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A mini-course in large deviations

These are notes prepared for an one week mini-course presented at Universidad de
La República, Facultad de Ingeniería, at the city of Montevideo, Uruguay in March
of 2015. I appreciate the invitation of Professor Paola Bermolen, and also the audi-
ence for valuable ideas and corrections: Paola Bermolen, Diego Fernández, Valeria
Goycoechea, Ernesto Mordecki, Eugenia Riaño, Andrés Sosa and Gastón Villarino.

I specially thank Leonardo De Carlo (Gran Sasso Science Institute, Italy) for im-
provements and finding a plenty of typos and mistakes.

The aim of this mini-course is a mild introduction to the subject of large de-
viations. A pre-requisite would be some knowledge at basic level in Probabil-
ity and Measure Theory. The content is a mixture of small pieces of some texts
[2, 4, 5, 6, 7, 8, 11] trying to introduce the subject in the simplest way as possible. At
the end of each chapter, we include few exercises.

This text was typed in X ELATEX.
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CHAPTER 1
LARGE DEVIATIONS FOR I.I.D BERNOULLI

1.1 The idea

In the Weak Law of Large Numbers, we have convergence in probability. For in-
stance,

Theorem 1.1.1 (Weak Law of Large Numbers). LetX1, X2, . . . be i.i.d. random variables
such that E|X1| < ∞. Then, for any ε > 0, holds

P

[ ∣∣∣X1 + · · ·+Xn

n
− EX1

∣∣∣ > ε

]
n→∞−→ 0.

The question that emerges is: how fast does converge to zero the probability
above? In what sense should we formulate the respective speed?

We can roughly reformulate this question as follows. Denote Sn = X1+ · · ·+Xn

the sum of those random variables above. Let Pn be the measure in R induced by
the random variable Sn

n
. If A is some (suitable) subset of R, we have

Pn(A)
n→∞−→

{
1, if EX1 ∈ A,

0 if EX1 /∈ A.

Then, what should be the speed of such convergence?
The answer is that in general, the velocity is exponential, or between expo-

nentials. Such question, called large deviations, takes place in different contexts of
probability as Markov chains, fluid limit, hydrodynamic limit, diffusions, polymers,
etc, etc, etc.

In the words of Dembo/Zeituni [2], the large deviations are sharp enough to
be useful in applications and rough enough to be possible of being handled in a
mathematical rigorous way.

We start the mini-course dealing with the simplest possible example. Sums of
i.i.d. random variables with distribution Bernoulli(1

2
). Since a sum of such random
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8 Large Deviations for i.i.d Bernoulli

variables is binomial, we are going to need information on the factorial. This is the
content of next section.

1.2 Stirling’s formula

Definition 1.2.1. Let f, g : N → R. We say that f and g have same order, and write
f ∼ g to denote it, if

lim
n→∞

f(n)

g(n)
= 1.

Proposition 1.2.2 (Stirling’s Formula). We have that

n! ∼
√
2π nn+ 1

2 e−n.

Proof. We follow Feller’s book [4]. Notice that

logn! = log 1 + log 2 + · · · logn.

Since ∫ k

k−1

logx dx < log k <

∫ k+1

k

logx dx,

we have that ∫ n

0

logx dx < logn! <

∫ n+1

1

logx dx.

Because
∫
logx dx = x logx− x, we get

n logn− n < logn! < (n+ 1) log(n+ 1)− (n+ 1) + 1,

or else,
n logn− n < logn! < (n+ 1) log(n+ 1)− n.

The inequality above suggests to compare logn!with some average of left and right
sides. The simplest would be (n+ 1

2
) logn− n. Define

dn = logn!− (n+ 1
2
) logn+ n

which represents the error. Provided we got the correct guess (the average above)
we shall estimate1 dn. By simple calculations,

dn − dn+1 =
(
n+ 1

2

)
log

(n+ 1

n

)
− 1

=
2n+ 1

2
log

(1 + 1
2n+1

1− 1
2n+1

)
− 1

1Indeed, we could forget the proof up to here. The aim of the discussion was to correctly guess
the approximation.
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Large Deviations for i.i.d Bernoulli 9

Now we need an expansion for the logarithm. Integrating

1

1− x
= 1 + x+ x2 + x3 + · · ·

we obtain

− log(1− x) = x+
x2

2
+

x3

3
+ · · ·

Therefore,

log
(1 + x

1− x

)
= 2

(
x+

x3

3
+

x5

5
+

x7

7
+ · · ·

)
Applying this,

log
(1 + 1

2n+1

1− 1
2n+1

)
=

2

2n+ 1
+

2

3(2n+ 1)3
+

2

5(2n+ 1)5
+ · · ·

which leads to

dn − dn+1 =
1

3(2n+ 1)2
+

1

5(2n+ 1)4
+

1

7(2n+ 1)6
+ · · · (1.1)

Because
∑∞

n=1(dn − dn+1) is convergent, then dn is convergent. Thus, for some c

lim
n→∞

edn = ec

which is the same as

lim
n→∞

n!

nn+ 1
2 e−n

= ec.

For a proof that ec =
√
2π, see Wallis formula or the Central Limit Theorem (see

Feller [4] or Fernandez [9]).

1.3 The large deviations

Theorem 1.3.1. Let X1, X2, X3 . . . be i.i.d. random variables such that P[Xi = 0] =
P[Xi = 1] = 1

2
. Then, for any a > 1/2,

lim
n→∞

1
n
logP

[
Sn

n
≥ a

]
= −I(a), (1.2)

where

I(a) =

{
a log a+ (1− a) log(1− a) + log 2 , if a ∈ [0, 1],

∞ , otherwise.
(1.3)

The function I is called rate function, see Figure 1.1 for an illustration. Observe

that the statement above (1.2) roughly says that P
[
Sn

n
≥ a

]
goes to zero as e−nI(a).

T. Franco 2015 A mini-course in large deviations



10 Large Deviations for i.i.d Bernoulli

a0 1
2

1

log 2

I

+∞+∞

Figure 1.1: Rate function I : R → [0,∞]

Proof. For a > 1, immediate. For a ∈ (1/2, 1],

P
[
Sn

n
≥ a

]
= P

[
Sn ≥ an

]
=

∑
k≥an

P
[
Sn = k

]
=

∑
k≥an

(
n

k

)
1

2n
.

Then,
1

2n
max
k≥an

(
n

k

)
≤ P

[
Sn ≥ an

]
≤ n+ 1

2n
max
k≥an

(
n

k

)
.

For short, denote q = ⌊an⌋+ 1. Rewriting the above,

1

2n

(
n

q

)
≤ P

[
Sn ≥ an

]
≤ n+ 1

2n

(
n

q

)
.

Taking logarithms and dividing by n,

1

n
log

1

2n

(
n

q

)
= − log 2 +

1

n
log

n!

(n− q)!q!

∼ − log 2 +
1

n
log

nn+
1
2 e−n

(n− q)n−q+
1
2 e−(n−q)qq+

1
2 e−q

= − log 2 +
1

n
log

nn+
1
2

(n− q)n−q+
1
2 qq+

1
2

∼ − log 2 +
1

n
log

( n

n− q

)n−q

+
1

n
log

(n
q

)q

.

Because q = ⌊an⌋+ 1, the last expression above converges to

− log 2− a log a− (1− a) log(1− a),

which concludes the proof.
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Large Deviations for i.i.d Bernoulli 11

Remark 1.3.2. Notice that, for a < 1
2
, holds

lim
n→∞

1
n
logP

[
Sn

n
≤ a

]
= −I(a),

by symmetry. Moreover, we did not use the value of the constant c =
√
2π appear-

ing in the Stirling’s formula.

The minimum of I(a) is attained at a = 1/2, corresponding to the Strong Law of
Large Numbers, see next corollary. When there are more than one minimum, the
phenomena is associated to loss of uniqueness in the thermodynamic limit (in the
Ising model, for instance). Also to the Curie-Weiss model.

Corollary 1.3.3. Assuming the same hypothesis of Theorem 1.3.1,

Sn

n

n→∞−→ 1

2
almost surely.

Proof. For any ε > 0,

P
[∣∣∣Sn

n
− 1

2

∣∣∣ ≥ ε
]

= P
[
Sn

n
≥ 1

2
+ ε

]
+ P

[
Sn

n
≤ 1

2
− ε

]
For any δ > 0, there exists n0 such that

P
[
Sn

n
≥ 1

2
+ ε

]
≤ e−n(I( 1

2
+ε)−δ),

for any n ≥ n0. Choose δ small enough such that

I
(

1
2
+ ε

)
− δ > 0.

Then Borel-Cantelli’s Lemma finishes the proof.

1.4 Exercises

Exercise 1.4.1. Check that

dn − dn+1 >
1

3(2n+ 1)2
>

1

12n+ 1
− 1

12(n+ 1) + 1

to realize that dn − 1
12n+1

is decreasing.

Exercise 1.4.2. Comparing (1.1) with geometric series of ratio (2n+ 1)−2, show that

dn − dn+1 <
1

3[(2n+ 1)2 − 1]
=

1

12n
− 1

12(n+ 1)

to realize that dn − 1
12n

is increasing.

T. Franco 2015 A mini-course in large deviations



12 Large Deviations for i.i.d Bernoulli

Exercise 1.4.3. Show that

c+
1

12n+ 1
< dn < c+

1

12n
,

where c = limn→∞ dn.

Exercise 1.4.4. Show that
√
2π nn+ 1

2 e−n e
1

12n+1 < n! <
√
2π nn+ 1

2 e−n e
1

12n

improving the version of Stirling’s formula proved in the text.

Exercise 1.4.5. Explain why our proof of Stirling would be a mess if we have done

2n+ 1

2
log

(
1 +

1

n

)
=

2n+ 1

2

( 1
n
− 1

2n2
+

1

3n3
− · · ·

)
(or else, the innocent step n+1

n
=

1+ 1
2n+1

1− 1
2n+1

is relevant!).

Exercise 1.4.6. Let F : X → R be a continuous bounded function, where (X, d) is a
separable complete metric space. Fix some δ > 0. Show that X can be written as a
finite union of closed sets where the oscillation of F in each set is smaller than δ.

Exercise 1.4.7. We say that f : (X, d) → R is lower semi-continuous if

lim inf
x→x0

f(x) ≥ f(x0),

for any x0. Prove that f is l.s.c. if, and only if, for any b ∈ R, the set

[f ≤ b] := {x ∈ X ; f(x) ≤ b}

is closed.

xx0

f

Figure 1.2: Illustration of a lower semi-continuous function

T. Franco 2015 A mini-course in large deviations



CHAPTER 2
GENERAL SETTING

2.1 The statement

Let (X, d) be a complete separable metric space and Pn be a sequence of measures,
all of them defined in the Borelian sets of (X, d).

Definition 2.1.1. We say that {Pn} satisfies a Large Deviation Principle (LDP) with
rate function I : X → [0,∞] and speed an ∈ R, an → ∞, if

(a) 0 ≤ I(x) ≤ +∞, for all x ∈ X,

(b) I is lower semi-continuous,

(c) for any ℓ < ∞, the set {x ∈ X : I(x) ≤ ℓ} is compact in (X, d),

(d) for any closed set C ⊂ X,

lim sup
n→∞

1

an
logPn(C) ≤ − inf

x∈C
I(x),

(e) for any open set A ⊂ X,

lim inf
n→∞

1

an
logPn(A) ≥ − inf

x∈A
I(x).

Remark 2.1.2. Tipically, Pn
d−→ δx0 , I(x0) = 0 and I(x) > 0 if x ̸= x0. Which implies

the Strong Law of Large Numbers. For instance, the speed an can be n, n2 or can
be also ε−1, and {Pε} a family of measures indexed in real ε → 0. The inequalities
may remember you of Pormanteau’s Theorem. The topological issues are the same
in this scenario, that’s why the resemblance. But nothing more than that. Besides,
some authors say that if (c) is satisfied, then I is a good rate function. Also see that
(c) implies (b). We wrote both here despite the redundancy.

T. Franco 2015 A mini-course in large deviations



14 General setting

Let us discuss some aspects of the statement above. The name Principle is
historical. Notice that if

inf
x∈

◦
G

I(x) = inf
x∈G

I(x) = inf
x∈G

I(x), (2.1)

then we will have convergence indeed:

lim
n→∞

1

an
logPn(G) = − inf

x∈G
I(x).

Now, observe that there is an infimum of I that there was not in the last chapter,
where the rate function was given by (1.3). In fact, there was an infimum hidden.
Just notice that the rate function given by (1.3) is increasing in [1

2
,∞) and decreasing

in (−∞, 1
2
].

Question: why the LDP is written in terms of an infimum infx∈G I(x)? To ex-
plain this, we begin with a simple result of analysis, but very important in large
deviations.

Proposition 2.1.3. Let an → ∞ and bn, cn > 0. Then

lim sup
n→∞

1

an
log(bn + cn) = max

{
lim sup

n→∞

1

an
log bn , lim sup

n→∞

1

an
log cn

}
.

In words, the bigger sequence wins, and the smaller sequence has no effect.

Proof. We have that
1

an
log(bn + cn) ≤

1

an
log

(
2max{an, bn}

)
= max

{ 1

an
log bn ,

1

an
log cn

}
+

1

an
log 2,

which implies

lim sup
n→∞

1

an
log(bn + cn) ≤ lim sup

n→∞
max

{ 1

an
log bn ,

1

an
log cn

}
= max

{
lim sup

n→∞

1

an
log bn , lim sup

n→∞

1

an
log cn

}
.

The reverse inequality is obvious.

Remark 2.1.4. A common application of above is “to throw away” superexponen-
tially small events.

Returning to the discussion of why the rate functions appears in terms of an
infimum, given disjoint sets A and B satisfying (2.1), then:

I(A ∪B) = − lim
1

an
logPn(A ∪B) = −max{lim 1

an
logPn(A) , lim

1

an
logPn(B)}

= min{I(A) , I(B)}.

We therefore guess that I(A) must be of the form

I(A) = min
x∈A

I(x),

where we have abused of notation, of course. Citing den Hollander,
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General setting 15

“Any large deviation is done in the least unlikely of all unlikely ways!”

Since there is a minus in − infx∈A I(x), where I(x) is smaller it means that x is less
improbable. Next, we are going to see two consequences of the general statement.

2.2 Laplace-Varadhan’s Lemma

Theorem 2.2.1 (Laplace-Varadhan’s Lemma). Let (X, d) be a complete separable metric
space and {Pn} sequence of probability measures on the Borelian sets of X satisfying a
LDP with rate function I . Then, for any bounded continuous function F : X → R, holds

lim
n→∞

1

an
log

(∫
X

eanF (x) Pn(dx)
)

= sup
x∈X

{
F (x)− I(x)

}
.

An interpretation of the result above would be: En[e
anF ] increases (or decreases)

exponentially as sup[F (x)− I(x)]. Or else, the functions F and I compete together.
As in Varadhan’s words, the idea behind the result above relies in the simple fact
that

lim
n→∞

1

n
log

( k∑
i=1

enxi

)
= max{x1, . . . , xk}.

An often application of the Laplace-Varadhan’s Lemma is to obtain a new LDP by a
changing of measures:

νn(dx) =
eanF (x)Pn(dx)∫
X e

anF (x)Pn(dx)
,

and Ĩ(x) = I(x) − F (x) − infy∈X
[
I(y) − F (y)

]
with ãn = an, see the exercises. Let

us prove the Laplace-Varadhan’s Lemma now.

Proof. Given δ > 0, there exist finite closed sets covering X such that the oscillation
of F in each these sets is smaller than δ (to see this, divide the image of F is
intervals of size δ and take pre-images). Then,

∫
X
eanF (x) Pn(dx) ≤

M∑
j=1

∫
Cj

eanF (x) Pn(dx) ≤
M∑
j=1

∫
Cj

ean(Fj+δ) Pn(dx),

T. Franco 2015 A mini-course in large deviations



16 General setting

where Fj is the infimum of F on the set Cj . Thus,

lim sup
n→∞

1

an
log

∫
X
eanF (x) Pn(dx) ≤ max

j=1,...,M

{
lim sup

n→∞

1

an
log

∫
Cj

ean(Fj+δ) Pn(dx)
}

= lim sup
n→∞

max
j=1,...,M

{
Fj + δ +

1

an
logPn(Cj)

}
≤ max

j=1,...,M

{
Fj + δ − inf

x∈Cj

I(x)
}

≤ max
j=1,...,M

sup
x∈Cj

{
Fj − I(x)

}
+ δ

= sup
x∈X

{
F (x)− I(x)

}
+ δ,

and since δ is arbitrary small, we get the upper bound. It is missing the reverse
inequality. Given δ > 0, there exists y ∈ X such that

F (y)− I(y) ≥ sup
x∈X

{
F (x)− I(x)

}
− δ

2
.

We can also find an open neighbourhood U ∋ y such that

F (x) ≥ F (y)− δ

2
, ∀x ∈ U.

Then,

lim inf
n→∞

1

an
log

∫
X
eanF (x) Pn(dx) ≥ lim inf

n→∞

1

an
log

∫
U

eanF (x) Pn(dx)

≥ lim inf
n→∞

1

an
log

∫
U

ean(F (y)− δ
2
) Pn(dx)

= F (y)− δ

2
+ lim inf

n→∞

1

an
logPn(U)

= F (y)− δ

2
− inf

x∈U
I(x)

≥ F (y)− δ

2
− I(y)

≥ sup
x∈X

{
F (x)− I(x)

}
− δ.

Since δ is arbitrary, we obtain the reverse inequality, finishing the proof.

The next modification of the previous result is sometimes useful.

Theorem 2.2.2. Let {Pn} satisfying a LDP with rate function I . Let Fn : X → R be
functions Fn ≥ 0 such that

lim inf
n→∞
y→x

Fn(y) ≥ F (x) , ∀x ∈ X,

T. Franco 2015 A mini-course in large deviations



General setting 17

for some lower semi-continuous function F ≥ 0. Then,

lim sup
n→∞

1

an
log

(∫
X
e−anFn(x) Pn(dx)

)
≤ − inf

x∈X

{
F (x) + I(x)

}
.

Proof. Let
ℓ = inf

x∈X

{
F (x) + I(x)

}
.

For any δ > 0 and for any x ∈ X, there exists a neighbourhood Uδ of x such that

inf
y∈Uδ

I(y) ≥ I(x)− δ

and
lim inf
n→∞

{
inf
y∈Uδ

Fn(y)
}

≥ F (x)− δ.

Thus,∫
Uδ

e−anFn(y) Pn(dy) ≤
(
sup
y∈Uδ

e−anFn(y)
)
Pn(Uδ)

≤ exp
(
− an inf

y∈Uδ

Fn(y)
)
exp

(
− an

(
inf
y∈Uδ

I(y)− o(1)
))

≤ exp
(
− an[ℓ− 2δ + o(1)]

)
.

Each compact set K ⊂ X can be writed as a subset of some open set U which is a
finite union of Uδ ’s. Then∫

U

e−anFn(y) Pn(dy) ≤ M exp
{
− an

[
ℓ− 2δ + o(1)

] }
.

On the other hand, since Fn ≥ 0,∫
X−U

e−anFn(y) Pn(dy) ≤ Pn(X − U) ≤ exp
{
− an

[
inf
X−U

I(x) + o(1)
]}

≤ exp
{
− an

[
inf
X−K

I(x) + o(1)
]}

.

Choosing the compact K = {x ; I(x) ≤ M}, for M much bigger than ℓ, the term
above is small in comparison with the previous term, which gives us the result
because δ is arbitrary small.

2.3 Contraction Principle

Theorem 2.3.1 (Contraction Principle). Let {Pn} satisfying a LDP with rate function
I : X → [0,+∞], where (X, d) is a Polish space. Let T : X → X̃ be a continuous function,
where (X̃, d̃) is also a Polish space. Define P̃n = Pn ◦ T−1, or else,

P̃n(A) = Pn(T
−1(A)).

T. Franco 2015 A mini-course in large deviations



18 General setting

Then, the sequence of measures {P̃n} satisfies a LDP with same speed and rate function

Ĩ(y) = inf
x ;T (x)=y

I(x).

Proof. (a) 0 ≤ Ĩ(y) ≤ +∞ is ok.

(b) Since T is continuous and [I ≤ b] is compact, then [Ĩ ≤ b] = T ([I ≤ b]) is
compact, therefore closed. Thus I is lower semi-continuous.

(c) Same as above.

(d) For any closed C ⊂ X̃, we have that T−1(C) is also closed. Then,

lim sup
n→∞

1

an
log P̃n(C) = lim sup

n→∞

1

an
logPn(T

−1(C)) ≤ − inf
x∈T−1(C)

I(x)

= − inf
y∈C

Ĩ(y).

(e) Same as above.

2.4 Exercises

Exercise 2.4.1. Verify the observation in the text about the tilting, or else, given
measures Pn satisfying a LDP with rate I and speed an, then the measures

νn(dx) =
eanF (x)Pn(dx)∫
X e

anF (x)Pn(dx)
,

satisfies a LDP with rate function Ĩ(x) = I(x) − F (x) − infy∈X
[
I(y) − F (y)

]
and

speed ãn = an.

Exercise 2.4.2. Suppose that an → ∞, bn, cn > 0 and there exists the limits

lim
n→∞

1

an
log bn and lim

n→∞

1

an
log cn.

Show that

lim
n→∞

1

an
log(bn + cn) = max

{
lim
n→∞

1

an
log bn , lim

n→∞

1

an
log cn

}
.

Exercise 2.4.3. Show that the Laplace-Varadhan’s Lemma remains true if we change
the assumption of boundedness of F by the superexponential assumption

lim sup
L→∞

lim sup
n→∞

1

an
log

∫
{x ; F (x)≥L}

eanF (x) Pn(dx) = −∞.

Hint: put FL = F ∧ L and then observe that∫
X
eanF Pn ≤

∫
X
eanFL Pn +

∫
[F≥L]

eanF Pn.
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Exercise 2.4.4. Verify that the rate function obtained in previous chapter (for sums
of Bernoulli’s) satisfies (a) and (b) of the general statement for large deviations.

Exercise 2.4.5. Given a family fλ : R → R of continuous functions, show that the
function defined by f(x) = supλ fλ(x) is lower semi-continuous.

Exercise 2.4.6. A sequence of measures {Pn} is said exponentially tight if, for any
b < ∞, there exists some compact Kb ⊂ X such that

lim sup
n→∞

1

an
logPn(K

∁
b ) ≤ −b.

Suppose that {Pn} is exponentially tight and, for each compact set K ⊂ X, holds

lim sup
n→∞

1

an
logPn(K) ≤ − inf

x∈K
I(x).

Show that these two assumptions implies the item (d) of the general statement, or
else, for any closed C ⊂ X, we will have

lim sup
n→∞

1

an
logPn(C) ≤ − inf

x∈C
I(x).

Hint: use that Pn(C) ≤ Pn(C ∩Kb) + Pn(K
∁
b ).

Exercise 2.4.7. Suppose that for any δ > 0 and any y ∈ X, holds

lim inf
n→∞

1

an
logPn(Uδ) ≥ −I(y).

where Uδ = B(y, δ) is the ball of center y and radius δ > 0. Show that this implies
the item (e) of the general statement, or else, for any open set A ⊂ X,

lim inf
n→∞

1

an
logPn(A) ≥ − inf

y∈A
I(y).
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CHAPTER 3
LARGE DEVIATIONS FOR SUMS OF I.I.D. RANDOM

VARIABLES

3.1 Crámer’s Theorem

We come back to sums of i.i.d. random variables. Let X1, X2 . . . independent iden-
tically distributed random variables such that

(A1) Xi has all exponential moments finite, or else,

M(θ) = E[eθXi ] =

∫
eθx α(dx) < +∞, ∀ θ ∈ R,

where α is the measure induced by Xi in the line.

(A2) The random variables are not bounded from above neither from below, or
else, for all m ∈ N,

α((−∞,−m)) > 0 and α((m,∞)) > 0.

In Olivieri/Vares book [8], it is supposed only finite first moment. In den Hollander,
only assumption (A1) above. We follow here Varadhan’s book [7], which assumes the
two conditions above, which makes the proof easier and points out some important
idea to be recalled ahead. Define Sn = X1 + · · ·+Xn and

I(x) = sup
θ∈R

{
θx− logE[eθX ]

}
, (3.1)

which is the Legendre transform of logE[eθX ]. Observe that I is convex because

I(px1 + (1− p)x2) = sup
θ

{
px1 + (1− p)x2 − pE[eθX ]− (1− p)E[eθX ]

}
≤ p sup

θ

{
x1 − E[eθX ]

}
+ (1− p) sup

θ

{
x2 − E[eθX ]

}
= p I(x1) + (1− p) I(x2).
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θ

logE[eθX ]

y(θ) = xθ

I(x)

Figure 3.1: Geometric view of Legendre transform of logE[eθX ], where x is the slope.

Moreover, by Jensen’s inequality we have E[eθX ] ≥ eθ EX , which implies the
inequality θEX − logE[eθX ] ≤ 0. Or else,

I(EX) = 0.

Since I ≥ 0, we get that x = EX is a minimum for I . Since I is convex and has a
minimum at x = EX , we conclude that I is non increasing for x < EX and non
decreasing for x > EX .

Theorem 3.1.1. Let {Pn} be the sequence of measures in R induced by Sn/n, or else,

Pn(A) = P
[
Sn

n
∈ A

]
.

Then {Pn} satisfies a LDP with rate function I given by (3.1).

Proof. (a) 0 ≤ I(x) ≤ +∞ is immediate.

(b) Since I is the supremum of continuous functions then I is a lower semi-
continuous function.

(c) Since I ≥ 0 and I is lower semi-continuous, convex and has a minumum, then
I−1((∞, ℓ]) is closed and bounded in the line, therefore compact.

(d) For x > EX and θ < 0, we have

θx− logE[eθX ] ≤ θEX − logE[eθX ] ≤ 0.

Therefore, for x > EX ,

I(x) = sup
θ>0

{
θx− logE[eθX ]

}
.

Analogously, if x < EX and θ > 0, we have

θx− logE[eθX ] ≤ θEX − logE[eθX ].
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Therefore, for x < EX ,

I(x) = sup
θ<0

{
θx− logE[eθX ]

}
.

Let y > EX and Jy = [y,+∞). For θ > 0, we have

Pn(Jy) =

∫
Jy

Pn(dx) ≤ e−θy

∫
Jy

eθxPn(dx) ≤ e−θy

∫
R
eθxPn(dx)

= e−θy E
[
eθ(

X1+···+Xn
n

)
]

= e−θy
(
E
[
e

θ
n
X1
])n

.

Thus,
1

n
logPn(Jy) ≤ −θy

n
+ logE[e

θ
n
X ].

Since the above holds for any θ, we replace θ/n by θ, obtaining

1

n
logPn(Jy) ≤ −θ y + logE[eθX ].

Notice that the inequality above holds for any n ∈ N, having importance itself. In
particular,

lim sup
n→∞

1

n
logPn(Jy) ≤ −θ y + logE[eθX ].

Optimizing over θ,

lim sup
n→∞

1

n
logPn(Jy) ≤ inf

θ>0

{
− θ y + logE[eθX ]

}
= − sup

θ>0

{
θ y − logE[eθX ]

}
= −I(y).

Analogously, for sets of the form J̃y = (−∞, y], we get

lim sup
n→∞

1

n
logPn(J̃y) ≤ inf

θ<0

{
− θ y + logE[eθX ]

}
= − sup

θ<0

{
θ y − logE[eθX ]

}
= −I(y).

Let us consider an arbitrary closed set C ⊂ R now. If EX ∈ C , then infx∈C I(x) = 0
and trivially

lim sup
n→∞

1

n
logPn(C) ≤ 0.

If EX /∈ C , let (y1, y2) be the greatest interval around EX for which we have that
C ∩ (y1, y2) = ∅. Then C ⊂ J̃y1 ∪ Jy2 , yielding

lim sup
n→∞

1

n
logPn(C) ≤ −min{I(y1), I(y2)} = inf

y∈C
I(y),
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by the monotonicity of I .

(e) It is enough to prove that, for all δ > 0, denoting Uδ = (y − δ, y + δ),

lim inf
n→∞

1

n
logPn(Uδ) ≥ −I(y).

(see Exercise 2.4.7). We claim now that

lim
|θ|→+∞

logE[eθX ]
|θ|

= ∞. (3.2)

Since E[eθX ] ≥ eθMP[X ≥ M ], then

logE[eθX ]
|θ|

≥ Mθ

|θ|
+

logP[X ≥ M ]

|θ|
.

By assumption (A2), we have that P[X ≥ M ] > 0, which implies the claim with
θ → +∞. The case θ → −∞ is analogous. This proves the claim.

By (3.2), for each fixed y,

I(y) = sup
θ∈R

{
θy − logM(θ)

}
is assumed in some θ0. Then

I(y) = θ0y − logM(θ0) and y − M ′(θ0)

M(θ0)
= 0. (3.3)

We define now a new probability distribution αθ0 by

αθ0(A) =
1

M(θ0)

∫
A

eθ0x α(dx),

which is the so-called Crámer transform of α. Notice that, by (3.3), the mean under
αθ0 is y, or else, y =

∫
xαθ0(dx). Therefore, by the Weak Law of Large Numbers, for

any δ we have that

lim
n→∞

∫∣∣x1+···+xn
n

−y

∣∣<δ

αθ0(dx1) · · ·αθ0(dxn) = 1.

Besides, for δ1 < δ,

Pn(Uδ) =

∫∣∣x1+···+xn
n

−y

∣∣<δ

α(dx1) · · ·α(dxn)

≥
∫∣∣x1+···+xn

n
−y

∣∣<δ1

α(dx1) · · ·α(dxn)

=

∫∣∣x1+···+xn
n

−y

∣∣<δ1

e−θ0(x1+···+xn)eθ0(x1+···+xn) α(dx1) · · ·α(dxn)

≥ e−nθ0y−nδ1|θ0|M(θ0)
n

∫∣∣x1+···+xn
n

−y

∣∣<δ1

αθ0(dx1) · · ·αθ0(dxn).
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Taking logarithms and dividing by n,

lim inf
n→∞

1

n
logPn(Uδ) ≥ −θ0y − δ1|θ0|+ logM(θ0)

= −
[
θ0y − logM(θ0)

]
− δ1|θ0|

= −I(y)− δ1|θ0|.

Since δ1 < δ is arbitrary, the proof is finished.

Remark 3.1.2. We can interpret I(y) as the smallest cost (exponential cost) in ob-
serving y instead of EX as the average of the random variables. Many others
changing of measures would lead the system from EX (under α) to y. But the cost
would be bigger. Again, the citation of den Hollander is suitable to the occasion:

“Any large deviation is done in the least unlikely of all unlikely ways!”

3.2 Exercises

Exercise 3.2.1. Check directly that if P[Xi = b] = 1, then {Pn} satisfies a LDP with
rate function

I(x) =

{
0 , if x = b,

∞ , if x ̸= b.

Exercise 3.2.2. Use Hölder’s inequality to show that logE[eθX ] is convex (being finite
or not).

Exercise 3.2.3. Use Fatou’s Lemma to show that logE[eθX ] is lower semi-continuous
(being finite or not).

Exercise 3.2.4. The goal of this exercise is to prove

lim
n→∞

1

n
logP

[
Sn

n
≥ a

]
= −I(a) (3.4)

for any a > EX1 under only assumption (A1). Notice that we did not make use
of the assumption (A2) in the proof of the upper bound, hence we shall prove the
lower bound without invoking (A2).

(i) Show that we can suppose, without loss of generality, that EX1 < 0 and a = 0
in (3.4). We aim to prove

lim
n→∞

1

n
logP

[
Sn

n
≥ 0

]
= −I(0)

in the next itens, being EXi < 0.
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26 Large deviations for sums of i.i.d. random variables

(ii) Show that
I(0) = − log ρ

where ρ = infθ∈R
{
M(θ)

}
.

(iii) Suppose that P[X1 < 0] = 1. Show that M(θ) is strictly decreasing, that
limθ→−∞M(θ) = ρ = 0 and then conclude (3.4).

(iv) Suppose that P[X1 ≤ 0] = 1 and P[X1 = 0] > 0. Show that M(θ) is strictly
decreasing, that limθ→−∞M(θ) = ρ = P[X1 = 0] and then conclude (3.4).

(v) Suppose that P[X1 < 0] > 0 and P[X1 > 0] > 0. Show that limθ→±∞M(θ) = ∞.
Since M(θ) is convex, conclude that there exists θ0 such that M(θ0) = ρ and
M ′(θ0) = 0.

(vi) Let X̂1, X̂2, . . . be a sequence of i.i.d random variables with distribution given
by αθ0 , the Cramer transform of α. Show that M̂(θ) = E[eθX̂i ] ∈ C∞(R).

Hint: relate M̂(θ) and M(θ).

(vii) From now on, suppose that P[X1 < 0] > 0 and P[X1 > 0] > 0 and choose θ0 as
in item (v). Show that

(i) E[X̂i] = 0

(ii) Var(X̂i) = σ̂ ∈ (0,∞).

(viii) Define Ŝn = X̂1 + · · ·+ X̂n. Show that

P[Sn ≥ 0] = M(θ0)
n E

[
e−θ0 Ŝn1[Ŝn≥0]

]
(ix) Show that

E
[
e−θ0Ŝn1[Ŝn≥0]

]
≥ exp

{
− θ0C σ̂

√
n
}
P
[ Ŝn

σ̂
√
n
∈ [0, C)

]
,

and conclude (3.4).

Exercise 3.2.5. Evaluate the rate function I for

(a) Bernoulli(p),

(b) Exponential(λ),

(c) Poisson(λ),

(d) Normal(0, 1).

Exercise 3.2.6. For i.i.d. Xi ∼ Exponential(λ), estimate P[Sn

n
≥ 2λ].
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Exercise 3.2.7. By the following changing of measure α 7→ α̃, where α̃ is defined
through

α̃(A) =

∫
A−y

α(dx),

why the proof of large deviations wouldn’t work? Give an example. Interpret this
changing of measure in terms of the random variable.
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CHAPTER 4
LARGE DEVIATIONS FOR MARKOV CHAINS

4.1 Sanov’s Theorem

Beforing entering into the subject of Markov Chains, we discuss Sanov’s Theorem
for finite alphabets with the aim of enlightening the idea of frequencies.

Let X1, X2, . . . be i.i.d random variables taking values on the finite set S =
{x1, . . . , xr}, which is not necessarily a subset of R. Hence, it makes no sense in
speaking about expectation of those random variables. We shall henceforth look
for an appropriated metric space (X, d).

Remark 4.1.1. As a motivation, think for instance of a questionnaire having answers
as “I agree”, “I partially disagree”, “I completely agree”, etc. We can not sum those
results. It is therefore necessary to work with frequencies rather then averages.

Definition 4.1.2. Define

Ln =
1

n

n∑
j=1

δXj
,

which is called empirical measure.

Notice that:

(a) Ln is a random element (it is a function of the random variables X1, . . . , Xn),

(b) Ln(ω) represents the fraction that each xi has appeared until time n,

(c) Ln(ω) is a probability measure on S.

In other words,

Ln : (Ω,A,P) −→ M1(S)

ω 7−→ 1

n

n∑
j=1

δXj(ω)
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where M1(S) denotes the set of probability measure on S with the distance of
total variation given by

||µ− α|| =
1

2

∑
x∈S

|µ(x)− α(x)|

which is a Polish space. By the Strong Law of Large Numbers, it holds the conver-
gence

Ln
n→∞−→ α almost surely,

where α(xj) = P[X1 = xj]. Assume α(xj) > 0 for any j.

Theorem 4.1.3 (Sanov for finite alphabets). LetX1, X2, . . . i.i.d random variables taking
vales on the finite set S = {x1, x2, . . . , xr}. Let Pn be the measure induced in M1(S)
by the random element Ln. Then {Pn} satisfies a LDP with rate function I : M1(S) →
[0,∞] given by

I(µ) =
r∑

j=1

µ(xj) log
µ(xj)

α(xj)
(4.1)

where α(xj) = P[X1 = xj].

Since the distribution of how many times each xj has appeared until time n is
multinomial, which depends on the factorial, the proof is quite similar to that one
presented in Chapter 1 for sums of Bernoulli. For this reason, we leave the proof
for the Exercise 4.4.10.

Remark 4.1.4. We have that

I(µ) =

∫
S

log
(dµ
dα

)
dµ =: H(µ|α)

is called the relative entropy of µ with respect to α. In the large deviations scenario
for a general rate function I holds (sometimes rigorously, sometimes in a heuristic
sense) that

I(y) = inf
µ such that∫
xµ(dx)=y

H(µ|α). (4.2)

In the Sanov’s Theorem, there is no infimum, because the observable is the measure
itself. In the Crámer’s case, there is. This is a way of deducing the Crámer transform.
The Crámer transform of µ is the measure that minimizes the relative entropy (with
respect to µ) among all the measures that have mean y (in the setting of Crámer’s
Theorem).

4.2 LDP for Markov chains first level

We turn now to Markov chains in a finite state S = {x1 . . . , xr} and discrete time.
Let p(x, y) be a transition probability and suppose additionally that p(x, y) > 0 for
all x, y ∈ S. We will be always starting the chain from a fixed state x.
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Proposition 4.2.1. Let V : S → R. Then

Ex

[
eV (X1)+···+V (Xn)

]
=

∑
y∈S

pnV (x, y) ,

where pnV is the nth-power of the matrix p(x, y)eV (y).

Proof. For n = 2.

Ex

[
eV (X1)+V (X2)

]
=

∑
y

∑
z

eV (y)+V (z) p(x, y) p(y, z)

=
∑
z

[∑
y

p(x, y) eV (y) p(y, z) eV (z)
]

= p2V (x, z).

The remaining follows by induction.

Fact of life: since pV is a matrix of positive entries, by Perron-Frobenius,

1

n
log

∑
y

pV (x, y) −→ logλp(V ),

where λp(V ) is the greatest eigenvalue of the matrix pV (x, y). As we did before,
define

Ln =
1

n

n∑
j=1

δXj
,

which is the empirical measure, and counts how many times the chain has been
in each state (until time n). Let us discuss the large deviation’s upper and lower
bound in a informal way.

In some places ahead, we will commit (a strong) abuse of notation, writing
Ln(x1, . . . , xn) :=

1
n

∑n
j=1 δxj

.

Upper bound. Let C ⊂ M1(S).

Pn(C) = Px[Ln ∈ C] = Ex[1An ],

where An = {ω ∈ Ω ; Ln(ω) ∈ C}. We have then

Ex[1An ] = Ex

[
e−[V (X1)+···+V (Xn)] e[V (X1)+···+V (Xn)] 1An

]
≤

{
max

x1,...,xn
Ln(x1,...,xn)∈C

e−[V (x1)+···+V (xn)]
}
Ex

[
e[V (X1)+···+V (Xn)]

]
.

Taking logarithms and dividing by n,

1

n
logPn(C) ≤ 1

n
max

x1,...,xn
Ln(x1,...,xn)∈C

−[V (x1) + · · ·+ V (xn)] +
1

n
log

∑
y

pnV (x, y)

= − 1

n
min

x1,...,xn
Ln(x1,...,xn)∈C

[V (x1) + · · ·+ V (xn)] +
1

n
log

∑
y

pnV (x, y).
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It is not hard to figure out that the above leads to

lim sup
n→∞

1

n
logPn(C) ≤ − inf

q∈C

[∑
y∈S

V (y)q(y)− logλp(V )
]
.

Optimizing over V gives us

lim sup
n→∞

1

n
logPn(C) ≤ inf

V

{
− inf

q∈C

[∑
y∈S

V (y)q(y)− logλp(V )
]}

= − inf
q∈C

sup
V

[∑
y∈S

V (y)q(y)− logλp(V )
]
,

where the last equality is something delicate, to be comment in the next chapter,
and has to do with the Minimax Lemma. Therefore, we have obtained

lim sup
n→∞

1

n
logPn(C) ≤ − inf

q∈C
sup
V

I(q),

where
I(q) =

∑
y∈S

V (y)q(y)− logλp(V ). (4.3)

Remark 4.2.2. The set C above in fact should be an open set. After applying the
Minimax Lemmawe get the upper bound for closed sets, and then using exponential
tightness we get the upper bound for closed sets. More details only in the next
chapter. For the moment, let us just accept the idea.

Lower bound. Let A ⊂ M1(S) be an open set. We have

Pn(A) =
∑

x1,...,xn
Ln(x1,...,xn)∈A

p(x, x1)p(x1, x2) · · · p(xn−1, xn).

Let q ∈ A be a frequency. Pick any transition probability p̃ such that qp̃ = q. Then,

Pn(A) =
∑

x1,...,xn
Ln(x1,...,xn)∈A

p̃(x, x1)p̃(x1, x2) · · · p̃(xn−1, xn) exp

{
−

n∑
j=1

log
p̃(xj−1, xj)

p(xj−1, xj)

}

=

∫
An

exp

{
−

n∑
j=1

log
p̃(Xj−1, Xj)

p(Xj−1, Xj)

}
dP̃ ,

where An = {(x1, x2, . . .) ; Ln(x1, . . . , xn) ∈ A}. For short, denote

Θn = −
n∑

j=1

log
p̃(Xj−1, Xj)

p(Xj−1, Xj)
.
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Then
1

n
logPn(A) =

1

n
log

(∫
eΘn

1An

P̃ (An)
dP̃ · P̃ (An)

)
=

1

n
log

(∫
eΘn

1An

P̃ (An)
dP̃

)
+

1

n
log P̃ (An)

=
1

n
log

(∫
eΘn dP̂

)
+

1

n
log P̃ (An),

where
dP̂ =

1An

P̃ (An)
dP̃ .

Since the logarithm is a concave funtion, applying Jensen’s inequality,

1

n
logPn(A) ≥

∫
Θn

n
dP̂ +

1

n
log P̃ (An),

By the Ergodic Theorem,
lim
n→∞

P̃ (An) = 1

because qp̃ = q. Moreover, it is not immediate, but is also a consequence of the
Ergodic Theorem that, under P̃ ,

Θn

n

n→∞−→ −
∑
x,y

q(x)p̃(x, y) log
p̃(x, y)

p(x, y)

almost surely and in L1. Therefore,

lim inf
n→∞

1

n
logPn(A) ≥ −

∑
x,y

q(x)p̃(x, y) log
p̃(x, y)

p(x, y)
.

Optimizing in p̃, we get

lim inf
n→∞

1

n
logPn(A) ≥ sup

p̃ such that
qp̃=q

−
∑
x,y

q(x)p̃(x, y) log
p̃(x, y)

p(x, y)

= − inf
p̃ such that

qp̃=q

∑
x,y

q(x)p̃(x, y) log
p̃(x, y)

p(x, y)

Optimizing in q ∈ A yields

lim inf
n→∞

1

n
logPn(A) ≥ − inf

q∈A
Ĩ(q),

where

Ĩ(q) = inf
p̃ such that

qp̃=q

∑
x,y

q(x)p̃(x, y) log
p̃(x, y)

p(x, y)
.

We notice some resemblance of above with the heuristic equation (4.2). In order
to conclude the large deviations, it is required to prove that I(q) defined in (4.3) is
equal to Ĩ(q) above. This is true, but we are not going to treat this subject here.
For a complete proof of a large deviations principle in this setting, see the book of
Vares/Olivieri [8, page 126, Thm. 3.9].

T. Franco 2015 A mini-course in large deviations



34 Large deviations for Markov Chains

4.3 LDP for Markov chains second level

In some sense, dealing with Ln is not the most natural way of proving a large
deviations principle for Markov chains, due to the fact that

Px[X1 = x1, . . . , Xn = xn] (4.4)

is not a function of Ln(x1, . . . , xn). In this way, define

L(2)
n =

1

n− 1

n−1∑
i=0

δ(Xi,Xi+1) (4.5)

which is an empirical measure that counts the number that each transition has
occurred until time n. Notice also that L(2)

n is a random element taking values on
M1(S × S).

Exercise 4.3.1. Verify that (4.4) is a function of L(2)
n (x1, . . . , xn) modulo a small error.

It is a consequence of the Ergodic Theorem that

L(2)
n

n→∞−→ α× p almost surely,

where α is the stationary distribution and (α × p)(x, y) = α(x)p(x, y). We state
without proof the following result:

Theorem 4.3.2. Let P (2)
n be measure induced by L(2)

n in M1(S × S). Then {Pn} satisfies
a LDP with rate function

I2(ν) =
∑
x,y

ν(x, y) log
ν(x, y)

ν̂(x)p(x, y)

where ν̂(x) =
∑

y ν(x, y) is the marginal of the measure ν(x, y) in the first coordinate.

Notice that the rate functional is an entropy. Provided by the second level large
deviations, we obtain as a corollary the first level large deviations by means of the
Contraction Principle, that is, Theorem 2.3.1.

Corollary 4.3.3. Let Pn be the measure induced by Ln in M1(S). Then {Pn} satisfies a
LDP with rate function

I1(µ) = inf
ν∈M1(S)

ν̂=µ

I2(ν).

4.4 Exercises

Exercise 4.4.1. Verify that for an alphabet with two letters of same probability, the
rate function (4.1) coincide with the rate function (1.3) obtained in Chapter 1 for the
large deviations of sums of i.i.d. Bernoulli(1/2).
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Exercise 4.4.2. Let S be a finite set and µ and α be two probability measures on S.
Define the entropy of µ with respect to α by

H(µ|α) = sup
f

{∫
f dµ− log

∫
ef dα

}
,

where the supremum is taken over bounded functions f : S → R. Show that the
supremum above can be taken only over bounded positive functions.

Exercise 4.4.3. Prove the entropy inequality: for all bounded f and for all c > 0,∫
f dµ ≤ 1

c

(
log

∫
ecf dα +H(µ|α)

)
.

Exercise 4.4.4. Show that, for any A ⊂ S,

µ(A) ≤ log 2 +H(µ|α)

log
(
1 + 1

α(A)

) .

Exercise 4.4.5. Show that the entropy is non-negative, convex and lower semi-
continuous.

Exercise 4.4.6. Use Hölder’s inequality to show that

Φ :RS → R

f 7→
∫

f dµ− log
∫

ef dα

is concave. Show that its maximum is attained in any f such that

ef(xj) α(xj) = µ(xj)
n∑

i=1

ef(xi) α(xi) , ∀j = 1, . . . , n.

Exercise 4.4.7. Invoking the previous item, check that

H(µ|α) =

∫
log

(dµ
dα

)
dµ.

Exercise 4.4.8. Show that if µ ̸≪ α, then

H(µ|α) = +∞.

Exercise 4.4.9. Evaluate

p(n1, · · · , nr) = P
[
Ln({x1}) =

n1

n
, . . . , Ln({xr}) =

nr

n

]
,

where n1 + · · ·+ nr = n.
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Exercise 4.4.10. Using Stirling’s formula, prove that

(2π)−
r−1
2 n− r−1

2 e−
r
12

r∏
j=1

(nα(xj)

nj

)nj

≤ p(n1, . . . , nr) ≤
r∏

j=1

(nα(xj)

nj

)nj

.

Exercise 4.4.11. Compute I1 for the Markov chain(
p 1− p

1− p p

)
where p ∈ (0, 1).

Exercise 4.4.12. Turning back to the context of the Chapter 3, show that the Cramer
transform is the measure µ that minimizes the entropy H(µ|α) among all the mea-
sures that have new mean y ̸= EX . In order to make life easier, suppose (A1) and
(A2) for the measure α. You probably have to use variational calculus.
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CHAPTER 5
PROOF’S SCHEME

5.1 The recipe: basic ingredients

Now, we describe the a general scheme of proof. Rather than a proof, this is a
recipe to clarify ideas when proving large deviations for some model. Let Pn be a
sequence of measures on (X, d) such that

Pn
d−→ δx0 ,

or else, the sequence of measures satisfy some Weak Law of Large Numbers. The
first ingredient we need is a perturbed process P β

n such that, for any x in the space,
there is some perturbation β such that

P β
n

d−→ δx.

Denote by eanJβ the Radon-Nikodym derivative between P β
n and Pn. Note that an

can be n, n2 etc., depending on the scaling.

5.2 The recipe: upper bound

For a while, consider C ⊂ X a closed set.

Pn(C) = En

[
1C
]
= En

[
e−anJβeanJβ 1C

]
≤ sup

x∈C

{
e−anJβ(x)

}
E
[
eanJβ 1C ]

≤ sup
x∈C

{
e−anJβ(x)

}
E
[
eanJβ

]
= sup

x∈C

{
e−anJβ(x)

}
,
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because E
[
eanJβ ] = 1. Therefore,

lim sup
n→∞

1

an
logPn(C) ≤ − inf

x∈C
Jβ(x).

Optimizing over the perturbations, we get

lim sup
n→∞

1

an
logPn(C) ≤ inf

β

{
− inf

x∈C
Jβ(x)

}
= − sup

β

inf
x∈C

Jβ(x).

The question now is how to interchange the supremum with the infimum. Some-
times we can do that directly (as in Crámer’s Theorem) but in the general it is
required the Minimax Lemma:

Proposition 5.2.1 (Minimax Lemma). LetK ⊂ X compact, where (X, d) is a Polish space.
Given {−Jβ}β a family of upper semi-continuous functions, it holds

inf
O1,...,OM
covering of K

max
1≤j≤M

inf
β

sup
x∈Oj

−Jβ(x) ≤ sup
x∈K

inf
β

−Jβ(x).

For a proof of above, see [11].

Now, we repeat the steps above considering an open set A in lieu of the closed
set C , arriving as well at

lim sup
n→∞

1

an
logPn(A) ≤ − sup

β

inf
x∈A

Jβ(x) ,

because in any moment we have used that C was closed. The ensuing step is to
pass from open sets to compacts sets, see next exercise.

Exercise 5.2.2. Let Jβ be a set of lower semi-continuous functionals indexed on β,
and suppose that

lim sup
n→∞

1

an
logPn(A) ≤ − sup

β

inf
x∈A

Jβ(x).

for any open set A ⊂ X. Prove that

lim sup
n→∞

1

an
logPn(K) ≤ − inf

x∈K
sup
β

Jβ(x), (5.1)

for any K ⊂ X compact. Hint: start with a finite open covering of K .

In possess of (5.1), we prove exponential tightness1 and then use Exercise 2.4.6.
This leads to

lim sup
n→∞

1

an
logPn(C) ≤ − inf

x∈C
sup
β

Jβ(x).

for any closed C ⊂ X , concluding the upper bound.

1By some means. Each model requires a specific proof of exponential tightness. Remember this
chapter is not a proof of anything, it is just the structure of proof suitable for many cases.
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5.3 The recipe: lower bound

Let A ⊂ X be an open set and let x ∈ A. Choose β a perturbation such that

P β
n

d−→ δx. (5.2)

Hence
P β
n (A) −→ 1

as n goes to infinity. As before, we write

Pn(A) = En

[
1A
]
= En

[
e−anJβeanJβ 1A

]
,

which implies

1

an
logPn(A) =

1

an
logEn

[
e−anJβeanJβ 1A

]
. (5.3)

In this point, we would like to put the logarithm inside the expectation achieving
an inequality from below (by Jensen). However, the indicator function vanishes
in a set of positive probability, which would gives us minus infinity (or else, with
respect to the lower bound, nothing). For this reason, we rewrite (5.3) in the form

1

an
logPn(A) =

1

an
log

{
En

[
e−anJβ e

anJβ 1A
Pβ
n (A)

]
· P β

n (A)
}

=
1

an
logEn

[
e−anJβ e

anJβ 1A
Pβ
n (A)

]
+

1

an
logP β

n (A).

Notice that
eanJβ 1A
P β
n (A)

is a Radon-Nikodym derivative of a measure with respect to Pn (it is a non-negative
function and its mean with respect to Pn is one). Thus, since the logarithm function
is concave, we can apply Jensen inequality to obtain

1

an
logPn(A) ≥ En

[
− Jβ · e

anJβ 1A
P β
n (A)

]
+

1

an
logP β

n (A)

=
1

P β
n (A)

Eβ
n

[
− Jβ 1A

]
+

1

an
logP β

n (A).

Recalling (5.2), we have
lim
n→∞

P β
n (A) = 1,

then

lim inf
n→∞

1

an
logPn(A) ≥ −Jβ(x).
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Remember that β was chosen trough a given x. Or else β = β(x). The question we
address now is: fixed x ∈ X, if does hold

I(x) := sup
γ

Jγ(x) = Jβ(x)(x).

Intuitively, the question is if the perturbation β is the cheapest way to observe the
point x. This is a purely analytic question. Once this question is checked, we may
close the large deviations proof. See next exercise:

Exercise 5.3.1. Suppose that, for each x ∈ X and β = β(x),

I(x) := sup
γ

Jγ(x) = Jβ(x)(x) ,

that Jβ(x)(x) is lower semi-continuous, and also that

lim inf
n→∞

1

an
logPn(A) ≥ −Jβ(x)(x) ,

for any open set A ⊂ X. Use Exercise 2.4.7 to show that

lim inf
n→∞

1

an
logPn(A) ≥ − inf

x∈A
I(x) .

5.4 Example: large deviations for hydrodynamics of ex-
clusion

What it have been presented at these notes is only the central idea fo large devia-
tions: challenges and difficulties may emerge in specific problems, subjects of vast
research. In this section we discuss a few of them.

We warn the reader that we will be very hand waving in this section. The aim
is only to fix the main ideias from previous subsections.

The SSEP (symmetric simple exclusion process) is an standard continuous time
Markov chain in the state space {0, 1}Tn , where Tn = Z/nZ is the discrete torus
with n sites. Or else, in each site of Tn it is allowed at most one particle. Let us
describe the dynamics of SSEP.

To each edge of Tn we associate a Poisson Point Process of parameter one, all of
them independent. We start at a configuration of particles η0. If the site x is empty
we say that η0(x) = 0. If it is occupied, we say that η0(x) = 1. For instance, in the
Figure 5.1, we have η0(2) = 0 and η0(3) = 1.

When a clock rings, we interchange the occupations at the vertices of the cor-
responding edge. Of course, if both sites are empty or occupied, nothing happens.
See Figure 5.1 again.
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PPP(1) PPP(1) PPP(1) PPP(1)

t

Time
×

×

×

×

×

×

η0

ηt

0 1 2 3 4 N = 0

Figure 5.1: Symmetric Simple Exclusion Process

The spatial density of particles is usually represented by a measure in the con-
tinuous torus [0, 1], where we identify zero an one. This measure is called empirical
measure, being defined by

πn
t =

1

n

∑
x∈Tn

ηn2t(x) δ x
n
.

Or else, where there is a particle we put a Delta of Dirac with mass 1/n. The time
is taken as n2t which is known as diffusive scale. It is a celebrated result the next
theorem, which is called hydrodynamic limit of the SSEP.

Theorem 5.4.1. Suppose that η0, the initial configuration, is chosen in such a way

πn
0

d−→ γ(u) du,

where γ is a fixed function, let us say, continuous. Then,

{πn
t , 0 ≤ t ≤ T} d−→ {ρ(t, u) du , 0 ≤ t ≤ T}, (5.4)

where ρ is the solution of the heat equation in the torus:{
∂tρ = ∂uuρ , u ∈ [0, 1] , t > 0 ,

ρ(0, u) = γ(u) , u ∈ [0, 1] .
(5.5)

The result above is a law of large numbers. Therefore, the natural ensuing
question is to prove large deviations. Denote by Pn the measure on the induced by
πn
t . Then, we can rewrite (5.4) as

Pn
d−→ δρ,
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where ρ is the solution of (5.5). What should be the perturbed process, as discussed
before?

In this case, the family of perturbation will be taken as the Weakly Asymmetric
Exclusion Process (WASEP). Denote by T = [0, 1] the continuous torus. Let H ∈
C2(T × [0, T ]). Note that H do depend on time. The WASEP is the exclusion type
process non-homogeneous in time which rate of jump from x to x + 1 given by
1
2
eH(x+1

n
)−H( x

n
), and rate of jump from x + 1 to x given by 1

2
eH( x

n
)−H(x+1

n
). For an

illustration, see Figure 5.2.

x x+ 1 x x+ 1

1
2
eH(x+1

n
)−H( x

n
) 1

2
eH( x

n
)−H(x+1

n
)

Figure 5.2: Weakly Assymmetric Exclusion Process: rates of jump

Denote by ηHt the continuous time Markov Process on {0, 1}Tn defined by the
rates of jump above. Analogously, we define also

πn,H
t =

1

n

∑
x∈Tn

ηHn2t(x) δ x
n

which represents the spatial density of particles in the diffusive scale. It is a fact
of life that (see Kipnis/Landim book [11])

Theorem 5.4.2. Suppose that ηH0 , the initial configuration, is chosen in such a way

πn,H
0

d−→ γ(u) du,

where γ is a fixed function, let us say, continuous. Then,

{πn,H
t , 0 ≤ t ≤ T} d−→ {ρ(t, u) du , 0 ≤ t ≤ T}, (5.6)

where ρ is the solution of the heat equation in the torus:{
∂tρ = ∂uuρ− 2 ∂u

(
ρ(1− ρ)∂uH)

)
, u ∈ [0, 1] , t > 0 ,

ρ(0, u) = γ(u) , u ∈ [0, 1] .
(5.7)

Denote by PH
n the measure on the induced by πn,H

t . Then, we can rewrite (5.6)
as

PH
n

d−→ δρH ,

where ρH is the solution of (5.7). Here, H is perturbation. If we want to observe a
profile ρ, we replace that function ρ in (5.7), then find the correct perturbation H .
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In the case of Markov process, there is two incomings of deviations: from the
initial measure, and from the dynamics. Since we do not have the ambition of
completeness now, we suppose that the initial configurations have been chosen in
a deterministic way. That forbids deviations from the initial measure. Denote by
⟨·, ·⟩ the L2 inner product in T.

For π = ρ du, let us accept that

JH(π) = ℓH(π)−
∫ T

0

⟨ρ(1− ρ), (∂uH)2⟩ dt (5.8)

where

ℓH(π) = ⟨ρT , HT ⟩ − ⟨ρ0, H0⟩ −
∫ T

0

⟨ρt, (∂t + ∂uu)H ⟩ dt.

To simplify the discussion, let us say that ρ is always smooth. Let us debate in the
exercises the question addressed before: if hold the equality

I(ρH) := sup
G

JG(ρ
H) = JH(ρ

H). (5.9)

We finish the text with a few defiances one can face up to when dealing with large
deviations:

• The set of perturbations does not lead the system to all possible points in
metric space, but only in a dense subset of the metric space. In that case is
necessary to show a I-density or to show that the set of not accessible points
has probability super-exponentially small and use Remark 2.1.4. See [1, 3] on
the question of I-density.

• The measures Pn are induced by some random element and the functional
Jβ is not a function of that random element. In general, asymptotically it is.
That is the case in large deviations of the SSEP. It is also the case of Markov
chains, see Exercise 4.4.1.

• The set of perturbations is large. Instead of helping, that may complicate
the scenario because in that case, it would be harder to find the cheapest
perturbation.

5.5 Exercises

Exercise 5.5.1. Suppose that ρH is the solution of (5.7). Use integration by parts to
show that

⟨ρHT , GT ⟩−⟨ρH0 , G0⟩−
∫ T

0

⟨ρHt , (∂t+∂uu)G⟩ dt−
∫ T

0

⟨ρH(1−ρH), ∂uG∂uH⟩ dt = 0, (5.10)

for any G ∈ C2(T× [0, T ]).
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Exercise 5.5.2. Assume and (5.8) and (5.10) to prove that

sup
G

JG(ρ
H) = JH(ρ

H)

where H,G ∈ C2(T× [0, T ]). Hint: replace (5.10) in the expression of JG.
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SOLUTIONS

Solution Exercise 1.4.5: It would be harder to guarantee that
∑∞

n=1(dn − dn+1) is
convergent because of the alternating signs.

Solution Exercise 1.4.6: Make a partition of the image in small intervals and take
pre-images.

Solution Exercise 1.4.7: (⇐) By assumption, we have that

{z ; f(z) ≤ lim inf
x→x0

f(x) + 1
n
}

is closed. Hence, ∩
n∈N

{z ; f(z) ≤ lim inf
x→x0

f(x) + 1
n
}

is closed. Taking a sequence zn → x0 such that f(zn) converges to the lim infx→x0 f(x),
we conclude that

x0 ∈
∩
n∈N

{z ; f(z) ≤ lim inf
x→x0

f(x) + 1
n
}

i.e., f(x0) ≤ lim infx→x0 f(x).

Solution Exercise 2.4.5: Recall Exercise 1.4.7 and the fact that an arbitrary intersec-
tion of closed sets is closed.

Solution Exercise 2.4.7:

lim inf
n→∞

1

an
logPn(A) ≥ lim inf

n→∞

1

an
logPn(Uδ) ≥ −I(y).
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Now, optimize over y ∈ A.

Solution Exercise 3.2.2: Let 1
p
+ 1

q
= 1 and p > 0. By Hölder’s inequality, we have

that

E
[
epθ1+qθ2

]
≤ E

[(
epθ1

)p] 1
p · E

[(
eqθ2

)q] 1
q
.

Taking logarithms, we get the convexity. Notice that Hölder’s inequality holds even
if some Lp-norm in the right hand side is not finite.

Solution Exercise 3.2.5:

(a) Bernoulli(p).

The moment generating function is M(θ) = (1− p) + peθ, and the rate function
is

I(x) =

{
x log x

p
+ (1− x) log 1−x

1−p
, if x ∈ (0, 1)

∞, otherwise

(b) Exponential(λ).

The moment generating function is

M(θ) =

{
λ

λ−θ
, if θ < λ

∞, otherwise

(c) Poisson(λ). The moment generating function is M(θ) = eλ(e
θ−1), and the rate

function is

(d) Normal(µ, σ). The rate function is

I(x) =
1

2

(x− µ

σ

)2

Solution Exercise 3.2.7: Notice that α and α̃ can be mutually singular (give an ex-
ample). Since the the changing of measure’s price is related to the Radon-Nikodym
derivative, we wouldn’t get anything.

Solution Exercise 4.4.2: Observe that the expression
∫
f dµ − log

∫
ef dα remains

invariant if we replace f by f plus a constant.

Solution Exercise 4.4.4: Take f = 1A in the entropy inequality.
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Solution Exercise 4.4.9: Being n1 + · · ·+ nr = n,

p(n1, · · · , nr) =
n!

n1! · · ·nr!
pr11 · · · pnr

r ,

where pk = P[X1 = xk].
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