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Abstract. The Kipnis – Marchioro – Presutti (KMP) is a known model consist-
ing on a one-dimensional chain of mechanically uncoupled oscillators, whose
interactions occur via independent Poisson clocks: when a Poisson clock rings,
the total energy at two neighbors is redistributed uniformly at random between
them. Moreover, at the boundaries, energy is exchanged with reservoirs of fixed
temperatures. We study here a generalization of the KMP model by considering
different rates at energy is exchanged with the reservoirs, and we then prove the
existence of a phase transition for the heat flow.
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1. Introduction

How microscopic interactions determine the macroscopic behavior of a given
system is a question that guides a vast research in Statistical Mechanics and
Probability. In this context, since the seventies, a rigorous mathematical theory
has been developed in order to give a precise sense to the limit from micro-
scopical systems with stochastic time evolution towards its macroscopic point
of view. As a classical reference in the subject we cite the book [13].

A particular important microscopic system is the Kipnis-Marchioro-Presutti
(KMP) model, see [14]. Such model consists of a one-dimensional finite chain
of oscillators, being each oscillator described by its velocity and position. The
oscillators interact in the following way. Associated to each pair of neighbors
there is a Poisson clock; when a certain clock rings, the total energy at the
pair of neighbors is redistributed between them uniformly at random. The
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respective new positions and velocities are then chosen uniformly (according
to the Lebesgue measure) among all the possible configurations on its surfaces
of constant energy. Besides, at the right (resp. left) boundary, also at arrival
times of a Poisson clock, the energy is replaced according to an exponential
distribution of parameter β+ > 0 (resp. β− > 0). This is equivalent to say that
the system is in contact with reservoirs of temperature T± = 1/(kBβ±), where
kB stands for the Boltzmann constant.

As explained in [14], at the invariant state, conditionally on the energy, posi-
tion and velocity are uniformly distributed. We therefore restrict our attention
here only to the energy profile.

Supposing T+ 6= T−, a flux of energy is observed in KMP model. This is
the content of [14], i.e., a rigorous proof of the Fourier Law. Due to its peculiar
structure, which gives rise to an interesting duality and consequent manageabil-
ity, the KMP model is an interesting object of study both in Probability and
Statistical Mechanics. See for instance [2, 11] and references therein.

Recently, several works have investigated how a slowed defect can utterly
modify the scaling limit of a given microscopic system. See, for instance, [5–9].
By a slowed defect we mean that some specific site (or bond, or boundary),
is rescaled differently from the rest of the system. This is precisely what we
investigate in this paper. Rescaling rates at which energy is exchanged with the
reservoirs, we arrive at a phase transition for the steady state. In fact, taking
rates as AL−a and BL−b, where L is the scaling parameter, the invariant profile
of temperatures disconnects from the reservoirs if some of the parameters a or b
is equal to one. This result, which is the so-called local equilibrium (see [13]) is
stated in the Theorem 2.1, where explicit formulas for the limiting profiles are
also provided.

According to the seminal paper [14], the KMP model has the striking prop-
erty that its dual process of particles remains invariant (in some sense) when
particles are added to the system. This is a fundamental ingredient in order to
obtain the steady temperature profile. Since the original proof of this fact given
in [14, Proposition 3.1] is somewhat unclear, we present here a simple, easily
comprehensible proof of this fact in the Proposition 4.1, based on a combina-
torial identity. Our proof suits for the slow/fast boundaries case, covering the
original model [14] as a particular case.

Since the KMP model is non-gradient (see [13] for a precise definition),
the hydrodynamic limit of the model presented here turns to be a challenging
problem. In view of Theorem 2.1, we conjecture that its hydrodynamic behavior
should be described by a non-linear heat equation with boundary conditions
related to the regimes described in Theorem 2.1.

The outline of the paper is: Section 2 presents statements. Section 3 deals
with the duality of KMP process with slow/fast boundaries. In Section 4, the
Label Process is defined, which allows explicit computations, eventually leading
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to the proof of Theorem 2.1. In Section 5, further extensions and open problems
are considered.

2. Statement of results

Notations: The cardinality of a finite set A will be denoted by |A|. We
clarify that here N = {0, 1, 2, . . .} and R+ = {x ∈ R ; x > 0}.

For a positive integer L, consider the state space ΩL = R(2L+1)
+ , which rep-

resents the set of energy configurations of 2L+1 oscillators in a one-dimensional
chain. We denote an energy configuration by

ξ = (ξ−L, . . . , ξL) ∈ ΩL . (2.1)

The KMP model with slow/fast boundaries we define here is the Markov process
{ξt ; t ≥ 0} on ΩL characterized by its generator GL acting on smooth bounded
functions f : ΩL → R as

(
GLf

)
(ξ)=

L∑
x=−L

1∫
0

[
f(ξ−L, . . . , p(ξx+ξx+1), (1−p)(ξx+ξx+1), . . . , ξL)−f(ξ)

]
dp

+
A

La

∞∫
0

[
f(y, ξ−L+1, . . . , ξL)− f(ξ)

]
β−e

−β−y dy

+
B

Lb

∞∫
0

[
f(ξ−L, . . . , ξL−1, y)− f(ξ)

]
β+e

−β+y dy ,

where β+, β−, A,B > 0 and a, b ∈ R. We define T±, the temperatures in the
left and right reservoirs, respectively, by the equalities

β± =
1

kBT±
,

where kB stands for the Boltzmann constant. Some authors assume kB = 1 for
simplicity.

Definition 2.1. For given T > 0, let νT be the Gibbs measure (for the energy)
of independent oscillators on Z. In other words, νT is the following product
measure on RZ

+:

dνT =
∏
x∈Z

[ 1

kBT
exp

{
− ξx

kBT

}
dξx

]
.

Notice that the marginal of the measure νT at any site is an exponential distri-
bution of parameter 1/kBT .



174 T. Franco

Definition 2.2. Let us divide RZ
+ in blocks of size (2L + 1), where one of the

blocks is centered at the origin. In other words, we write RZ
+ as the following

Cartesian product:

RZ
+ =

∏
j∈Z

R{−L,...,0,...,L}+ j(2L+1)
+ .

Let µL be the (unique) invariant measure of the KMP process with slow/fast
reservoirs. Denote by µ̃L its extension to RZ obtained by taking the product of
copies of µL on each of the blocks above of size (2L+ 1).

The particular choice for the extension of µL has no relevance here and any
other extension would suit our purpose as well. We have constructed µ̃L only
to give sense to the statement below.

Theorem 2.1. Denote by µL the invariant measure of the KMP process with
slow/fast boundaries, and let τbuLc be the shift of buLc, with u ∈ (−1, 1).

Then, as L→∞, the probability measure τbuLcµ̃L converges weakly to νT ,
where:

(i) If a, b < 1,

T = T (u) =
(1− u

2

)
T− +

(1 + u

2

)
T+.

(ii) If a = 1 and b < 1,

T (u) =
(A(1− u)

2A+ 1

)
T− +

(A(1 + u) + 1

2A+ 1

)
T+ .

(iii) If a < 1 and b = 1,

T (u) =
(B(1− u) + 1

2B + 1

)
T− +

(B(1 + u)

2B + 1

)
T+ .

(iv) If a = b = 1,

T (u) =
(AB(1− u) +A

2AB +A+B

)
T− +

(AB(1 + u) +B

2AB +A+B

)
T+ .

(v) If a = b > 1,

T (u) =
( A

A+B

)
T− +

( B

A+B

)
T+ .

(vi) If a > max{1, b},
T (u) = T+ .
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(vii) If b > max{1, a},
T (u) = T− .

Some remarks: The regime (i) includes the seminal result of [14], which corre-
sponds to the case a = b = 0 and A = B = 1. In the regimes (ii), (iii) and
(iv), the temperature varies linearly for u ∈ (−1, 1), but does not interpolate
T− and T+. In fact, when some of the parameters a and b is equal to one, the
temperature close to the boundary does not reach the temperature T± of the
corresponding reservoir. In the regimes (v), (vi) and (vii), the temperature
on the chain of oscillators is completely homogenized. See the Figure 1 for an
illustration of the regime as a function of the parameters a and b.

Figure 1. Regimes for the heat flow.

3. Dual process of walkers

We construct in this section a discrete system of walkers which is dual (in a
sense to be defined) to the KMP process with slow/fast boundaries. We adapt
here ideas from [14].

Definition 3.1. Let ΛL = {−L, . . . , L} ∪ { δ(−) , δ(+) } and denote

n = (nδ(−), n−L, . . . , nL, nδ(+)) ∈ NΛL . (3.1)
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Consider the Markov process taking values on NΛL characterized by the follow-
ing generator(
ALf

)
(n) =

A

La

[
f(nδ(−) + n−L, 0, n−L+1, . . . , nδ(+))− f(n)

]
+
B

Lb

[
f(nδ(−), . . . , nL−1, 0, nδ(+) + nL)− f(n)

]
+

L∑
j=−L

1
nj+nj+1+1

×
nj+nj+1∑
q=0

[
f(nδ(−), n−L, . . . , ni−1, q, ni+ni+1−q, . . . , nδ(+))−f(n)

]
.

This particle system can be described in words as follows. We associate to
each pair of neighbour sites a Poisson clock of parameter one. When a Poisson
clock rings, the particles in the corresponding sites are uniformly redistributed.
Moreover, associated to the site −L there is a Poisson clock of parameter A/La.
When this Poisson clock rings, all the particles at the site −L move to the
site δ(−) and then stay there forever. Analogous description for the site L.
Moreover, all the Poisson clocks are taken as independent.

Recall (2.1) and (3.1). Let us define

F (n, ξ) =
1

β
nδ(+)

+ β
nδ(−)

−

L∏
x=−L

ξnxx
nx!

. (3.2)

Theorem 3.1 (Duality). Fix ζ ∈ ΩL and

k = (0, k−L, . . . , kL, 0) ∈ NΛL . (3.3)

Denote by Ek the expectation induced by the Markov process of generator AL
starting at the configuration k and denote by Eζ the expectation induced by the
Markov process of generator GL starting at the initial configuration ζ. Then,
for all t ≥ 0,

Eζ

[
F (k, ξt)

]
= Ek

[
F (ηt, ζ)

]
. (3.4)

The proof of above is very similar to the one in [14, Thm 2.1], and consists in
checking that ALF = GLF . We left this to the reader. By letting t → ∞ in
(3.4) we obtain:

Corollary 3.1. Given k as in (3.1), denote ‖k‖ =
∑L
x=−L kx. For 0 ≤ j ≤ ‖k‖

let

qL(k, j) = Pk
[{
j particles hit δ(+) and ‖k‖ − j particles hit δ(−)

}]
.
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Then ∫
F (k, ξ)µL(dξ) =

‖k‖∑
j=0

1

βj+β
‖k‖−j
−

qL(k, j) .

4. Label Process

We will call by Label Process the Markov process constructed by labelling
particles in the process presented in Definition 3.1 in the following way. First,
we put a label to distinguish each particle. Consider a time when the Poisson
clock associated to a pair of sites k, k+ 1 rings. In that moment, let us say that
the total quantity of particles is nk +nk+1. Make a bijection between the set of
labels of those particles and the set of integers {0, . . . , nk+nk+1}. Then, choose
an integer U uniformly between 0 and nk + nk+1 and independently choose
uniformly a permutation ζ of the integers {0, . . . , nk + nk+1}. The particles
corresponding to the first U positions of the permutation ζ will be addressed to
the site k and the remaining to the site k+ 1. At the boundaries, the procedure
is the following: when the Poisson clock associated to the site L rings, all the
particles in the site L move to the site δ(+) and stay there forever. Analogous
description for the site −L.

Notice that particles are not independent in this dynamics. Moreover, by
counting how many particles there is at each site we can recover the process
given in the Definition 3.1.

Definition 4.1. Let PLx1,...,xn be the probability induced by the Label Process
starting from n distinct particles located at the sites x1, . . . , xn ∈ {−L, . . . , L}.
Moreover, for x1, . . . , xn ∈ {−L, . . . , L} and ε1, . . . , εn ∈ { δ(+) , δ(−) }, denote

pL(x1, . . . , xn; ε1, . . . , εn) := PLx1,...,xn

[{
for i = 1, . . . , n, the particle starting

at xi hits the site εi
}]
.

From the definition above, we get

qL(k, j) =
∑

pL(x1, . . . , xn; ε1, . . . , εn) ,

where the sum above is taken over all sequences ε1, . . . , εn such that the cardi-
nality of the set {i ; εi = δ(+)} is equal to j.

The next proposition tell us that if some of the particles initially located
at {x1, . . . , xn} are removed (or some particles are added), the behavior of the
remaining particles is not modified.

Proposition 4.1. Recall that PLx1,...,xn denotes the probability induced by the
Label Process starting from particles initially located at the sites x1 . . . , xn ∈
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{−L, . . . , L}. Let m < n and {i1, . . . , im} ⊂ {1, . . . , n}. Define yk = xik . Then,
the probability PLx1,...,xn restricted to the class of events that depend only on

the set of particles initially located at {xi1 , . . . , xim} coincides with PLy1,...,ym .
In particular, for any 1 ≤ i ≤ n,∑
εi∈{δ(−),δ(+)}

pL(x1, . . . , xn; ε1, . . . , εn)

= pL(x1, . . . , xi−1, xi+1, . . . , xn; ε1, . . . , εi−1, εi+1, . . . , εn) .

We point out that the original proof of this result presented in [14, Prop. 3.1],
is of difficult reading1. For this reason, it is provided here an alternative proof
based on the tricky combinatorial identity which we develop in the next lemma.
Recall the convention that

(
n
m

)
= 0 whenever n,m are integers such that n < m.

Lemma 4.1. For any q ∈ {0, . . . ,M},

N∑
p=0

(
p

q

)(
N − p
M − q

)
=

(
N + 1

M + 1

)
. (4.1)

Proof. We prove (4.1) by a combinatorial argument. That is, we are going to
count, by two different procedures, how many ways we can choose a subset with
M + 1 objects from a set with N + 1 objects. Obviously, a first answer is the
right hand side of (4.1). Fix q ∈ {0, . . . ,M}. Without loss of generality, let us
say that the set of objects is a set of real numbers O = {a1, . . . , aN+1} such
that ai < aj whenever i < j. Define

Sp := {A ⊂ O ; |A| = M + 1, ap+1 ∈ A, there are q elements

in A strictly smaller than ap+1, and there are

M − q elements in A strictly bigger than ap+1}.

It is easy to check that S0, . . . , SN are disjoint sets, its union is the set of all
subsets of O of cardinality M + 1, and |Sp| =

(
p
q

)(
N−p
M−q

)
. This implies (4.1). 2

Proof of Proposition 4.1. We will make use of the graphical construction of par-
ticles systems via Poisson process. Assume the same Poisson process are used
to evolve both the Label Process with particles starting from sites x1, . . . , xn
and the Label Process with particles starting from y1, . . . , ym. For short, we
will call by x-Label Process the first process and by y-Label Process the second
one.

If the Poisson clock associated to the site δ(+) rings, all the particles in the
site L moves to the site δ(+) and stay there forever, and analogous statement

1The proof of [14, Prop. 3.1] is concerned with the case a = b = 0 and A = B = 1 for our
model. Anyway, since the boundaries do not play any role in the proof, the statements are
essentially the same.
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holds for the site δ(−). Both situations do not interfere in the trajectory of
particles before hitting {δ(+), δ(−)}. Therefore, consider the time when the
Poisson clock associated to a pair of sites k, k+1 rings, with k ∈ {−L, . . . , L−1}.

As described in the Label Process definition, let nk + nk+1 = N the total
number of particles at the sites k, k+1 in that instant, being M of those particles
belonging to the y-Label Process. Fix a bijection between these set of particles
and the set of integers numbers {1, . . . , N}. Let U, ζ are independent, being U
an uniform random variable in the set {1, . . . , N} and ζ is uniformly chosen on
the set of permutations of {1, . . . , N}. The particles corresponding the first U
positions of ζ will be sent to the site k and the remaining particles will be sent
to the site k + 1.

Since an uniform permutation ζ on N objects induces an uniform permu-
tation on M of them, we only need to assure that the quantity of particles
belonging to the y-Label Process that will be sent to the site k is uniformly
distributed on {0, 1, . . . ,M}. Denote this quantity of particles by Y , which is a
function of U and ζ. For short, denote by P the probability from to the space
where U, ζ have been constructed. In other words, our goal is to show that

P
[
Y = q

]
=

1

M + 1
, (4.2)

for any 0 ≤ q ≤M integer. We have that

P
[
Y = q

]
=

N∑
p=0

P
[
Y = q

∣∣U = p
]
· P
[
U = p

]
=

1

N + 1

N∑
p=0

P
[
Y = q

∣∣U = p
]

=
1

N + 1

N∑
p=0

(
p
q

)(
N−p
M−q

)(
N
M

) ,

where in the last equality we have used that ζ is picked uniformly at random
in the set of permutations. Recalling now Lemma 4.1 yields (4.2), finishing the
proof. 2

Proposition 4.2. Fix N integer, x1, . . . , xN and ε1, . . . , εN ∈ {δ(+), δ(−)}.
Then, for any u ∈ (−1, 1) and any permutation σ of the set {1, . . . , N}, the
following limit holds:

lim
L→∞

{
pL(x1 + buLc, . . . , xN + buLc; ε1, . . . , εN )

− pL(x1 + buLc, . . . , xN + buLc; εσ(1), . . . , εσ(N))
}

= 0 ,
(4.3)

where we have denoted by buLc the integer part of uL.

Since the boundaries do not play any role in the result above, its proof can be
straightforwardly adapted from [10, Proposition 3.5] and for this reason we omit
it here. Next we calculate the hitting probabilities for a single particle.
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Proposition 4.3. Consider the stopping times

τδ(+) = inf
{
t > 0 ; Xt = δ(+)

}
and τδ(−) = inf

{
t > 0 ; Xt = δ(−)

}
.

Then, for any x ∈ {−L, . . . , L},

pL(x; δ(+)) = PLx
[
τδ(+) < τδ(−)

]
=

AB(x+ L) +BLa

2ABL+ALb +BLa
.

In particular, the limit below, which we denote by p(u), does not depend on x1

regardless the chosen values of a and b:

p(u) := lim
L→∞

pL(x1 + buLc, δ(+)) = lim
L→∞

pL(buLc, δ(+))

= lim
L→∞

AB(buLc+ L) +BLa

2ABL+ALb +BLa
. (4.4)

Proof. In order to not overload notation, we write down c = A/La, d = B/Lb,

aL+1 = PLδ(+)

[
τδ(+) < τδ(−)

]
, a−(L+1) = PLδ(−)

[
τδ(+) < τδ(−)

]
and ax =

PLx
[
τδ(+) < τδ(−)

]
, for x ∈ {−L, . . . , L}.

Applying the Markov Property, one can check that (ax)x is a solution of
the following linear system: aL+1 = 1, a−(L+1) = 0, aL = (aL−1 + d)/(1 + d),
a−L = a−L+1/(1 + c), and, for −L+ 1 ≤ x ≤ L− 1, ax = (ax−1 + ax+1)/2.

In general, it is not an easy task to exhibit the solution of a system as
above in a simple way. However, the fact that ax = (ax−1 + ax+1)/2 holds for
−L + 1 ≤ x ≤ L − 1 leads us to the guess that, except at the boundaries, the
solution should be a restriction to the integers of some linear function. With
this guess in mind, one can deduce by some long albeit elementary calculations
that

ax =


1, if x = L+ 1 ,
cdx+ d(Lc+ 1)

c(Ld+ 1) + d(Lc+ 1)
, if − L ≤ x ≤ L ,

0, if x = −(L+ 1) ,

finishing the proof since c = A/La and d = B/Lb. 2

Proposition 4.4. For any x1, . . . , xN integers, for any ε1, . . . , εN ∈{δ(+), δ(−)}
and for any u∈(−1, 1), the following limit holds:

lim
L→∞

{
pL(x1 + buLc, . . . , xN + buLc; εi, . . . , εN )

−
N∏
i=1

pL(xi + buLc; εi)
}

= 0.
(4.5)
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Proof. Recall that u ∈ (−1, 1) is fixed. For N = 2, the result follows from the
fact that, with high probability, particles starting at x1 + buLc and x2 + buLc
will meet before hit the boundaries. The concerning technical details can be
easily adapted from the proof of [10, Lemma 3.5]. In possess of the case N = 2,
we proceed to prove the result for any positive integer. Let IL = {−L, . . . , L}
and denote elements of {−1,+1}IL by η. Given {x1, . . . , xN} ⊂ IL, we define

αL
(
{η ∈ {−1,+1}IL ; η(xi) = εi for i = 1, . . . , N}

)
:= pL(x1 + buLc, . . . , xN + buLc; εi, . . . , εN ) .

Proposition 4.1 guarantees that αL is a probability measure on {−1,+1}IL .
Now, we extend αL to some probability measure α̃L on {−1,+1}Z, being

the particular choice of the extension not relevant. Consider the weak conver-
gence of probability measures (see [3]). Since {−1,+1}Z is a compact space,
by Prohorov’s Theorem there exists a probability measure α which is a limit of
τbuLcα̃L along some subsequence.

We claim now that α is the only possible limit along subsequences of τbuLcα̃L
and, moreover, it is a Bernoulli product measure of constant parameter. No-
tice that this claim put together with Proposition 4.3 immediately imply (4.5),
finishing the proof.

Proposition 4.2 implies that α is an exchangeable measure. Hence, by de
Finetti’s Theorem, we conclude that α is a mixture of Bernoulli product mea-
sures, that is,

α =

1∫
0

Θpm(dp) ,

where Θp is the Bernoulli product measure on {−1,+1}Z of constant parameter
p ∈ [0, 1] and m is a probability measure on the Borelian sets of [0, 1], called
the law of the mixture. On de Finetti’s Theorem and exchangeability, we refer
to the survey [12].

Provided by the case N = 2, we already know that the marginal of α at the
sites x, x+ 1 ∈ Z is a Bernoulli product measure with same parameter at x and
x+ 1, because of the Proposition 4.3. For this reason, one can deduce that

1∫
0

p2m(dp) =

( 1∫
0

pm(dp)

)2

.

Since f(p) = p2 is a strictly convex function, then m must be a Delta of Dirac
measure, which implies that α is a Bernoulli product measure of constant pa-
rameter p(u). This proves the claim and concludes the proof. 2

We are in position to prove our main result. Recall the definitions of νT and
τbuLcµ̃L.
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Proof of Theorem 2.1. Fix u ∈ (−1, 1). We start with two observations. First,
for an exponential law we have that

∞∫
0

yj

j!
λe−λy dy = λ−j , ∀j ∈ N .

Thus, since νT is a product measure, we have that
∫
F (k, ξ) νT (dξ) =

(
kBT

)‖k‖
,

for any k ∈ NZ such that ‖k‖ <∞. Second, the class of polynomials p : RZ → R
in a finite number of variables is a weak convergence-determining class for the
set of probability measures concentrated on RZ

+.
These two observations implies that, in order to prove that τbuLcµ̃L converges

weakly to the probability measure νT , it is sufficient to assure that, for any
k ∈ NZ such that ‖k‖ <∞, the following limit holds:

lim
L→∞

∫
F (k, ξ) τbuLcµ̃L(dξ) =

(
kBT

)‖k‖
, (4.6)

where T = T (u) is to be achieved according to the chosen values of the param-
eters a and b. By the Corollary 3.1, the limit in the left side of above is equal
to

‖k‖∑
j=0

1

βj+β
‖k‖−j
−

lim
L→∞

qL(k + buLc, j) . (4.7)

By the Proposition 4.3 and the Proposition 4.4, we have that

lim
L→∞

qL(k + buLc, j) =

(
‖k‖
j

)(
p(u)

)j(
1− p(u)

)‖k‖−j
.

We therefore conclude that expression (4.7) is equal to(p(u)

β+
+

1− p(u)

β−

)‖k‖
=
(
kB

{
p(u)T+ + (1− p(u))T−

})‖k‖
.

Then, evaluating (4.4) in each regime of the parameters a, b ∈ R implies (4.6)
where T = T (u) is the one in the statement of the Theorem 2.1, finishing the
proof. 2

5. Further extensions

5.1. A variant of the KMP model

We considerer here the model as defined in Section 2.4 of [1], which is a slight
variation of the original KMP model of [14]. To better link the models, we adopt
in this section ipse literis the notation of [1]. Define ΛN = {1, . . . , N − 1} and
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by ξ ∈ RΛN
+ the energy configuration of oscillators, being ξx its energy at site

x ∈ ΛN . Given p ∈ [0, 1], denote by ξ(x,y),p the configuration that moves a
fraction p of the total energy at sites x, y ∈ ΛN , that is,

ξ(x,y),p =


ξz if z 6= x, y ,

p(ξx + ξy) if z = x ,

(1− p)(ξx + ξy) if z = y .

The KMP-type model defined in [1] is the Markov process whose generator is

LN :=
∑N−1
x=0 Lx,x+1, where, for f : RΛN

+ → R,

(
L0,1f

)
(ξ) =

∞∫
0

[ 1∫
0

[
f(ξ(0,1),p)− f(ξ)

]
dp

]
e−ξ0/T0

T0
dξ0 ,

(
Lx,x+1f

)
(ξ) =

1∫
0

[
f(ξ(x,x+1),p)− f(ξ)

]
dp , for x = 1, . . . , N − 2

(
LN−1,Nf

)
(ξ) =

∞∫
0

[ 1∫
0

[
f(ξ(N−1,N),p)− f(ξ)

]
dp

]
e−ξN/T1

T1
dξN .

This dynamics can be explained as follows: for the bulk x = 1, . . . , N − 1, the
dynamics is exactly the same of the original KMP model. But at the bound-
aries, at Poisson times of parameter one (for the left and right boundaries,
respectively), the energy at the ghost sites 0 and N are replaced according with
exponentials of parameters 1/T0 and 1/T1, and then, immediately after that,
the total energy at these sites and its neighbors is uniformly redistributed.

An analogous result of Theorem 2.1 can be demonstrated as follows. First
of all, similarly to what has been done in this paper, one can consider the
slowed/accelerated boundary version of the aforementioned KMP-type process,
which is the dynamics defined through the generator

LN :=
A

Na
L0,1 +

B

N b
LN−1,N +

N−2∑
x=1

Lx,x+1 ,

where A,B, a, b ∈ R. The next step is to reach duality. As natural, the dual
process of above is a Markov process of random walkers much similar to that
one of Section 3, with a different behavior near the boundaries. At the bond
1, 2 it is associated a Poisson clock of parameter A/Na. When this clock rings,
particles are uniformly redistributed between the sites x = 1 and x = 2 and
then, immediately, all the particles left in the site x = 1 are moved to the site
x = 0 and stay there forever. An analogous statement stands for the bond
N − 1, N .
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Putting it formally, define ΓN = {0, 1, . . . , N} and denote by n ∈
(
N∪{0}

)ΓN
a configuration of particles. The dual process will be described by the generator

AL =
A

Na
A0,1 +

B

N b
A0,1 +

N−1∑
x=1

Ax,x+1 ,

where, for f :
(
N ∪ {0}

)ΓN → R,

(
A0,1f

)
(n) =

1

n1 + n2 + 1

n1+n2∑
q=0

[
f(n0 + q, 0, n1 + n2 − q, n3, . . . , nN )− f(n)

]
,

(
Ax,x+1f

)
(n) =

1

nx + nx+1 + 1

nx+nx+1∑
q=0

[
f(n(x,x+1),q)− f(n)

]
,

x = 1, . . . , N − 2,(
AN−1,Nf

)
(n) =

1

nN−2 + nN−1 + 1

×
nN−2+nN−1∑

q=0

[
f(n0, . . . , nN−2+nN−1−q, 0, nN + q)−f(n)

]
,

and

n(x,y),q =


nz, if z 6= x, y ,

q, if z = x ,

nx + ny − q, if z = y .

As can be directly checked, these two processes are dual with respect to the
corresponding version of duality function (3.2), namely

F (n, ξ) := (T0)n0(T1)nN
N−1∏
x=1

ξnxx
nx!

.

The remaining arguments of this paper remains in force, and, mutatis mutandis,
the statement of Theorem 2.1 holds.

5.2. Symmetric Inclusion Process

Another interesting model to be studied is the Symmetric Inclusion Process
(see [4, 15] for a definition). Since a duality has been proved (under general
boundary rates) in [4, Section 4.1] and an asymptotic independence of the dual
process of walkers has been proved in [15], apart of some minor technical issues
to be verified, an analogous result of Theorem 2.1 should stand for this model.
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However, since in [15] the propagation of local equilibrium has been proved
(leading to the hydrodynamic limit), an even more interesting question arises:
does the hydrodynamic limit for an accelerated/slowed boundary version of the
Inclusion Process obey different boundary conditions related to Theorem 2.1?

In view of this discussion, we decided to left this subject (local equilibrium
and propagation of local equilibrium for an accelerated/slowed boundary version
of the Inclusion Process) for a future work.

5.3. Others processes

The paper [4] presents different models with similar duality results of that
corresponding to the KMP model, as the Brownian Energy Process, among
others. However, since an asymptotic independence of the dual process is not
available, it is not clear if a result in the sense of Theorem 2.1 can be proved
for these processes, except in the case of independent random walks, for which
the asymptotic independence is obvious.
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49 (2), 402–427.
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