similar to the one given in [3], and for that reason we have
omitted it. Nevertheless, the characterization of limit points is essentially different
from [3], since here we identify the solutions as weak solutions of the heat equation
with Robin’s boundary conditions given in (2.3). We proceed by presenting the
proof of the last statement.

Recall the definition of {Qα,β
n,μn

}n∈N. In order to keep notation simple and since

β = 1 we do not index these measures nor Pα,β
μn

on β. Let Qα
∗ be a limit point of

{Qα
n,μn

}n∈N whose existence is a consequence of Proposition 4.1 of [3] and assume,
without loss of generality, that {Qα

n,μn
}n∈N converges to Qα

∗ , as n → ∞. Now, we
prove that Qα

∗ is concentrated on trajectories of measures absolutely continuous
with respect to the Lebesgue measure: π(t, du) = ρ(t, u)du, whose density ρ(t, u) is
the unique weak solution of (2.3).

At first we notice that by Proposition 5.6 of [3], Qα
∗ is concentrated on trajectories

absolutely continuous with respect to the Lebesgue measure πt(du) = ρ(t, u) du
such that ρ(t, ·) belongs to L2(0, T ;H1). It is well known that the Sobolev space
H1 has special properties: all its elements are absolutely continuous functions with
bounded variation (see [1]), therefore with well-defined lateral limits. Such property
is inherited by L2

(
0, T ;H1) in the sense that we can integrate in time the lateral

limits.
Let H ∈ C1,2([0, T ]× [0, 1]). We begin by claiming that

Qα
∗

[
π· : 〈ρt,Ht〉 − 〈ρ0, H0〉 −

∫ t

0

〈
ρs, ∂sHs +ΔHs

〉
ds

−
∫ t

0

(
ρs(0)∂uHs(0)− ρs(1)∂uHs(1)

)
ds

+

∫ t

0

α
(
ρs(0)− ρs(1)

)(
Hs(0)−Hs(1)

)
ds = 0, ∀t ∈ [0, T ]

]
= 1 .

In order to prove the last equality, it’s enough to show that, for every δ > 0,

Qα
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt,Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈
ρs, ∂sHs +ΔHs

〉
ds

−
∫ t

0

(
ρs(0)∂uHs(0)− ρs(1)∂uHs(1)

)
ds

+

∫ t

0

α
(
ρs(0)− ρs(1)

)(
Hs(0)−Hs(1)

)
ds

∣∣∣∣∣ > δ

]
= 0 .
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12 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

Since the boundary integrals are not well defined in D
(
[0, T ],M

)
, we cannot directly

use Portmanteau’s Theorem. To avoid this technical obstacle, fix ε > 0 and let
ιε(u) = 1

ε 1(0,ε)(u) and ι̃ε(u) = 1
ε 1(1−ε,1)(u) be approximations of the identity in

the continuous torus. Now, adding and subtracting the convolution of ρ(t, u) with
ιε and ι̃ε, we can bound from above the previous probability by the sum of

Qα
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈
ρs, ∂sHs +ΔHs

〉
ds

−
∫ t

0

(
(ρs ∗ ιε)(0)∂uHs(0)− (ρs ∗ ι̃ε)(1)∂uHs(1)

)
ds

+

∫ t

0

α
(
(ρs ∗ ιε)(0)− (ρs ∗ ι̃ε)(1)

)(
Hs(0)−Hs(1)

)
ds

∣∣∣∣∣ > δ/3

]
,

with the probability of two sets, each one of them decreasing as ε → 0, to sets of null
probability as a consequence of convolutions being suitable averages of ρ around the
boundary points 0 and 1. Now, we claim that we can use Portmanteau’s Theorem
and Proposition A.3 of [3] in order to conclude that the previous probability is
bounded from above by

lim
n→∞

Qα
n,μn

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈
ρs, ∂sHs +ΔHs

〉
ds

−
∫ t

0

(
(ρs ∗ ιε)(0)∂uHs(0)− (ρs ∗ ι̃ε)(1)∂uHs(1)

)
ds

+

∫ t

0

a
(
(ρs ∗ ιε)(0)− (ρs ∗ ι̃ε)(1)

)(
Hs(0)−Hs(1)

)
ds

∣∣∣∣∣ > δ/3

]
.

Although the functions Ht, H0, ∂sHs+ΔHs, ιε(·, 1) and ι̃ε(·, 0) may not belong to
C(T), we can proceed as in Section 6.2 of [3] in order to justify the boundedness
of the previous expression. Next we outline the main arguments involved in that
procedure. Firstly, we replace each one of these functions by continuous functions
which coincide with the original ones in the torus, except on a small neighborhood
of their discontinuity points and such that their L∞-norm is bounded from above
by the L∞-norm of the respective original functions. By the exclusion rule, the
set where we compare this change has small probability. Thus, in the presence of
continuous functions, we apply Portmanteau’s Theorem and Proposition A.3 of [3].
After this, we return back to the original functions using the same arguments.

Recall that we consider Tn embedded in T and notice that (πn ∗ ιε)( 0n ) = ηεn(0)

and (πn ∗ ι̃ε)( 1n ) = η̃εn(n− 1), where

(4.2) ηεn(0) =
1

εn

�εn	∑
y=1

η(y) and η̃εn(n− 1) =
1

εn

n−1∑
y=�n−εn	

η(y),

where �u� denotes the biggest integer smaller than or equal to u. By definition

of Qα
n,μn

and by summing and subtracting the term
∫ t

0
n2Ln〈πn

s , Hs〉ds inside the
supremum above, we can bound the previous probability by

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣ 〈πn
t , Ht〉 − 〈πn

0 , H0〉 −
∫ t

0

〈πn
s , ∂sHs〉+n2Ln〈πn

s , Hs〉 ds
∣∣∣∣∣ > δ/6

]
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and

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

n2Ln〈πn
s , Hs〉 ds−

∫ t

0

〈πn
s ,ΔHs〉 ds

−
∫ t

0

(
ηεns (0)∂uHs(0)− η̃εns (n− 1)∂uHs(1)

)
ds

+

∫ t

0

α
(
ηεns (0)− η̃εns (n− 1)

)(
Hs(0)−Hs(1)

)
ds

∣∣∣∣∣ > δ/6

]
.

By Dynkin’s formula, the expression inside the supremum in the first probability
above is a martingale that we denote by Mn

t (H). A simple computation shows that
Mn

t (H) converges to zero in L2(Pα
μn

) as n → ∞, and then, by Doob’s inequality,
the first probability vanishes as n → ∞, for every δ > 0. Now we treat the
remaining term. Using the expression for n2Ln〈πn

s , Hs〉, we can bound the previous
probability by the sum of

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

〈πn
s ,ΔHs〉 ds−

∫ t

0

1
n

∑
x
=n−1,0

ηs(x)ΔnHs

(x
n

)
ds

∣∣∣∣∣ > δ/18

]
,

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

(
ηεns (0)∂uHs(0)− η̃εns (n− 1)∂uHs(1)

)
ds

−
∫ t

0

(
ηs(0)∇nHs(0) − ηs(n− 1)∇nHs(n− 2)

)
ds

∣∣∣∣∣ > δ/18

]

and

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

α
(
ηεns (0)− η̃εns (n− 1)

)(
Hs(0)−Hs(1)

)
ds

−
∫ t

0

α
(
ηs(0)− ηs(n− 1)

)
∇nHs(n− 1) ds

∣∣∣∣∣ > δ/18

]
,

where for x ∈ Tn,

ΔnH
(x
n

)
= n2

(
H
(x+ 1

n

)
+H

(x− 1

n

)
− 2H

(x
n

))
is the discrete laplacian and

∇nH
(x
n

)
= n

(
H
(x+ 1

n

)
−H

(x
n

))
is the discrete derivative. Since H ∈ C1,2([0, T ] × [0, 1]), the discrete laplacian of
Hs, namely Δn, converges uniformly to the continuous laplacian of Hs, that is,
ΔH, as n → ∞, which is enough to conclude that the first probability is null.

To prove that the remaining probabilities are null, we observe that the discrete
derivative of H, namely ∇nHs, converges uniformly to the continuous derivative,
that is, ∂uHs, as n → ∞, and ∇nHs(n− 1) converges uniformly to Hs(0)−Hs(1),
as n → ∞, since H ∈ C1,2([0, T ]× [0, 1]). By the exclusion constraint and approxi-
mating the integrals by riemannian sums, the previous probabilities vanish as long
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14 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

as we show that

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

(
ηεns (0)− ηs(0)

)
∂uHs(0)

−
(
η̃εns (n− 1)− ηs(n− 1)

)
∂uHs(1) ds

∣∣∣∣∣ > δ

]
,

Pα
μn

[
η· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

α
{(

ηεns (0)− η̃εns (n− 1)
)

−
(
ηs(0)− ηs(n− 1)

)}(
Hs(0)−Hs(1)

)
ds

∣∣∣∣∣ > δ

]

converge to zero, as ε → 0, for all δ > 0. This is a consequence of Lemma 5.4 of
[3]. �

4.3. Energy estimates. The proof of Proposition 2.1 is a consequence of energy
estimates obtained by means of the symmetric slowed exclusion process introduced
above and it can be summarized as follows.

Firstly, we notice that the existence of weak solutions of equation (2.3) is granted
by tightness proved in [3] together with the characterization of the limiting measure
Qα

∗ given above.
Secondly, uniqueness was proved in Section 3.
Finally, to prove the last statement we introduce the next proposition which is

usually denominated by an energy estimate. It says that any limit measure Qα
∗ is

concentrated on functions with finite energy. Moreover, it says that the expected
energy is also finite. Such a result makes the link between the particle system
{ηt; t ≥ 0} and the weak solution of the heat equation with Robin’s boundary
condition given in (2.3).

Proposition 4.2. Let Qα
∗ be a limit point of {Qα

n,μn
}n∈N. Then,

EQα
∗

[
sup
H

{
〈〈ρ, ∂uH〉〉 − 2〈〈H, H〉〉α

}]
≤ K0 ,

where K0 is a constant that does not depend on α and the supremum is taken over
functions H ∈ C 0,1([0, T ]× T); see Definition 1.

Since the proof of this proposition follows the same lines of [3, Subsection 5.2],
it is omitted.

As seen in this section, the measure Qα
∗ is concentrated in weak solutions of the

heat equation with Robin’s boundary conditions as given in (2.3). In Section 3,
the uniqueness of such weak solutions was proved. This implies that the measure
Qα

∗ is, in fact, a delta of Dirac concentrated on the unique weak solution of (2.3).
Denote this solution by ρα. By the previous proposition, we conclude that

sup
H

{
〈〈ρα, ∂uH〉〉 − 2〈〈H, H〉〉α

}
≤ K0,

where K0 is a constant that does not depend on α and the supremum is taken over
functions H ∈ C 0,1([0, T ]× T). This proves Proposition 2.1.
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5. Proof of Theorem 2.2

Since we proved Proposition 2.1, from now on, for fixed α > 0, we denote by
ρα : [0, T ] × [0, 1] → [0, 1] the unique weak solution of (2.3). We notice that ρα

takes values between 0 and 1 since we imposed the same condition for ρ0.
Our scheme of proof has the following steps:
In Proposition 5.1, we prove that the set {ρα : α > 0} is bounded in L2(0, T ;H1).

This guarantees the relative compactness of this set. In Proposition 5.2, we prove
that any limit of a convergent subsequence of {ραn}n∈N is in L2(0, T ;H1). In
Proposition 5.3, we obtain some smoothness of ρα on time, that we need in order
to take limits in α.

The next step will be to analyze separately each term of the integral equation
(2.4) to obtain asymptotic results in α for its terms. Proposition 5.4 and Proposition
5.5 cover the limit of terms in the integral equation (2.4) that can be treated in the
same way both for α → 0 and α → ∞. Proposition 5.6 and Proposition 5.7 cover
the limit of a integral term for the case α → 0 and α → ∞, respectively.

These convergences of the integral terms will show that any convergent subse-
quence of {ρα : α > 0} with α → 0 converges to the unique weak solution of the
heat equation with Neumann’s boundary conditions, and any convergent subse-
quence of {ρα : α > 0} with α → ∞ converges to the unique weak solution of the
heat equation with periodic boundary conditions. Putting this together with the
relative compactness of the set {ρα : α > 0}, the convergence follows.

We first introduce a space of test functions that will be used in the sequel.

Definition 9. The space Cc consists of functions H ∈ C 0,1([0, T ] × [0, 1]) with
compact support in [0, T ]× (0, 1).

Proposition 5.1. The set {ρα : α > 0} is bounded in L2(0, T ;H1).

Proof. We begin by observing that Proposition 2.1 implies the inequality

(5.1) 〈〈ρα, ∂uH〉〉 − 2〈〈H,H〉〉 ≤ K0 ,

for all H ∈ Cc. This is a consequence of the simple fact that, if H vanishes at a
neighborhood of 0 and 1, then 〈〈H,H〉〉 = 〈〈H,H〉〉α, for all α > 0.

An application of the Riesz Representation Theorem gives us that

sup
H∈Cc

{
〈〈ρα, ∂uH〉〉 − 2〈〈H,H〉〉

}
= 1

8

∫ T

0

‖∂uραt ‖2 dt .

Aiming to concentrate on the main facts, the proof of the previous equality is
postponed to Corollary A.5 of the Appendix.

Provided by the inequality above and recalling that K0 does not depend on α,
we conclude that {ρα : α > 0} is bounded in L2(0, T ;H1). �

The boundedness of {ρα : α > 0} in L2(0, T ;H1) implies a compact embedding of
{ρα : α > 0} in L2([0, T ]×[0, 1]). This is a particular case of the Rellich-Kondrachov
Theorem for spaces involving time, that can be found in [8]. To verify it in detail,
we list the exact steps: following the notation of [8, page 271, Subsection 2.2], take
X0 = X = H1, X1 = L2[0, 1] and notice that any Hilbert space is reflexive. This
attains the hypothesis of [8, Theorem 2.1, page 271] and corresponds to the case
we consider. By this compact embedding, any sequence {ραn}n∈N has a convergent
subsequence in L2([0, T ]× [0, 1]).
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16 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

Next, we show that the limit of a convergent subsequence of {ρα : α > 0} is in
the space L2(0, T ;H1).

Proposition 5.2. If ρ∗ is the limit in L2([0, T ] × [0, 1]) of some sequence in the
set {ρα : α > 0}, then ρ∗ ∈ L2(0, T ;H1).

Proof. Suppose that ραn converges to ρ∗ in L2([0, T ] × [0, 1]), as n → ∞. By
Proposition 2.1, for each n ∈ N, ραn satisfies (5.1) for any H ∈ Cc:∫ T

0

〈ραn
s , ∂uHs 〉 ds− 2

∫ T

0

〈Hs, Hs 〉 ds ≤ K0,

and K0 does not depend either on n or on H. Taking the limit n → ∞ in the
previous inequality, we get that∫ T

0

〈ρ∗s, ∂uHs 〉 ds− 2

∫ T

0

〈Hs, Hs 〉 ds ≤ K0 .

Replacing H by yH in the previous inequality and then minimizing over y ∈ R

gives that

ϕ : Cc → R,

H �→
∫ T

0

〈ρ∗s, ∂uHs 〉 ds

is a bounded linear functional. Notice that the set Cc is dense in L2([0, T ]× [0, 1]).
Hence, by the Riesz Representation Theorem, there exists ∂uρ

∗ ∈ L2([0, T ]× [0, 1])
such that ∫ T

0

〈ρ∗s, ∂uHs 〉 ds = −
∫ T

0

〈∂uρ∗s , Hs 〉 ds ,

for all functionsH ∈ Cc, which is the same as saying that ρ∗ belongs to L2(0, T ;H1).
�

Now, we analyze the integral equation (2.4). Integrating by parts, it can be
rewritten as

〈ραt , Ht 〉 − 〈ρα0 , H0 〉+
∫ t

0

〈 ∂uραs , ∂uHs 〉 ds−
∫ t

0

〈ραs , ∂sHs 〉 ds

+

∫ t

0

α(ραs (0)− ραs (1))(Hs(0)−Hs(1)) ds = 0 ,

(5.2)

where ∂uρ
α is the weak derivative of ρα. Our goal consists in analyzing the limit,

as α → 0 or α → ∞, of the terms in the previous equation. Due to boundary
restrictions, the last integral term above is analyzed separately. Moreover, Propo-
sition 5.6 covers the case α → 0 and Proposition 5.7 covers the case α → ∞. We
begin by showing some smoothness of a weak solution of (2.3) that will be needed
in order to take limits.

Proposition 5.3. For any H ∈ C1,2([0, T ]× [0, 1]), there exists a constant CT
H not

depending on α such that

| 〈ραt , Ht 〉 − 〈ραs , Hs 〉 | ≤ CT
H | t− s |1/2 , ∀s, t ∈ [0, T ] .
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PHASE TRANSITION OF A HEAT EQUATION 17

Proof. Let H ∈ C1,2([0, T ]× [0, 1]). Since ρα satisfies the integral equation (5.2), it
is sufficient to estimate the absolute value of

R1 :=

∫ t

s

〈 ∂uραr , ∂uHr〉 dr ,

R2 :=

∫ t

s

〈ραr , ∂rHr 〉 dr ,

R3 :=

∫ t

s

α(ραs (0)− ραs (1))(Hs(0)−Hs(1)) dr .

We start by the case α ≥ 1. At first we notice that Proposition A.6 guarantees
that R3 can be rewritten1 as∫ t

s

∂uρ
α
r (0)(Hr(0)−Hr(1)) dr .

By the Cauchy-Schwarz inequality,

|R3| ≤
(∫ T

0

(∂uρ
α
r (0))

2 dr
)1/2

2‖H‖∞|t− s|1/2 .

Since α ≥ 1, then 〈〈H,H〉〉α ≤ 〈〈H,H〉〉1. As a consequence of Proposition 2.1, the
function ρα satisfies

〈〈ρα, ∂uH〉〉 − 2〈〈H,H〉〉1 ≤ K0 ,

for all H ∈ C 0,1([0, T ]× T). Thus, by Proposition A.4 we conclude that∫ T

0

(∂uρ
α
r (0))

2 dr ≤ 8K0 ,

from where we get that

|R3| ≤ (8K0)
1/2 2‖H‖∞|t− s|1/2.

Analogously, by the Cauchy-Schwarz inequality, Proposition 2.1 and Proposition
A.4,

|R1| ≤ (8K0)
1/2 2‖∂uH‖∞|t− s|1/2 .

Finally, R2 can be easily bounded from above by ‖∂rH‖∞|t− s|.
The case α < 1 is easier. Since to estimate R1 and R2 we did not impose

any restriction on α, it remains to estimate R3, which is bounded from above by
4‖H‖∞|t− s|.

To complete the bounds, notice that |t−s| ≤ T 1/2|t− s|1/2, which is true because
0 ≤ s, t ≤ T . �

Now, we analyze the limit of the terms in the integral equation (5.2) along a
subsequence ραn . Provided by the next proposition, we will be able to replace ραn

t

by its L2-limit in the first, second and fourth terms of the integral equation (5.2).
In fact, we will need to take the limit along a subsequence of αn. However, since
we aim for the uniqueness of limit points, this is not a problem.

1This is essentially the Fundamental Theorem of Calculus by seeing the unit interval as the
torus. The proof is technical and is postponed to the Appendix.
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18 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

Proposition 5.4. Suppose that ραn converges to ρ∗ in L2([0, T ]×[0, 1]), as n → ∞.
Then, there exists a function ρ̃ such that ρ∗ = ρ̃ almost surely and t �→ 〈 ρ̃t, Ht 〉 is
a continuous map. Moreover, there exists a subsequence nj such that

lim
j→∞

〈 ραnj

t , Ht 〉 = 〈 ρ̃t, Ht 〉 ,

for all t ∈ [0, T ] and for all H ∈ C1,2([0, T ]× [0, 1]).

Proof. For H ∈ C1,2([0, T ]× [0, 1]) and n ∈ N consider the function

fn(·, H) : [0, T ] → R,

t �→ 〈ραn
t , Ht〉 .

By Proposition 5.3, the sequence {fn(·, H)}n∈N is uniformly Hölder, hence equicon-
tinuous. Since |fn(t,H)| ≤ ‖H‖∞, by the Arzelà-Ascoli Theorem, there exists a
subsequence nk, depending on H, such that fnk

(·, H) converges uniformly in t, as
k → ∞, to a continuous function f(·, H).

Since C1,2([0, T ]× [0, 1]) is separable, applying a diagonal argument we can find
a subsequence nj such that the convergence above along nj holds uniformly in
t, for any function on a countable dense set of C1,2([0, T ] × [0, 1]). By density,
the operator f(t, ·) can be extended to a bounded linear functional in C2([0, 1])
with respect to the L2 norm, which in turn can be extended to a bounded linear
functional in L2[0, 1].

The Riesz Representation Theorem implies the existence of a function ρ̃t ∈
L2[0, 1] such that f(t,H) = 〈ρ̃t, Ht〉. Notice that last equality holds for all t ∈ [0, T ].
Uniqueness of the limit ensures that ρ∗ = ρ̃ almost surely. �

We point out that the hypothesis about the convergence in L2 in the proposition
above has no special importance. A convergence in another norm would work as
well. The L2 norm indeed plays a role on the relative compactness of {ρα : α > 0}.

The next proposition allows us to replace ραn
t by its limit as n → ∞ in the third

term of equation (5.2).

Proposition 5.5. Suppose that ραn converges to ρ∗ in L2([0, T ] × [0, 1]). Then,
for all t ∈ [0, T ] and for all H ∈ C1,2([0, T ]× [0, 1]),

lim
n→∞

∫ t

0

〈 ∂uραn
s , ∂uHs 〉 ds =

∫ t

0

〈 ∂uρ∗s, ∂uHs 〉 ds .

Proof. If H ∈ C1,2([0, T ]× [0, 1]), then ∂uH belongs to the set C 1,1([0, T ]× [0, 1]).
For this reason, the proof is written in terms of functions belonging to this last
domain.

Fix a time t. Consider first H ∈ C 0,1([0, T ] × [0, 1]) compactly supported in
[0, t]× (0, 1). In this case,∫ t

0

〈 ∂uραn
s , Hs 〉 ds = −

∫ t

0

〈 ραn
s , ∂uHs 〉 ds

because the integrands above vanish for times greater than t. Since ραn converges
to ρ∗ in L2([0, T ]× [0, 1]), the previous equality shows that

lim
n→∞

∫ t

0

〈 ∂uραn
s , Hs 〉 ds =

∫ t

0

〈 ∂uρ∗s, Hs 〉 ds .
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PHASE TRANSITION OF A HEAT EQUATION 19

The next step is to extend the previous equality to functions without that condition
on the support. Let H ∈ C1,1([0, T ] × [0, 1]) and approximate this function in
L2([0, T ] × [0, 1]) by a function Hε ∈ C1,1([0, T ] × [0, 1]) with compact support in
[0, T ]× (0, 1) and such that ‖Hε‖∞ ≤ ‖H‖∞. For δ > 0, let us define the function
ϕδ : [0, T ] → R as

ϕδ(s) =

⎧⎪⎨
⎪⎩

1, if s ∈ [0, t− δ] ,
t− s

δ
, if s ∈ [t− δ, t] ,

0, if s ∈ [t, T ] .

Let Hε,δ
s (u) := Hε

s (u)ϕ
δ(s). Then, Hε,δ ∈ C 0,1([0, T ] × [0, 1]) and has compact

support contained in [0, t]× (0, 1). Hence, from what we proved above,

lim
n→∞

∫ t

0

〈 ∂uραn
s , Hε,δ

s 〉 ds =
∫ t

0

〈 ∂uρ∗s, Hε,δ 〉 ds .(5.3)

By the triangular inequality,

∣∣∣∫ t

0

〈∂uραn
s − ∂uρ

∗
s, Hs〉ds

∣∣∣≤ ∣∣∣∫ t

0

〈∂uραn
s , Hs −Hε

s 〉ds
∣∣∣+ ∣∣∣∫ t

0

〈∂uραn
s , Hε

s −Hε,δ
s 〉ds

∣∣∣
+
∣∣∣∫ t

0

〈∂uραn
s − ∂uρ

∗
s, H

ε,δ
s 〉ds

∣∣∣+ ∣∣∣∫ t

0

〈∂uρ∗s , Hε,δ
s −Hε

s 〉ds
∣∣∣

+
∣∣∣∫ t

0

〈∂uρ∗s, Hε
s −Hs〉ds

∣∣∣ .

(5.4)

We shall estimate each term on the right hand side of the previous inequality. We
start with the first one. By the Cauchy-Schwarz inequality,∣∣∣ ∫ t

0

〈 ∂uραn
s , Hs −Hε

s 〉 ds
∣∣∣ ≤ (∫ t

0

‖∂uραn
s ‖2 ds

)1/2(∫ t

0

‖Hs −Hε
s‖2 ds

)1/2

.

We notice that by Proposition 2.1, ραn satisfies∫ t

0

〈ραn
s , ∂uGs 〉 ds− 2

∫ t

0

〈Gs, Gs 〉 ds ≤ K0 ,

for all H ∈ Cc (see Definition 9) and any t ∈ [0, T ]. This together with Corollary

A.5 ensures that
∫ t

0
‖∂uραn

s ‖2 ds ≤ 8K0 . Thus,∣∣∣ ∫ t

0

〈 ∂uραn
s , Hs −Hε

s 〉 ds
∣∣∣ ≤ (8K0)

1/2
(∫ t

0

‖Hs −Hε
s‖2 ds

)1/2

.

By Proposition 5.2, the same holds for ρ∗, i.e.,
∫ t

0
‖∂uρ∗s‖2 ds ≤ 8K0, and hence the

previous inequality follows replacing ραn by ρ∗. With this we also estimated the
last term on the right hand side of the previous inequality. Now we estimate the
second term on the right hand side of (5.4). Observe that∣∣∣ ∫ t

0

〈 ∂uραn
s , Hε,δ

s −Hε
s 〉 ds

∣∣∣ = ∣∣∣ ∫ t

0

∫ 1

0

∂uρ
αn
s (u)[Hε

s (u)ϕ
δ(s)−Hε

s (u)] du ds
∣∣∣

=
∣∣∣ ∫ t

t−δ

( t−s
δ − 1)

∫ 1

0

∂uρ
αn
s (u)Hε

s (u) du ds
∣∣∣

≤
∫ T

0

1[t−δ,t](s)
∣∣∣ ∫ 1

0

∂uρ
αn
s (u)Hε

s (u) du
∣∣∣ ds .
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20 T. FRANCO, P. GONÇALVES, AND A. NEUMANN

By the Cauchy-Schwarz inequality we obtain that∣∣∣ ∫ t

0

〈 ∂uραn
s , Hε,δ

s −Hε
s 〉 ds

∣∣∣ ≤√
δ
(∫ T

0

∣∣∣ ∫ 1

0

∂uρ
αn
s (u)Hε

s (u) du
∣∣∣2 ds

)1/2

≤
√
δ‖Hε‖∞

(∫ T

0

∣∣∣ ∫ 1

0

∂uρ
αn
s (u) du

∣∣∣2 ds
)1/2

≤
√
δ‖H‖∞(8K0)

1/2 .

By analogous calculations, we also get the previous estimate replacing ραn by ρ∗.
Therefore we have also estimated the fourth term on the right hand side of (5.4).

Putting together the previous computations, we obtain that the left hand side
of (5.4) is bounded from above by∣∣∣ ∫ t

0

〈 ∂uραn
s − ∂uρ

∗
s, H

ε,δ 〉 ds
∣∣∣+ 2(8K0)

1/2
{(∫ t

0

‖Hs −Hε
s‖2ds

)1/2

+
√
δ‖H‖∞

}
.

Employing (5.3), recalling the definition of Hε, sending n → ∞, and then ε, δ to
zero, the proof ends. �

Finally, in the next two propositions we are able to identify the integral equations
for the limit of ραn when αn → 0 or αn → ∞ by treating the last term of the integral
equation (5.2). We start by showing that the limit of ραn when αn → 0 is a weak
solution of the heat equation with Neumann’s boundary conditions.

Proposition 5.6. Let {αn}n∈N be a sequence of positive real numbers such that
limn→∞ αn = 0 . If {ραn}n∈N converges to ρ∗ in L2([0, T ]× [0, 1]), then ρ∗ is the
unique weak solution of (2.5).

Proof. Proposition 5.2 says that ρ∗ ∈ L2(0, T ;H1), which is one of the conditions
in Definition 5.

In order to prove that ρ∗ satisfies (2.6), the idea is to take the limit as n → ∞
in (5.2) and to analyze the limiting terms. By the previous propositions, it only
remains to analyze the limit of the last term in the integral equation (5.2).

A simple computation shows that for t ∈ [0, T ],∣∣∣ ∫ t

0

αn(ρ
αn
s (0)− ραn

s (1))(Hs(0)−Hs(1)) ds
∣∣∣ ≤ 4T‖H‖∞ αn.

Therefore, when αn → 0, the last integral in (5.2) converges to zero, as n → ∞.
Therefore, replacing ρα by ραn in (5.2) and taking the limit, we conclude that ρ∗

satisfies

〈 ρ∗t , Ht 〉 − 〈 ρ0, H0 〉+
∫ t

0

〈 ∂uρ∗s , ∂uHs 〉 ds−
∫ t

0

〈 ρ∗s, ∂sHs 〉 ds = 0 ,

for all t ∈ [0, T ] and for all H ∈ C1,2([0, T ]× [0, 1]).
Since ρ∗ ∈ L2(0, T ;H1), performing an integration by parts in the previous

equation, we get

〈ρ∗t , Ht〉−〈ρ0, H0〉 −
∫ t

0

〈ρ∗s,ΔHs + ∂sHs〉ds

−
∫ t

0

(ρ∗s(0)∂uHs(0)− ρ∗s(1)∂uHs(1))ds = 0

for all t ∈ [0, T ] and for all H ∈ C1,2([0, T ]× [0, 1]), concluding the proof. �
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PHASE TRANSITION OF A HEAT EQUATION 21

In the next proposition we treat the last term of the integral equation (5.2).

Proposition 5.7. Let {αn}n∈N be a sequence of positive real numbers such that
limn→∞ αn = ∞ . If {ραn}n∈N converges to ρ∗ in L2([0, T ]× [0, 1]), then ρ∗ is the
unique weak solution of (2.1).

Proof. Proposition 5.2 says that ρ∗ ∈ L2(0, T ;H1), which is one of the conditions
in Definition 2. We shall prove that ρ∗ satisfies (2.2). As before, the idea is to take
the limit as n → ∞ in (5.2) and to analyze the limiting terms. In this situation,
we take H ∈ C1,2([0, T ]× T), so that (5.2) is given by

〈ραn
t , Ht 〉 − 〈ρ0, H0 〉+

∫ t

0

〈 ∂uραn
s , ∂uHs 〉 ds−

∫ t

0

〈ραn
s , ∂sHs 〉 ds = 0 .

By the first statement of Proposition 5.4 and Proposition 5.5, taking the limit as
n → ∞ in the previous equality, we conclude that ρ∗ satisfies

〈ρ∗t , Ht 〉 − 〈ρ0, H0 〉+
∫ t

0

〈 ∂uρ∗s, ∂uHs 〉 ds−
∫ t

0

〈ρ∗s, ∂sHs 〉 ds = 0 ,

for all t ∈ [0, T ] and for allH ∈ C1,2([0, T ]×T). To obtain the integral equation (2.2)
from the equation above, invoking Proposition 5.5 and performing an integration
by parts, we are led to∫ t

0

〈 ∂uρ∗s, ∂uHs 〉 ds = lim
αn→∞

∫ t

0

〈 ∂uραn
s , ∂uHs 〉 ds

= lim
αn→∞

∫ t

0

〈ραn
s ,ΔHs〉ds−

∫ t

0

(
ραn
s (0)− ραn

s (1)
)
∂uHs(b) ds.

We claim that the previous limit is equal to
∫ t

0
〈ρ∗s, ΔHs 〉 ds. At first we prove that

lim
αn→∞

∫ t

0

(
ραn
s (0)− ραn

s (1)
)
∂uHs(0) ds = 0 .

By the Cauchy-Schwarz inequality and Proposition A.6,∫ t

0

(
ραs (0)− ραs (1)

)
∂uHs(0) ds ≤

(∫ T

0

(∂uHs(0))
2 ds

)1/2 1

α

(∫ T

0

(∂uρ
α
s (0))

2 ds
)1/2

,

for all t ∈ [0, T ]. Without loss of generality, we can assume α ≥ 1. Thus, by
Proposition 2.1 and the fact that 〈〈H,H〉〉α ≤ 〈〈H,H〉〉1 because α ≥ 1, we arrive at

〈〈ρα, ∂uH〉〉 − 2〈〈H,H〉〉1 ≤ K0 ,

for all H ∈ C 0,1([0, T ]× T). From Proposition A.4,

sup
H

{
〈〈ρα, ∂uH〉〉 − 2〈〈H,H〉〉1

}
=

1

8

∫ T

0

{
‖∂uραs ‖2 + (∂uρ

α
s (0))

2
}
ds,

where the supremum above is taken over functions H ∈ C 0,1([0, T ]× T); see Defi-
nition 1. Therefore,∫ t

0

(ραs (0)− ραs (1))∂uHs(0) ds ≤
1

α
(8K0)

1/2
(∫ T

0

(∂uHs(0))
2 ds

)1/2

,

for all t ∈ [0, T ] and α ≥ 1.
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In order to finish the proof it is enough to show that

lim
αn→∞

∫ t

0

〈ραn
s , ΔHs 〉 ds =

∫ t

0

〈ρ∗s, ΔHs 〉 ds,

which is consequence of the Cauchy-Schwarz inequality. �

Proof of Theorem 2.2. As mentioned after Proposition 5.1, the set {ρα : α > 0}
is relatively compact in L2([0, T ] × [0, 1]). Therefore, any sequence αn → 0 has a
subsequence αnj

such that ραnj converges to some ρ∗. By Proposition 5.2, Propo-
sition 5.6 and from uniqueness of weak solutions of (2.5), we conclude that ρ∗ is
the unique weak solution of (2.5). Hence, limα→0 ρ

α = ρ∗. Analogously, employing
Proposition 5.7, we get that limα→∞ ρα = ρ̂ , where ρ̂ is the unique weak solution
of (2.1). �

Appendix A. Sobolev space tools

Here we prove some results that we have used throughout the paper. Most of
them are suitable applications of the Riesz Representation Theorem for Hilbert
spaces.

Proposition A.1. The set C 0,1([0, T ]× T) is a dense subset of L2
Wα

([0, T ]× T).

Proof. Let H ∈ L2
Wα

([0, T ]×T). Then, H ∈ L2([0, T ]×T) and H(·, 0) ∈ L2([0, T ]).

Consider a sequence {Hn}n∈N such that for each n ∈ N, Hn ∈ C 0,1([0, T ]×T) with
compact support in [0, T ]× (T\{0}) converging in L2([0, T ]× T) to H, as n → ∞.
Consider also a sequence {hn}n∈N, of continuous functions hn : [0, T ] → R and
converging in L2([0, T ]) to H(·, 0), as n → ∞. For each n ∈ N, let

Gn(t, u) := Hn(t, u) + hn(t)1(− 1
n , 1

n )(u) .

Noticing that, for each n ∈ N,

‖Gn −H‖2α = ‖Hn −H‖2 + 2

αn

∫ T

0

(H(t, 0)− hn(t))
2 dt,

the proof ends. �

Proposition A.2. Let ξ : [0, T ]× T → R be such that

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α

}
< ∞,

for some κ > 0, where the supremum is taken over functions H ∈ C 0,1([0, T ]×T).
Then, there exists a function in L2

Wα
([0, T ]×T), which we denote by ∂uξ, such that

(A.1) 〈〈∂uH, ξ〉〉 = −〈〈H, ∂uξ〉〉α = −〈〈H, ∂uξ〉〉 −
1

α

∫ T

0

Ht(0)∂uξt(0) dt ,

for all H ∈ C 0,1([0, T ]× T).

Proof. Following the same arguments as in the proof of Proposition 5.2, this is a
consequence of the Riesz Representation Theorem. �

Remark A.3. The function ∂uξ above is indeed the weak derivative of the function
ξ in the usual sense. To see this, notice that, for H ∈ Cc,

〈〈∂uH, ξ〉〉 = −〈〈H, ∂uξ〉〉α = −〈〈H, ∂uξ〉〉 .
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Proposition A.4. Let ξ : [0, T ]× T → R be such that

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α

}
< ∞ ,

for some κ > 0, where the supremum is taken over functions H ∈ C 0,1([0, T ]×T).
Then,

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α

}
= 1

4κ

∫ T

0

‖∂uξt‖2α dt

= 1
4κ

∫ T

0

(
‖∂uξt‖2 +

1

α
(∂uξt(0))

2
)
dt ,

(A.2)

where the supremum is taken over functions H ∈ C 0,1([0, T ]× T).

Proof. By Proposition A.2, for all H ∈ C 0,1([0, T ]× T),

(A.3) 〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α = −〈〈H, ∂uξ〉〉α − κ〈〈H,H〉〉α .

By Young’s Inequality, for all r > 0,

|〈〈H, ∂uξ〉〉α| ≤ r

2
〈〈H,H〉〉α +

1

2r
〈〈∂uξ, ∂uξ〉〉α .

Choosing r = 2κ together with (A.3) we get to

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α

}
≤ 1

4κ

∫ T

0

‖∂uξt‖2α dt .

For the reversed inequality, let {Hn}n∈N ⊂ C 0,1([0, T ]× T) converging to r ∂uξ in
L2
Wα

([0, T ]× T), as n → ∞. The constant r ∈ R will be chosen ahead. Thus,

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α

}
=sup

H

{
− 〈〈H, ∂uξ〉〉α − κ〈〈H,H〉〉α

}
≥ lim

n→∞
−〈〈Hn, ∂uξ〉〉α − κ〈〈Hn, Hn〉〉α

=(−r − κr2)

∫ T

0

‖∂uξt‖2α dt .

Taking r = − 1
2κ , the proof ends. �

Corollary A.5. Let ξ ∈ L2(0, T ;H1) be such that

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉

}
< ∞ ,

for some κ > 0. Then,

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉

}
= 1

4κ

∫ T

0

‖∂uξt‖2 dt ,

where the function ∂uξt coincides, Lebesgue almost surely, with the function ∂uξt of
Proposition A.4. Above, the supremums are taken over H ∈ Cc; see Definition 9.

Proof. Since ξ ∈ L2(0, T ;H1) and by Remark A.3, the result is a consequence of
Proposition A.4. �
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Proposition A.6. Let ξ : [0, T ]× [0, 1] → R be such that

sup
H

〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉α < ∞,

for some κ > 0, where the supremum is taken over functions H ∈ C 0,1([0, T ]×T).
Then, t ∈ [0, T ] almost surely,

ξt(v)− ξt(u) =

∫
[u,v)

∂uξt(z)Wα(dz), ∀u, v ∈ T,

where ∂uξ satisfies (A.1). In particular, t ∈ [0, T ] almost surely

ξt(0)− ξt(1) =
1

α
∂uξt(0) .

Proof. A function defined on the interval [0, 1] can be identified, Lebesgue almost
surely, with a function defined in the continuous torus T. It is in this sense that the
function ξt is understood here. Besides that, the following orientation on T is fixed.
If u, v ∈ (0, 1] and u < v, then the integral over (v, u] corresponds to a integral over
(v, 1] ∪ (0, u].

From Proposition A.2, for t ∈ [0, T ] almost surely,

(A.4) 〈〈∂uH, ξt〉〉 = −〈〈H, ∂uξt〉〉α ,

for all H ∈ C1(T). For u, v ∈ T and n ≥ 1 define fn : T → R by

fn(w) =

⎧⎪⎨
⎪⎩

−Wα([u, u+ 1
n ])

−1, if w ∈ [u, u+ 1
n ],

Wα([v, v +
1
n ])

−1, if w ∈ [v, v + 1
n ],

0, otherwise,

and Hn : T → R by

Hn(z) =

∫
(0,z]

fn(w)Wα(dw) .

Notice that since fn is not a continuous function, then Hn /∈ C1(T). However,
approximating fn and Hn by continuous functions fε

n : T → R and Hε
n(r) =∫

(0,r]
fε
n(z)Wα(dz), respectively, equality (A.4) is still valid for fn and Hn.

We claim that Hn(r) converges to −1[u,v)(r), Wα-almost surely, as n → ∞.
Indeed, if u, v �= 0, Hn(r) converges pointwisely, as n → ∞, to −1(u,v](r), which

is equal to −1[u,v)(r), Wα-almost surely.
If u = 0, then Hn(r) converges pointwisely, as n → ∞, to −1[u,v](r), which is

equal to −1[u,v)(r), Wα-almost surely.
If v = 0, then Hn(r) converges pointwisely, as n → ∞, to −1(u,v)(r), which is

equal to −1[u,v)(r), Wα-almost surely. By the Cauchy-Schwarz inequality,

lim
n→∞

〈−∂uξt, Hn〉α = 〈∂uξt,1[u,v)〉α .

By the definition of fn, we have that for each n ∈ N,

〈ξt, fn〉α =
1

Wα([v, v +
1
n ])

∫
[v,v+1/n]

ξt(w)Wα(dw)

− 1

Wα([u, u+ 1
n ])

∫
[u,u+1/n]

ξt(w)Wα(dw) .
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Sending n → ∞ in the previous equality, by the Lebesgue-Besicovitch Differen-
tiation Theorem (see [2]) we obtain that 〈ξt, fn〉α converges Wα-almost surely in
u, v ∈ T, to ξt(v)− ξt(u), which finishes the proof of the first claim. Finally,

ξt(0)− ξt(1) = lim
u→1−
v→0+

∫
[u,v)

∂uξt(w)Wα(dw) =
1

α
∂uξt(0) .

�

Appendix B. Discussion on the heat equation

with Robin’s boundary conditions

In this section we make some connections of the results we obtained here with
respect to a particular case considered in [4]. From that paper, it is known that the
hydrodynamic equation for the slowed symmetric exclusion presented in the case
β = 1 is given by

(B.1)

{
∂tρ(t, u) = d

du
d

dW ρ(t, u) ,

ρ(0, u) = ρ0(u) ,

where d
du

d
dW is a generalized derivative, with W being a measure given by the sum

of the Lebesgue measure and a delta of Dirac. For the definition of the operator
d
du

d
dW , we refer to [4] and the references therein. In this paper we found a classical

description of the last equation, namely the heat equation with Robin’s boundary
conditions as given in (2.3). Below we make some connections relating the solutions
of these equations.

Firstly, we describe how to get the weak solution of (B.1) from the weak solution
of equation (2.3). Adapting from [4] the definition of the set of test functions for
(B.1), we have the following definition:

Definition 10. Let H1
Wα

be the set of functions H in L2(T) such that for u ∈ T,

(B.2) H(u) = ã +

∫
(0,u]

(
b̃+

∫ v

0

h(w) dw
)
Wα(dv) ,

for some function h in L2(T) and ã, b̃ ∈ R such that

(B.3)

∫ 1

0

h(u) du = 0 ,

∫
(0,1]

(
b̃+

∫ v

0

h(w) dw
)
Wα(dv) = 0 ,

where Wα was given in (2.7).

Definition 11. Let CWα
be the set of functions H ∈ H1

Wα
such that h ∈ C(T).

We have the following property about the elements of the space CWα
.

Lemma B.1. CWα
⊆ C1,2([0, T ]× [0, 1]).

Proof. From now on, we identify the torus T with (0, 1]. Let H ∈ CWα
. In order

to prove that H ∈ C1,2([0, T ] × [0, 1]), we restrict the domain T of H to the open
interval (0, 1), according to the definition of the space C1,2([0, T ] × [0, 1]). By the
definition of the set CWα

, for all u ∈ (0, 1), H(u) can be written as

ã+ b̃u+

∫ u

0

∫ v

0

h(w) dw dv ,
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for some function h ∈ C(T) and some constants ã and b̃ in R satisfying the con-
ditions of (B.3). Then, one can see that the restriction of H to (0, 1) belongs to

C1,2([0, T ]× (0, 1)). After, we need to construct an extension H̃ : [0, T ]× [0, 1] → R

such that:

• H̃ ∈ C1,2([0, T ]× [0, 1]);

• H̃ restricted to [0, T ]× (0, 1) coincides with H.

But, it is not hard to see that it is enough to consider the function

H̃(u) = ã+ b̃u+

∫ u

0

∫ v

0

h(w) dw dv ,

defined for all u ∈ [0, 1]. �

Moreover, all elements in CWα
satisfy the Robin’s boundary conditions:

Lemma B.2. If H ∈ CWα
, then ∂uH(0) = ∂uH(1) = α(H(0)−H(1)).

Proof. Since H ∈ CWα
, a simple computation shows that for u ∈ T ≡ (0, 1],

H(u) = G(u) +
b̃

α
1{1}(u) ,

where

G(u) = ã+ b̃u+

∫ u

0

∫ v

0

h(w) dw dv.

Notice that G(·) is continuous and smooth. Then, H(0) = G(0) and H(1) =

G(1) + b̃
α . On the other hand, ∂uH(0) = ∂uH(1) = G′(0). Since G′(0) = b̃, then

∂uH(0) = ∂uH(1) = α(H(0)−H(1)), which finishes the proof. �

In [3], we considered α = 1 and we proved that ρt(·) is a weak solution of (B.1),
which in particular means that

(B.4) 〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈
ρs,

d
du

d
dW H

〉
ds = 0 ,

for all t ∈ [0, T ] and all H ∈ H1
W1

. Now, we present a result that relates the integral
equations (B.4) and (2.4). We notice that by Proposition 6.3 of [3], it is enough to
verify equation (B.4) for functions in CWα

.

Proposition B.3. For H ∈ CWα
, the integral equation (2.4) coincides with the

integral equation (B.4).

Proof. From Lemma B.1 we know that CWα
is a subset of C1,2([0, T ]× [0, 1]), which

is the space of test functions for the integral equation (2.4). From the previous
lemma, for H ∈ CWα

the integral equation (2.4) reads as

〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈
ρs, h

〉
ds = 0 ,

where h = ΔH. Notice that a function in CWα
does not depend on time. Now, it

is enough to notice that from the definition of d
du

d
dW H = h (see [3]) we get that〈

ρs,ΔH
〉

=
〈
ρs,

d
du

d
dW H

〉
.

�
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Proposition B.4. There exists a unique weak solution of (2.1) and of (2.5).

Proof. We start by showing uniqueness of (2.5). For that purpose, let ρt be a weak

solution of (2.5) with ρ0(·) ≡ 0. For u ∈ T, let Hk(u) =
√
2 cos(kπu) , k ∈ N.

Recalling the integral equation (2.6), for all k ∈ N, Hk ∈ C2([0, 1]), ∂uHk(0) =
∂uHk(1) = 0 and

〈ρt, Hk〉 = −(kπ)2
∫ t

0

〈ρs, Hk〉ds.

Now, by Gronwall’s inequality it follows that 〈ρt, Hk〉 = 0, ∀t > 0 and for all k ∈ N.
Since {Hk}k∈N is a complete orthonormal system in L2(T), we obtain that ρt(·) ≡ 0,
∀t > 0.

The uniqueness of weak solutions of (2.1) follows as above, but considering in-

stead the complete orthonormal system {1 ,
√
2 cos(2kπu) ,

√
2 sin(2kπu)}k∈N com-

posed of functions in C2(T). �
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[3] Tertuliano Franco, Patŕıcia Gonçalves, and Adriana Neumann, Hydrodynamical behavior of
symmetric exclusion with slow bonds (English, with English and French summaries), Ann.
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