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Abstract
In this paper we consider a symmetric simple exclusion process on the d-dimensional discrete
torus Td

N with a spatial non-homogeneity given by a slow membrane. The slow membrane
is defined here as the boundary of a smooth simple connected region � on the continuous
d-dimensional torus Td . In this setting, bonds crossing the membrane have jump rate α/Nβ

and all other bonds have jump rate one, where α > 0, β ∈ [0,∞], and N ∈ N is the scaling
parameter. In the diffusive scalingwe prove that the hydrodynamic limit presents a dynamical
phase transition, that is, it depends on the regime of β. For β ∈ [0, 1), the hydrodynamic
equation is given by the usual heat equation on the continuous torus, meaning that the slow
membrane has no effect in the limit. For β ∈ (1,∞], the hydrodynamic equation is the heat
equation with Neumann boundary conditions, meaning that the slow membrane ∂� divides
T

d into two isolated regions � and ��. And for the critical value β = 1, the hydrodynamic
equation is the heat equation with certain Robin boundary conditions related to the Fick’s
Law.

Keywords Hydrodynamic limit · Exclusion process · Non-homogeneous environment ·
Slow bonds

Mathematics Subject Classification 60K35 · 35K55

1 Introduction

A central question of Statistical Mechanics is about how microscopic interactions determine
the macroscopic behavior of a given system. Under this guideline, an entire area on scaling
limits of interacting random particle systems has been developed, see [10] and references
therein.
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In the last years, many attention has been given to scaling limits of (spatially) non-
homogeneous interacting systems, see for instance [5,8] among many others. Such an
attention is quite natural due to the fact that a non-homogeneity may represent vast physical
situations, as impurities, changing of density in the media etc. Among those interacting par-
ticles systems, processes of exclusion type have special importance: they are, at same time,
mathematically tractable and have a physical interaction, leading to precise representation of
many phenomena. Being more precise, a random process is called of exclusion type if it has
the hard-core interaction, that is, at most one particle is allowed per site of a given graph.
The random evolution of the system (in the symmetric case) can be described as follows: to
each edge of the given graph, a Poisson clock is associated, all of them independent. At a
ring time of some clock, the occupation values for the vertexes of the corresponding edge
are interchanged.

In [8], a quite broad setting for the one-dimensional symmetric exclusion process (SEP)
in non-homogeneous medium has been considered, being obtained its hydrodynamic limit,
that is, the law of large numbers for the time evolution of the spatial density of particles. The
hydrodynamic equation there was given by a PDE related to a Krein-Feller operator. And in
[4], the fluctuations for the same model were obtained.

The scenario for the SEP in non-homogeneous medium in dimension
d ≥ 2 up to now is far less understood. In [11], a generalization of [8] to the d-dimensional
setting was reached. However, the definition of model there was very specific to permit a
reduction to the one-dimensional approach of [8].

In [9], the hydrodynamic limit in the diffusive scaling for the following d-dimensional
simple symmetric exclusion process (SSEP) in non-homogeneousmediumwasproved,where
the term simplemeans that only jumps to nearest neighbors are allowed. The underlying graph
is the discrete d-dimensional torus, and all bonds of the graph have rate one, except those
laying over a (d − 1)-dimensional closed surface, which have rate given by N−1 times a
constant depending on the angle between the edge and the normal vector to the surface,
where N is the scaling parameter. The hydrodynamic equation obtained was given by a PDE
related to a d-dimensional Krein-Feller operator. Despite less broad in certain sense than the
setting of [11], the model in [9] cannot be approached by one-dimensional techniques, being
truly d-dimensional.

In the present paper, we consider a d-dimensional model close to the one in [9] and related
to the slow bond phase transition behavior of [5–7]. It is fixed a (d −1)-dimensional smooth
surface ∂� in the continuous d-dimensional torus Td , see Fig. 1. Edges have rates equal to
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one, except those intersecting ∂�, which have rate α/Nβ , where α > 0, β ∈ [0,∞] and
N ∈ N is the scaling parameter. Here we prove the hydrodynamic limit, which depends on
the range of β, namely, if β ∈ [0, 1), β = 1 or β ∈ (1,∞].

For β ∈ [0, 1), the hydrodynamic equation is given by the usual heat equation: meaning
that, in this regime, the slow bonds do not have any effect in the continuum limit. For
β ∈ (1,∞], the hydrodynamic equation is the heat equation with the following Neumann
boundary conditions over ∂�:

∂ρ(t, u+)

∂�ζ (u)
= ∂ρ(t, u−)

∂�ζ (u)
= 0, ∀ t ≥ 0, u ∈ ∂�,

where �ζ is the normal unitary vector to ∂�. Thismeans that, in this regime, the slow bonds are
so strong that there no flux of mass through ∂� in the continuum, despite the existence of flux
of particles in the discrete for each N ∈ N. For the critical value β = 1, the hydrodynamic
equation is given by the heat equation with the following Robin boundary conditions:

∂ρ(t, u+)

∂�ζ (u)
= ∂ρ(t, u−)

∂�ζ (u)
= α

(
ρ(t, u+) − ρ(t, u−)

) d∑
j=1

|〈�ζ (u), e j 〉|, t ≥ 0, u ∈ ∂� ,

(1.1)

where u− denotes the limit towards u ∈ ∂� through points over � while u+ denotes the
limit towards u ∈ ∂� through points over ��, and {e1 . . . , ed} is the canonical basis of Rd .

We observe that the Robin boundary condition above is in agreement with the Fick’s
Law: the spatial derivatives are equal due to the conservation of particles, representing the
rate at which the mass crosses the boundary. Such a rate is proportional to the difference
of concentration on each side of the boundary, being the diffusion coefficient through the
boundary at a point u ∈ ∂� given by D(u) = α

∑d
j=1 |〈�ζ (u), e j 〉|. Since �ζ (u) is a unitary

vector, the reader can check via Lagrange multipliers that this diffusion coefficient satisfies

α ≤ D(u) ≤ α
√

d

in dimension d ≥ 2. Moreover, in this case β = 1, the hydrodynamic equation exhibits the
phenomena of non-invariance for isometries. Let us explain this notion. Consider an isometry
T : Td → T

d , an initial density profile ρ0 : Td → [0, 1] and denote by (S(t)ρ0)(u) the
solution of the usual heat equation with initial condition ρ0. Then,

(
S(t)(ρ0 ◦ T)

)
(u) = (S(t)ρ0)

(
T(u)

)
.

In other words, if we isometrically move the initial condition of the usual heat equation, the
solution of the PDEunder this new initial condition is the equal to the previous solutionmoved
by the same isometry. On the other hand, as we can see in (1.1), the diffusion coefficient
D(u) depends on how the surface ∂� is positioned with respect to the canonical basis. Hence
the PDE for β = 1 is not invariant for isometries, differently from the cases β ∈ [0, 1) and
β ∈ (1,∞]. Note that the diffusion coefficient also says that the underlying graph plays a
role in the limit.

Besides the dynamical phase transition itself, this work has the following features. First
of all, in contrast with some previous works, the hydrodynamic equations are characterized
as classical PDEs, with clear interpretation. In the regime β ∈ [0, 1), the proof relies on a
sharp replacement lemma which compares occupations of neighbor sites in opposite sides
of ∂�. For β = 1, the proof is based on a precise analysis of the surface integrals and the
model drops the ad hoc hypothesis adopted in [9]: here the rates for bonds crossing ∂� are
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all equal to α/N , with no extra constant depending on the incident angle. Finally, a remark
the uniqueness of weak solutions for the cases β = 1 and β ∈ (1,∞]. Uniqueness of weak
solutions are in general a delicate and technical issue, specially for dimension higher than
one. In Proposition 7.2 we provide a general statement which leads to the uniqueness of weak
solutions in both cases β = 1 and β ∈ (1,∞]. The keystone of the proof is the notion of
Friedrichs extension for strongly monotone symmetric operators. The uniqueness statement
has the feature of being simple, d-dimensional and easily adaptable to many contexts. How-
ever, it is strictly limited to the uniqueness of weak solutions of parabolic linear PDEs with
linear boundary conditions.

The paper is divided as follows: In Sect. 2 we state definitions and results. In Sect. 3 we
draw the strategy of proof for the hydrodynamic limit. In Sect. 4 is reserved to the proof of
tightness of the processes. In Sect. 5 we prove the necessary replacement lemmas and energy
estimates. In Sect. 6 we characterize limit points as concentrated on weak solutions of the
respective PDEs, and in Sect. 7 we assure uniqueness of those weak solutions.

2 Definitions and Results

Let Td be the continuous d-dimensional torus, which is [0, 1)d with periodic boundary
conditions, and let Td

N be the discrete torus with N d points, which can naturally embedded
in the continuous torus as N−1

T
d
N , see Fig. 1. We therefore will not distinguish notation for

functions defined on Td or N−1
T

d
N .

By η = (η(x))x∈Td
N
we denote configurations in the state space 	N = {0, 1}Td

N , where
η(x) = 0 means that the site x is empty, and η(x) = 1 means that the site x is occupied. By a
symmetric simple exclusion process we mean the Markov Process with configuration space
	N and exchange rates ξ N

x,y > 0 for x, y ∈ T
d
N with ‖x − y‖1 = 1. This process can be

characterized in terms of the infinitesimal generator LN acting on functions f : 	N → R

as

(LN f )(η) =
∑

x∈Td
N

d∑
j=1

ξ N
x,x+e j

[
f (ηx,x+e j ) − f (η)

]
,

where {e1, . . . , ed} is the canonical basis of Rd and ηx,x+e j is the configuration obtained
from η by exchanging the occupation variables η(x) and η(x + e j ), that is,

ηx,x+e j (y) =
⎧
⎨
⎩

η(x + e j ), if y = x ,

η(x), if y = x + e j ,

η(y), otherwise.

The Bernoulli product measures {νN
θ : θ ∈ [0, 1]} are invariant and in fact, reversible, for

the symmetric nearest neighbor exclusion process introduced above. Namely, νN
θ is a product

measure on 	N whose marginal at site x ∈ T
d
N is given by

νN
θ {η : η(x) = 1} = θ .

Fix now two parameters α > 0 and β ∈ [0,∞] and a simple connected closed region
� ⊂ T

d whose boundary ∂� is a smooth (d −1)-dimensional surface. The symmetric simple
exclusion process with slow bonds over ∂� (SSEP with slow bonds over ∂�) we define now
is the particular simple symmetric exclusion process with exchange rates given by
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ξ N
x,x+e j

=
{ α

Nβ
, if

x

N
∈ � and

x+e j
N ∈ ��, or

x

N
∈ �� and

x + e j

N
∈ �,

1 , otherwise,
(2.1)

for all x ∈ T
d
N and j = 1, . . . , d . That is, the slow bonds of the process will be the bonds

in N−1
T

d
N for which one of its vertices belongs to � and the other one belongs to ��. See

Fig. 1 for an illustration.
Note that, when β = ∞, there are no crossings of particles through the boundary ∂�.

From now on, abusing of notation, we will call the generator of the SSEP with slow bonds
over ∂� by LN , being understood that jump rates will be given by (2.1).

Denote by {ηt : t ≥ 0} the Markov process with state space 	N and generator N 2LN ,
where the N 2 factor is the so-called diffusive scaling. ThisMarkov process depends on N , but
it will not be indexed on it to not overload notation. Let D(R+,	N ) be the Skorohod space
of càdlàg trajectories taking values in 	N . For a measure μN on 	N , denote by P

N
μN

the
probability measure on D(R+,	N ) induced by the initial state μN and the Markov process
{ηt : t ≥ 0}. Expectation with respect to P

N
μN

will be denoted by EN
μN

.
In the sequel, we present the partial differential equations governing the time evolution

of the density profile for the different regimes of β, defining the notion of weak solution for
each one of those equations. Denote by ρt a function ρ(t, ·) and denote by Cn(Td) the set
of continuous functions from T

d to R with continuous derivatives of order up to n. Let 〈·, ·〉
and ‖ · ‖ be the inner product and norm in L2(Td), that is,

〈 f , g〉 =
∫

Td
f (u) g(u) du and ‖ f ‖ = √〈 f , f 〉 , ∀ f , g ∈ L2(Td) . (2.2)

Fix once and for all a measurable density profile ρ0 : Td → [0, 1]. Note that ρ0 is bounded.
Definition 1 A bounded function ρ : [0, T ] × T

d → R is said to be a weak solution of the
heat equation

{
∂tρ(t, u) = 
ρ(t, u), t ≥ 0, u ∈ T

d ,

ρ(0, u) = ρ0(u), u ∈ T
d .

(2.3)

if, for all functions H ∈ C2(Td) and all t ∈ [0, T ], the function ρ(t, ·) satisfies the integral
equation

〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,
H〉 ds = 0 .

We recall next the definition of Sobolev Space from [3]. Let U be an open set of Rd or
T

d . The Sobolev Space H1(U ) consists of all locally summable functions κ : U → R such
that there exist functions ∂u j κ ∈ L2(U ), j = 1, . . . , d , satisfying

∫

Td
∂u j H(u)κ(u) du = −

∫

Td
H(u)∂u j κ(u) du

for all H ∈ C∞(U ) with compact support. Furthermore, for κ ∈ H1(U ), we define the norm

‖κ‖H1(U ) =
( ∑d

j=1

∫
U

∣∣∂u j κ
∣∣2 du

)1/2
. Finally, we define the space L2([0, T ],H1(U )),

which consists of all measurable functions τ : [0, T ] → H1(U ) such that

‖τ‖L2([0,T ],H1(U )) :=
( ∫ T

0
‖τt‖2H1(U )

dt
)1/2

< ∞ .

Note that U = T
d\∂� is an open subset of Td .
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The following notation will be used several times along the text. Given a function f :
T

d\∂� → R and u ∈ ∂�, we denote

f (u+) := lim
v→u
v∈��

f (v) and f (u−) := lim
v→u
v∈�

f (v) , (2.4)

that is, f (u+) is the limit of f (v) as v approaches u ∈ ∂� through the complement of
�, while f (u−) is the limit of f (v) as v approaches u ∈ ∂� through �. Let 1A be the
indicator function of a set A, that is, 1A(a) = 1 if a ∈ A and zero otherwise. Denote by
�ζ (u) the normal unitary exterior vector to the region � at the point u ∈ ∂� and by ∂/∂�ζ the
directional derivative with respect to �ζ (u).

Below, by 〈�u, �v〉 we denote the canonical inner product of two vectors �u and �v in R
d ,

which shall not be misunderstood with the inner product in L2(Td) as defined in (2.2). By
d S we indicate a surface integral.

Definition 2 A bounded function ρ : [0, T ] × T
d → R is said to be a weak solution of the

following heat equation with Robin boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ(t, u) = 
ρ(t, u), t ≥ 0, u ∈ T
d ,

∂ρ(t, u+)

∂�ζ (u)
= ∂ρ(t, u−)

∂�ζ (u)
= α

(
ρ(t, u+) − ρ(t, u−)

) d∑
j=1

|〈�ζ (u), e j 〉|, t ≥ 0, u ∈ ∂�,

ρ(0, u) = ρ0(u), u ∈ T
d .

(2.5)

if ρ ∈ L2([0, T ],H1(Td\∂�)) and, for all functions H = h11� + h21�� with h1, h2 ∈
C2(Td) and for all t ∈ [0, T ], the following the integral equation holds:

〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,
H〉 ds −

∫ t

0

∫

∂�

ρs(u
+)

d∑
j=1

∂u j H(u+)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

ρs(u
−)

d∑
j=1

∂u j H(u−)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

α (ρs(u
−) − ρs(u

+))(H(u+) − H(u−))
( d∑

j=1

|〈�ζ (u), e j 〉|
)

d S(u)ds = 0 .

The reader should note that the function H is (possibly) discontinuous at the boundary ∂�.
Note also that the expression

∑d
j=1 ∂u j H(u±)〈�ζ (u), e j 〉 appearing in the integral equation

above is nothing but ∂ H(u±)/∂�ζ due to linearity of the directional derivative.

Definition 3 A bounded function ρ : [0, T ] × T
d → R is said to be a weak solution of the

heat equation with Neumann boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

∂tρ(t, u) = 
ρ(t, u), t ≥ 0, u ∈ T
d ,

∂ρ(t, u+)

∂�ζ (u)
= ∂ρ(t, u−)

∂�ζ (u)
= 0, t ≥ 0, u ∈ ∂�,

ρ(0, u) = ρ0(u), u ∈ T
d ,

(2.6)
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if ρ ∈ L2([0, T ],H1(Td\∂�)) and, for all functions H = h11� + h21�� with h1, h2 ∈
C2(Td) and for all t ∈ [0, T ], the following integral equation holds:

〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,
H〉 ds −

∫ t

0

∫

∂�

ρs(u
+)

d∑
j=1

∂u j H(u+)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

ρs(u
−)

d∑
j=1

∂u j H(u−)〈�ζ (u), e j 〉 d S(u)ds = 0 .

Since in Definitions 2 and 3 we impose ρ ∈ L2([0, T ],H1(Td\∂�)), the integrals above
are well-defined on the boundary due to the notion of trace in Sobolev spaces, see [3] on the
subject. We clarify that the notion of weak solutions above have been defined in the standard
way of Analysis: the reader can check that a strong solution of (2.3), (2.5) or (2.6) is indeed
a weak solution of the respective PDE.

Uniqueness of weak solutions of PDE (2.3) is a well known result. On the other hand, to
the best of our knowledge, uniqueness of weak solutions of (2.5) and (2.6) were not available
in the literature. For this reason, based on the notion of Friedrichs extension of symmetric
nonnegative operators, in Sect. 7 we developed a general uniqueness criterion applicable to
both PDE’s (2.5) and (2.6), see Proposition 7.2.

Fix ameasurable density profileρ0 : Td → [0, 1]. For each N ∈ N, letμN be a probability
measure on 	N . A sequence of probability measures {μN : N ≥ 1} is said to be associated
to a profile ρ0 : Td → [0, 1] if, for every δ > 0 and every continuous function H : Td → R

the following limit holds:

lim
N→∞ μN

{ ∣∣∣∣
1

N d

∑

x∈Td
N

H(x/N )η(x) −
∫

H(u)ρ0(u)du

∣∣∣∣ > δ

}
= 0 . (2.7)

Below, we establish the main result of this paper, the hydrodynamic limit for the exclusion
process with slow bonds, which depends on the regime of β.

Theorem 2.1 Fix β ∈ [0,∞]. Consider the exclusion process with slow bonds over ∂� with
rate αN−β at each one of these slow bonds. Fix a Borel measurable initial profile ρ0 : Td →
[0, 1] and consider a sequence of probability measures {μN }N∈N on 	N associated to ρ0 in
the sense of (2.7). Then, for each t ∈ [0, T ],

lim
N→∞P

N
μN

[
η :

∣∣∣∣
1

N d

∑

x∈Td
N

H(x/N ) ηt (x) −
∫

Td
H(u) ρ(t, u)du

∣∣∣∣ > δ

]
= 0 ,

for every δ > 0 and every function H ∈ C(Td) where:

• If β ∈ [0, 1), then ρ is the unique weak solution of (2.3).
• If β = 1, then ρ is the unique weak solution of (2.5).
• If β ∈ (1,∞], then ρ is the unique weak solution of (2.6).

The assumption that � is simple and connected may be dropped, being imposed only for the
sake of clarity. Otherwise, notation would be highly overloaded.
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3 Scaling Limit and Proof’s Structure

Let M be the space of positive Radon measures on T
d with total mass bounded by one,

endowed with the weak topology. Let π N
t ∈ M the empirical measure at time t associated

to ηt , it is a measure on Td obtained rescaling space by N :

π N
t (du) = π N

t (ηt , du) := 1

N d

∑

x∈Td
N

ηt (x)δx/N (du) ,

where δu denotes the Dirac measure concentrated on u ∈ T
d . For a measurable function

H : Td → R which is π -integrable, denote by 〈π N
t , H〉 the integral of H with respect to

π N
t :

〈π N
t , H〉 = 1

N d

∑

x∈Td
N

H
( x

N

)
ηt (x) .

Note that this notation 〈·, ·〉 is also used as the inner product of L2(Td). Fix once and for
all a time horizon T > 0. Let D([0, T ],M) be the space of M-valued càdlàg trajectories
π : [0, T ] → M endowed with the Skorohod topology. Then, the M-valued process {π N

t :
t ≥ 0} is a random element of D([0, T ],M) determined by {ηt : t ≥ 0}. For each probability
measure μN on 	N , denote by Q

β,N
μN the distribution of {π N

t : t ≥ 0} on the path space
D([0, T ],M), when ηN

0 has distribution μN .
Fix a continuous Borel measurable profile ρ0 : T

d → [0, 1] and consider a sequence
{μN : N ≥ 1} of measures on 	N associated to ρ0. Let Qβ be the probability measure on
D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du, where:

• if β ∈ [0, 1), then ρ is the unique weak solution of (2.3),
• if β = 1, then ρ is the unique weak solution of (2.5),
• if β ∈ (1,∞], then ρ is the unique weak solution of (2.6).

Proposition 3.1 For any β ∈ [0,∞], the sequence of probability measures Qβ,N
μN converges

weakly to Q
β as N goes to infinity.

The proof of this result is divided into three parts. In the next section,we show that tightness
of the sequence {Qβ,N

μN : N ≥ 1}. In Sect. 5, we prove a suitable Replacement Lemma for
each regime of β, which will be crucial in the task of characterizing limit points. In Sect. 6
we characterize the limit points of the sequence for each regime of the parameter β. Finally,
the uniqueness of weak solutions is presented in Sect. 7 and this implies the uniqueness of
limit points of the sequence {Qβ,N

μN : N ≥ 1}.
Finally, we note that Theorem 2.1 is a consequence of Proposition 3.1. Actually, since

Q
β,N
μN weakly converges to Q

β for all continuous functions H : Td → R, it follows that the
path {〈π N

t , H〉 : 0 ≤ t ≤ T } converges in distribution to {〈πt , H〉 : 0 ≤ t ≤ T }. Since
{〈πt , H〉 : 0 ≤ t ≤ T } is a deterministic path, convergence in distribution is equivalent to
convergence in probability. Therefore,

lim
N→∞P

N
μN

{ ∣∣∣∣
1

N d

∑

x∈Td
N

H(x/N ) ηt (x) −
∫

Td
H(u)ρ(t, u)du

∣∣∣∣ > δ

}

= lim
N→∞Q

β,N
μN

{|〈π N
t , H〉 − 〈πt , H〉| > δ

} = 0 ,
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for all δ > 0 and 0 ≤ t ≤ T . This gives the strategy of proof for the hydrodynamic limit.
Next, we make some general observations.

Since particles in the exclusion process evolve independently as a nearest neighbor random
walk, except for exclusion rule, the exclusion process with slow bonds over ∂� is related to
the random walk on N−1

T
d
N that describes the evolution of the system with a single particle.

To be used throughout the paper we introduce the generator of the random walk described
above, which is

LN H
( x

N

) =
d∑

j=1

{
ξ N

x,x+e j

[
H

( x+e j
N

) − H
( x

N

)]
+ ξ N

x,x−e j

[
H

( x−e j
N

) − H
( x

N

)]}

(3.1)

for every H : N−1
T

d
N → R and every x ∈ T

d
N . Above, it is understood that ξx±e j ,x =

ξx,x±e j . By Dynkin’s formula (see A.1.5.1 in [10]),

M N
t (H) = 〈π N

t , H〉 − 〈π N
0 , H〉 −

∫ t

0
N 2LN 〈π N

s , H〉ds

is amartingalewith respect to the natural filtrationFt := σ(ηN
s : s ≤ t). By some elementary

calculations,

N 2LN 〈π N
s , H〉 = 1

N d−2

∑

x∈Td
N

ηs(x)LN H
( x

N

)
= 〈π N

s , N 2
LN H〉 ,

hence the martingale can be rewritten as

M N
t (H) = 〈π N

t , H〉 − 〈π N
0 , H〉 −

∫ t

0
〈π N

s , N 2
LN H〉ds . (3.2)

Note that this observation stands for any jump rates. The particular form of jump rates for the
SSEP with slow bonds over ∂� will play a role when characterizing limit points and proving
replacement lemmas.

4 Tightness

This section deals with the issue of tightness for the sequence {Qβ,N
μN : N ≥ 1} of probability

measures on D([0, T ],M).

Proposition 4.1 For any fixed β ∈ [0,∞], the sequence of measures {Qβ,N
μN : N ≥ 1} is tight

in the Skorohod topology of D([0, T ],M).

Proof In order to prove tightness of {π N
t : 0 ≤ t ≤ T }, it is enough to show tightness of the

real-valued process {〈π N
t , H〉 : 0 ≤ t ≤ T } for H ∈ C(Td). In fact, (cf. Proposition 1.7,

chapter 4 of [10]) it is enough to show tightness of {〈π N
t , H〉 : 0 ≤ t ≤ T } in D([0, T ],R)

for a dense set of functions in C(Td) with respect to the uniform topology.
For that purpose, fix H ∈ C2(Td). Since the sum of tight processes is tight, in order to

prove tightness of {〈π N
t , H〉 : N ≥ 1}, it is enough to assure tightness of each term in (3.2).

The quadratic variation of M N
t (H) is given by

〈M N (H)〉t =
∫ t

0

d∑
j=1

∑

x∈Td
N

ξ N
x,x+e j

N 2d−2

[
(ηs(x) − ηs(x + e j ))(H(

x+e j
N ) − H( x

N ))
]2

ds, (4.1)
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implying that

〈M N (H)〉t ≤ αt

N d

d∑
j=1

‖∂u j H‖2∞ , (4.2)

where ‖H‖∞ := supu∈Td |H(u)|, hence M N
t converges to zero as N → ∞ in L2(P

β
μN ).

Therefore, by Doob’s inequality, for every δ > 0,

lim
N→∞P

N
μN

[
sup

0≤t≤T
|M N

t (H)| > δ
]

= 0 , (4.3)

which implies tightness of the sequence of martingales {M N
t (H) : N ≥ 1}. Next, we will

prove tightness for the integral term in (3.2). Let �N be the set of vertices in Td
N having some

incident edge with exchange rate not equal to one, that is,

�N =
{

x ∈ T
d
N : for some j = 1, . . . , d, ξ N

x,x+e j
= α

Nβ
or ξ N

x,x−e j
= α

Nβ

}
. (4.4)

The term 〈π N
s , N 2

LN H〉 appearing inside the time integral in (3.2) can be then written as

1

N d

d∑
j=1

∑
x /∈�N

ηs(x)N 2
[

H(
x+e j

N ) + H(
x−e j

N ) − 2H( x
N )

]

+ 1

N d−1

d∑
j=1

∑
x∈�N

ηs(x)
[
ξ N

x,x+e j
N

(
H(

x+e j
N )−H( x

N )
)+ξ N

x,x−e j
N

(
H(

x−e j
N )−H( x

N )
)]

since ξx,x+e j = ξx+e j ,x = 1 for every x /∈ �N . By a Taylor expansion on H ∈ C2(Td), the
absolute value of the summand in the first double sum above is bounded by ‖
H‖∞. Since
there are O(N d−1) elements in �N , and ξx,x+e j ≤ α, the absolute value of summand in

second double sum above is bounded by
∑d

j=1 α‖∂u j H‖∞. Therefore, there exists C > 0,

depending only on H , such that |N 2
LN 〈π N

s , H〉| ≤ C , which yields
∣∣∣∣
∫ t

s
N 2

LN 〈π N
s , H〉dr

∣∣∣∣ ≤ C |t − s| .

By [10, Proposition 4.1.6], last inequality implies tightness of the integral term, concluding
the proof of the proposition. ��

5 Replacement Lemma and Energy Estimates

This section gives a fundamental result that allow us to replace a mean occupation of a site
by the mean density of particles in a small macroscopic box around this site. We start by
introducing some tools to be used in the sequel.

Denote by HN (μN |νθ ) the relative entropy of μN with respect to the invariant state νθ .
For a precise definition and properties of the entropy, we refer the reader to [10]. Assuming
0 < θ < 1, the formula in [10, Theorem A1.8.3] assures the existence a finite constant
κ0 = κ0(θ) such that

HN (μN |νθ ) ≤ κ0N d (5.1)
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for any probability measureμN on {0, 1}Td
N . Denote byDN the Dirichlet form of the process,

which is the functional acting on functions f : {0, 1}Td
N → R as

DN ( f ) := 〈 f ,−LN f 〉νθ =
d∑

j=1

∑

x∈Td
N

ξ N
x,x+e j

2

∫ (
f (ηx,x+e j ) − f (η)

)2
νθ (dη) . (5.2)

In the sequence, we will make use of the functional DN (
√

f ), where f is a probability
density with respect to νθ .

5.1 Replacement Lemma forˇ ∈ [0, 1)

Below, we define the local density of particles, which corresponds a to the mean occupation
in a box around a given site. Abusing of notation, we denote by εN − 1 the integer part of
εN − 1. For β ∈ [0, 1), we define the local mean by

ηεN (x) = 1

(εN )d

εN−1∑
j1, j2,..., jd=0

η (x + j1e1 + . . . + jded) . (5.3)

Note that the sum on the right hand side of abovemay contain sites in and out of� in the sense
that x/N ∈ � or x/N ∈ ��. By O( f (N )) we will mean a function bounded in modulus by
a constant times f (N ).

Lemma 5.1 Fix β ∈ [0, 1). Let f be a density with respect to the invariant measure νθ ,
λN : Td

N → R a function such that ‖λN ‖∞ ≤ M < ∞ and γ > 0. Then,
∫

γ N
∑

x∈�N

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη)

≤ γ 2M2O(N d)

2

( Nβ−1

α
+ dε

)
+ N 2DN (

√
f ) .

Proof By the definition (5.3) of local mean ηεN (x),
∫

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη) =

=
∫

λN (x)
1

εd N d

εN−1∑
j1,..., jd=0

{
η(x) − η(x + j1e1 + . . . + jded)

}
f (η)νθ (dη) . (5.4)

The next step is to write η(x) − η(x + j1e1 + · · · + jded) as a telescopic sum:

η(x) − η(x + j1e1 + . . . + jded) =
j1+···+ jd∑

�=1

η(a�−1) − η(a�) ,

where a0 = x , a j1+···+ j� = x + j1e1 + · · · + jded , and ‖a�−1 − a�‖1 = 1 for any � =
1, . . . , j1 + · · · + jd . Note that the path a0, a1, . . . , a j1+···+ j� depends on the initial point x
and the final point x + j1e1 + · · · + jded . See Fig. 2 for an illustration and keep in mind that
the length of this path is bounded by dεN . Inserting the previous equality into (5.4), we get

∫
λN (x)

1

(εN )d

εN−1∑
j1,..., jd=0

{ j1+···+ jd∑
�=1

η(a�−1) − η(a�)
}

f (η) νθ (dη) .
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Fig. 2 Illustration (in dimension
2) of a polygonal path joining the
sites x and y = x + j1e1 + j2e2,
with j1 = j2 = 3. Note the
embedding in the continuous
torus Td

Λ

Λ

N−1
T
d
N

x
N

y
N

Rewriting the expression above as twice the half and performing the transformation η �→
ηa�−1,a� for which the probability measure νθ is invariant, expression above becomes:

1

2(εN )d

εN−1∑
j1,..., jd=0

j1+···+ jd∑
�=1

∫
λN (x) (η(a�−1) − η(a�))

(
f

(
ηa�,a�−1

) − f (η)
)

dνθ .

Since ab = √
ca b√

c
≤ 1

2ca2 + 1
2

b2
c , which holds for any c > 0, the previous expression is

smaller or equal than

1

2(εN )d

εN−1∑
j1,..., jd=0

j1+···+ jd∑
�=1

[
ξ N

a�−1,a�

2A

∫ (√
f (ηa�,a�−1) − √

f (η)
)2

dνθ

+ A

2ξ N
a�−1,a�

∫
λ2N (x) (η(a�) − η(a�−1))

2
(√

f (ηa�,a�−1) + √
f (η)

)2
dνθ

]
.

Summing over x ∈ �N , we can bound the last expression by

1

2(εN )d

∑
x∈�N

εN−1∑
j1,..., jd=0

j1+···+ jd∑
�=1

[
ξ N

a�−1,a�

2A

∫ (√
f (ηa�,a�−1) − √

f (η)
)2

dνθ

+
∑

x∈�N

A

2ξ N
a�−1,a�

∫
λ2N (x) (η(a�) − η(a�−1))

2
(√

f (ηa�,a�−1) + √
f (η)

)2
dνθ

]
.

Recalling (5.2), we can bound the first parcel in the sum above by

1

2(εN )d

εN−1∑
j1,..., jd=0

1

A
DN (

√
f ) = 1

2A
DN (

√
f ) .
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Since f is a density and |λN (x)| ≤ M , the second parcel is bounded by

1

2(εN )d

∑
x∈�N

εN−1∑
j1,..., jd=0

j1+···+ jd∑
�=1

A

2
· 4M2

ξ N
a�−1,a�

≤ 1

(εN )d

εN−1∑
j1,..., jd=0

AM2O(N d−1)
( Nβ

α
+ dεN

)

= AM2O(N d−1)
( Nβ

α
+ dεN

)
.

Up to here we have achieved that
∫ ∑

x∈�N

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη)

≤ AM2O(N d−1)
( Nβ

α
+ dεN

)
+ 1

2A
DN (

√
f ) .

We point out that the quantity of sites on �N is of order O(N d−1), which is a consequence
of the fact that ∂� is a smooth surface of dimension d − 1. Then, multiplying the inequality
above by γ N gives us

∫
γ N

∑
x∈�N

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη)

≤ AγO(N d)M2
[ Nβ

α
+ dεN

]
+ γ N

2A
DN (

√
f ) .

Now choosing A = γ N−1/2 the proof ends. ��

Recall the definition of �N in (4.4).

Lemma 5.2 (Replacement lemma) Fix β ∈ [0, 1). Let λN : T
d
N → R be a sequence of

functions such that ‖λN ‖∞ ≤ M < ∞. Then,

lim
ε→0

lim
N→∞E

β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
x∈�N

λN (x){ηεN
s (x) − ηs(x)} ds

∣∣∣
]

= 0 .

Proof Using the variational formula for entropy, for any γ ∈ R (which will be chosen large
a posteriori),

E
β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
x∈�N

λN (x){ηs(x) − ηεN
s (x)}ds

∣∣∣
]

= 1

γ N d
E

β
μN

[
γ N

∣∣∣
∫ t

0

∑
x∈�N

λN (x){ηs(x) − ηεN
s (x)}ds

∣∣∣
]

≤ HN (μN |νθ )

γ N d
+ 1

γ N d
logEνθ

[
exp

(
γ N

∣∣∣
∫ t

0

∑
x∈�N

λN (x){ηs(x) − ηεN
s (x)}ds

∣∣∣
)]

.

(5.5)
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By the estimate (5.1) on the entropy, the first parcel of above is negligible as N → ∞ since
we will choose γ arbitrarily large. Therefore, we can focus on the second parcel. Using that
e|x | ≤ ex + e−x and

lim
N→∞

1

N d
log(aN + bN ) = max

{
lim

N→∞
1

N d
log aN , lim

N→∞
1

N d
log bN

}
(5.6)

for any sequences aN , bN > 0, one can see that the second parcel on the right hand side of
(5.5) is less than or equal to the sum of

lim
N→∞

1

γ N d
log

{
Eνθ

[
exp

(
γ N

∫ t

0

∑
x∈�N

λN (x){ηs(x) − ηεN
s (x)}ds

)]}
(5.7)

and

lim
N→∞

1

γ N d
log

{
Eνθ

[
exp

(
− γ N

∫ t

0

∑
x∈�N

λN (x){ηs(x) − ηεN
s (x)}ds

)]}
. (5.8)

We handle only (5.7), being (5.8) analogous. By Feynman–Kac’s formula, see [10, Appendix
1, Lemma 7.2], expression (5.7) is bounded by

lim
N→∞

1

γ N d
log

{
exp

( ∫ t

0
�N ds

)}
= lim

N→∞
t �1

N

γ N d
,

where

�1
N = sup

f density

⎧⎨
⎩

∫
γ N

∑
x∈�N

λN (x){η(x) − ηεN (x)} f (η)νθ (dη) − N 2DN (
√

f )

⎫⎬
⎭ .

Applying Lemma 5.1 finishes the proof. ��

5.2 Replacement Lemma forˇ ∈ [1,∞]

Here, some additional notation is required. The idea is actually very simple: the local mean
shall be over a region avoiding slow bonds. Let BN [x, �] ⊂ T

d
N be the discrete box centered

on x ∈ T
d
N which edge has size 2�, that is, BN [x, �] = {y ∈ T

d
N : ‖y − x‖∞ ≤ �},

where we have written ‖ · ‖∞ for the supremum norm on T
d
N , that is, ‖(x1, . . . , xd)‖∞ =

max
{|x1| ∧ |N − x1|, . . . , |xd | ∧ |N − xd |}.

Let �N = {x ∈ T
d
N : x

N ∈ �} the set of sites in 1
N T

d
N belonging to �. We define now the

region CN [x, �] ⊂ T
d
N by

CN [x, �] :=
{

BN [x, �] ∩ �N if x
N ∈ �,

BN [x, �] ∩ ��
N if x

N ∈ �� ,
(5.9)

see Fig. 3 for an illustration. For β ∈ [1,∞], we define the local density as the average over
CN [x, �], that is,

ηεN (x) := 1

#CN [x, εN ]
∑

y∈CN [x,εN ]
η(y) . (5.10)
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Fig. 3 Illustration in dimension
two of CN [x, 2]. The sites in
CN [x, 2] are those laying in the
gray region

Λ

Λ

N−1
T
d
N

x
N

Lemma 5.3 Fix β ∈ [1,∞]. Let f be a density with respect to the invariant measure νθ , let
λN : Td

N → R a function such that ‖λN ‖∞ ≤ M < ∞ and γ > 0. Then, the following
inequalities hold:
∫

γ N
∑

x∈�N

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη) ≤ 1

2γ
2M2O(N d)dε + N 2DN (

√
f )

(5.11)

and
∫

γ
∑

x∈Td
N

λN (x){η(x) − ηεN (x)} f (η)νθ (dη) ≤ 1
2γ

2M2O(N d−1)dε + N 2DN (
√

f ) .

(5.12)

Proof Let us prove the inequality (5.12). As commented in the beginning of this subsection,
the local average ηεN is taken over CN [x, εN ]. Thus, we can write

∫
λN (x){η(x) − ηεN (x)} f (η)νθ (dη)

=
∫

λN (x)
{ 1

#CN [x, εN ]
∑

y∈CN [x,εN ]

(
η(x) − η(y)

)}
f (η)νθ (dη) . (5.13)

For each y ∈ C[x, εN ], let γ (x, y) be a polygonal path of minimal length connecting x to
y which does not crosses ∂�. That is, γ (x, y) is a sequence of sites (a0, . . . , aM ) such that
x = a0, y = aM , ‖ai − ai+1‖1 = 1 and ξa,ai+1 = 1 for i = 0, . . . , M − 1, and γ (x, y) has
minimal length, that is, M = M(x, y) = ‖x − y‖1 + 1. Now we repeat the steps in the proof
of Lemma 5.1, observing that in this case the sum will be over Td

N , obtaining that (5.13) is
bounded from above by

1

2#CN [x, εN ]
∑

x∈Td
N

∑
y∈CN [x,εN ]

M(x,y)−1∑
�=1

[
1

2A

∫ (√
f (ηa�,a�−1) − √

f (η)
)2

dνθ

+ A

2

∫ (
λN (x)

)2
(η(a�) − η(a�−1))

2
(√

f (ηa�,a�−1) + √
f (η)

)2
dνθ

]
.
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We can bound the first parcel in the sum above by 1
2ADN (

√
f ) and the second parcel by

1

2#CN [x, εN ]
∑

x∈Td
N

∑
y∈CN [x,εN ]

M(x,y)−1∑
�=1

4AM2

2

≤ 1

#CN [x, εN ]
∑

y∈CN [x,εN ]
AM2O(N d)dεN = AM2O(N d)dεN .

We hence have
∫ ∑

x∈Td
N

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη) ≤ AM2O(N d)dεN + 1

2A
DN (

√
f ) .

Then, multiplying the inequality above by γ gives us

∫
γ

∑

x∈Td
N

λN (x)
{
η(x) − ηεN (x)

}
f (η)νθ (dη) ≤ AγO(N d)M2dεN + γ

2A
DN (

√
f ) .

Now choosing A = γ N−2/2 the proof of (5.11) ends. The proof of inequality (5.11) similar
to the proof of Lemma 5.1, under the additional feature that rates of bonds over a path
connecting two sites will be always equal to one, which facilitates the argument. ��

Lemma 5.4 (Replacement lemma) Fix β ∈ [1,∞]. Let λN : Td
N → R be a sequence of

functions such that ‖λN ‖∞ ≤ c < ∞. Then,

lim
ε→0

lim
N→∞E

β
μN

[∣∣∣
∫ t

0

1

N d−1

∑
x∈�N

λN (x){ηεN
s (x) − ηs(x)} ds

∣∣∣
]

= 0

and

lim
ε→0

lim
N→∞E

β
μN

[∣∣∣
∫ t

0

1

N d

∑

x∈Td
N

λN (x){ηεN
s (x) − ηs(x)} ds

∣∣∣
]

= 0 .

Proof The proof is similar to the one of Lemma 5.2, being sufficient to show that expressions

�2
N := sup

f density

{ ∫
γ N

∑
x∈�N

λN (x){ηεN (x) − η(x)} f (η)dνθ − N 2DN (
√

f )
}
,

�3
N := sup

f density

{ ∫
γ

∑

x∈Td
N

λN (x){ηεN (x) − η(x)} f (η)dνθ − N 2DN (
√

f )
}

satisfy

lim
N→∞

t�2
N

γ N d
= 0 and lim

N→∞
t�3

N

γ N d
= 0 ,

which is a consequence of Lemma 5.3, finishing the proof. ��
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Fig. 4 Illustration in dimension
two of C[u, ε], which is
represented by the region in gray,
while B[u, ε] is represented by
the square delimited by the
dashed line. Note that C[u, ε] is
the continuous counterpart of
CN [x, �] defined in (5.9)

Λ

Λ

T
d

u

5.3 Energy Estimates

In this subsection, consider β ∈ [1,∞]. Our goal here is to prove that any limit point Qβ∗ of
the sequence {Qβ,N

μN : N > 1} is concentrated on trajectories ρ(t, u)du with finite energy,
meaning that ρ(t, u) belongs to a suitable Sobolev space.

This result plays a both role in the uniqueness of weak solutions of (2.6) and in the
characterization of limit points. The fact that Qβ∗ is concentrated in trajectories with density
with respect to theLebesguemeasure of the formρ(t, u)du, with 0 ≤ ρ ≤ 1, is a consequence
ofmaximumof one particle per site, see [10]. The issue here is to prove that the densityρ(t, u)

belongs to the Sobolev space L2
([0, T ];H1(Td\∂�)

)
, see Sect. 2 for its definition.

Assume without loss of generality that the entire sequence {Qβ,N
μN : N ≥ 1} weakly

converges to Q
β∗ . Let B[u, ε] := {r ∈ T

d : ‖r − u‖∞ < ε} and

C[u, ε] :=
{

B[u, ε] ∩ � if u ∈ �,

B[u, ε] ∩ �� if u ∈ �� ,

where we have written ‖ · ‖∞ for the supremum norm on the continuous torus Td = [0, 1)d ,
that is, ‖(u1, . . . , ud)‖∞ = max

{|u1| ∧ |1 − u1|, . . . , |ud | ∧ |1 − ud |}. See Fig. 4 for an
illustration.
We define an approximation of the identity ιε in the continuous torus Td by

ιε(u, v) := 1

|C[u, ε]|1C[u,ε](v) , (5.14)

where |C[u, ε]| above denotes the Lebesgue measure of the set C[u, ε]. Recall that the
convolution of a measure π with ιε is defined by

(π ∗ ιε)(u) =
∫

Td
ιε(u, v)π(dv) for any u ∈ T

d . (5.15)

Given a function ρ, the convolution ρ ∗ ιε shall be understood as the convolution of the
measure ρ(v)dv with ιε . An important remark now is the equality

(π N
t ∗ ιε)

( x
N

) = ηεN
t (x) + O(

(εN )1−d)
, (5.16)

123



T. Franco, M. Tavares

where ηεN
t has been defined in (5.10), being the small error above due to the fact that sites

on the boundary of CN [x, �] may or may not belong to C[u, ε] when taking u = x/N and
� = εN . Given a function H : Td → R, let

VN (ε, j, H , η) := 1

N d

∑

x∈Td
N

H
( x

N

) {η(x) − η(x + εNe j )}
ε

− 2

N d

∑

x∈Td
N

(
H

( x
N

))2
.

(5.17)

Lemma 5.5 Consider H1, . . . , Hk functions in C0,1([0, T ]×T
d) with compact support con-

tained in [0, T ] × (Td\∂�). Hence, for every ε > 0 and j = 1, . . . , d,

lim
δ→0

lim
N→∞E

β
μN

[
max
1≤i≤k

{ ∫ T

0
VN (ε, j, Hi (s, ·), ηδN

s ) ds
}]

≤ κ0 , (5.18)

where κ0 has been defined in (5.1).

Proof Provided by Lemma 5.4, it is enough to prove that

lim
N→∞ E

β
μN

[
max
1≤i≤k

{ ∫ t

0
VN (ε, j, Hi (s, ·), ηs) ds

}]
≤ κ0 .

By the entropy inequality, for each fixed N , the expectation above is smaller than

H(μN |νθ )

N d
+ 1

N d
logEνθ

[
exp

{
max
1≤i≤k

N d
{ ∫ T

0
VN (ε, j, Hi (s, ·), ηs) ds

}}]
.

Using (5.1), we bound the first parcel above by κ0. Since exp
{
max1≤i≤k a j

} ≤∑
1≤i≤k exp{a j } and by (5.6), we conclude that the limsup as N ↑ ∞ of the second parcel

above is less than or equal to

lim
N→∞

1

N d
logEνθ

[ ∑
1≤i≤k

exp
{

N d
∫ T

0
VN (ε, j, Hi (s, ·), ηs) ds

}]

= max
1≤i≤k

lim
N→∞

1

N d
logEνθ

[
exp

{
N d

∫ T

0
VN (ε, j, Hi (s, ·), ηs) ds

}]
.

Thus, in order to conclude the proof, it is enough to show that the limsup above is non positive
for each i = 1, . . . , k. By the Feynman–Kac formula (see [10, p. 332, Lemma 7.2]) for each
fixed N and d ≥ 2,

1

N d
logEνθ

[
exp

{
N d

∫ T

0
VN (ε, j, Hi (s, ·), ηs) ds

}]
(5.19)

≤
∫ T

0
sup

f

{ ∫
VN (ε, j, Hi (s, ·), η) f (η)dνθ − N 2−dDN (

√
f )

}
ds , (5.20)

where the supremum above is taken over all probability densities f with respect to νθ . By
assumption, each of the functions {Hi : i = 1, . . . , k} vanishes in a neighborhood of ∂�.
Thus, we make following observation about the first sum in the RHS of (5.17): for small
ε, non-zero summands are such that x/N and (x + εNe j )N lay both in � or both in ��.
Henceforth, in such a case, it is possible to find a path no slow bonds connecting x and
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x + εNe j . Keeping this in mind, we can repeat the arguments in the proof of Lemma 5.3 to
deduce that ∫

1

N d

∑

x∈Td
N

H
( x

N

) {η(x) − η(x + εNe j )}
ε

f (η)dνθ

≤ N 2−dDN (
√

f ) + 2

N d

∑

x∈Td
N

(
H

( x
N

))2
.

Plugging this inequality into (5.20) implies that (5.19) has a nonpositive limsup, showing
(5.19) and therefore finishing the proof. ��
Lemma 5.6

E
Q

β∗

[
sup

H

{∫ T

0

∫

Td
(∂u j H)(s, u)ρ(s, u)duds − 2

∫ T

0

∫

Td
(H(s, u))2 duds

}]
≤ κ0 ,

where the supremum is carried over all functions H ∈ C0,1([0, T ] × T
d) with compact

support contained in [0, T ] × (Td\∂�).

Proof Consider a sequence {Hi : i ≥ 1} dense in the subset of C2([0, t] × T
d) of functions

with support contained in [0, T ] × (Td\∂�), being the density with respect to the norm
‖H‖∞ + ‖∂u H‖∞. Recall we are assuming that {Qβ,N

μN : N ≥ 1} converges toQβ∗ . Then, by
(5.18) and the Portmanteau Theorem,

lim
δ→0

E
Q

β∗

[
max
1≤i≤k

{1
ε

∫ T

0

∫

Td
Hi (s, u)){ρδ

s (u) − ρδ
s (u + εe j )} duds

− 2
∫ T

0

∫

Td
(Hi (s, u))2 duds

}]
≤ κ0,

where ρδ
s (u) = (ρs ∗ ιδ)(u) as defined in (5.15). Letting δ ↓ 0, the Lebesgue Differentiation

Theorem assures that ρδ
s (u) converges almost surely to ρs . Then, performing a change of

variables and letting ε ↓ 0, we obtain that

E
Q

β∗

[
max
1≤i≤k

{ ∫ T

0

∫

Td
(∂u j Hi (s, u))ρs(u) duds − 2

∫ T

0

∫

Td
(Hi (s, u))2 duds

}]
≤ κ0.

Since the maximum increases to the supremum, we conclude the lemma by applying the
Monotone Convergence Theorem to {Hi : i ≥ 1}, which is a dense sequence in the subset
of functions C2([0, T ] × T

d) with compact support contained in [0, T ] × (T d\∂�). ��

Proposition 5.7 The measure Q
β∗ is concentrated on paths π(t, u) = ρ(t, u)du such that

ρ ∈ L2
([0, T ];H1(Td\∂�)

)
.

Proof Denote by � : C2([0, T ] × T
d) → R the linear functional defined by

�(H) =
∫ T

0

∫

Td
(∂u j H)(s, u)ρ(s, u) du ds .

Since the set of functions H ∈ C2([0, T ]×T
d) with support contained in [0, T ]× (Td\∂�)

is dense in L2([0, T ] × T
d) and since by Lemma 5.6 � is a Q

β∗ -a.s. bounded functional
in C2([0, T ] × T

d), we can extend it to a Qβ∗ -a.s. bounded functional in L2([0, T ] × T
d),
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which is a Hilbert space. Then, by the Riesz Representation Theorem, there exists a function
G ∈ L2([0, T ] × T

d) such that

�(H) = −
∫ T

0

∫

Td
H(s, u)G(s, u) du ds ,

concluding the proof. ��

6 Characterization of Limit Points

Before going into the details of each regime β ∈ [0, 1), β = 1 or β ∈ (1,∞], we make some
useful considerations for all cases.

We will prove in this section that all limit points of the sequence {Qβ,N
μN : N ≥ 1} are

concentrated on trajectories of measures π(t, du) = ρ(t, u) du, whose density ρ(t, u) with
respect to the Lebesgue measure is the weak solution of the hydrodynamic equation (2.3),
(2.5) or (2.6) for each corresponding value of β. Provided by tightness, letQβ∗ be a limit point
of the sequence {Qβ,N

μN : N ≥ 1} and assume, without loss of generality, that {Qβ,N
μN : N ≥ 1}

converges to Q
β∗ .

Since there is at most one particle per site, it is easy to show that Qβ∗ is concentrated on
trajectories π(t, du) which are absolutely continuous with respect to the Lebesgue measure
π(t, du) = ρ(t, u) du and whose density ρ(t, ·), is nonnegative and bounded by one. Recall
the martingale M N

t (H) in (3.2).

Lemma 6.1 If

(a) β ∈ [0, 1) and H ∈ C2(Td), or
(b) β ∈ [1,∞] and H ∈ C2(Td\∂�),

then, for all δ > 0,

lim
N→∞P

N
μN

[
sup

0≤t≤T
|M N

t (H)| > δ
]

= 0 . (6.1)

Proof Item (a) has been already proved in (4.3). For item (b), recalling (4.1) note that

〈M N (H)〉t ≤ T

N 2d−2

d∑
j=1

∑

x∈Td
N

ξ N
x,x+e j

[
H(

x+e j
N ) − H( x

N )
]2

. (6.2)

Since H ∈ C2(Td\∂�), H is differentiable with bounded derivative except over ∂�. There-
fore, if the edge x, x + e j is not a slow bond, then

ξ N
x,x+e j

[
H(

x+e j
N ) − H( x

N )
]2 ≤ 1

N 2 ‖∂u j H‖2∞ . (6.3)

On the other hand, if the edge x, x + e j is a slow bond, then

ξ N
x,x+e j

[
H(

x+e j
N ) − Ht (

x
N )

]2 ≤ 4α‖H‖2∞
Nβ

. (6.4)

Since the number of slow bonds is of order O(N d−1), plugging (6.3) and (6.4) into (6.2)
gives us 〈M N (Ht )〉t ≤ O(1/N d). Then, Doob’s inequality concludes the proof. ��
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6.1 Characterization of Limit Points forˇ ∈ [0, 1)

Proposition 6.2 Let H ∈ C2(Td). Then, for any δ > 0,

Q
β∗

[
π. : sup

0≤t≤T

∣∣∣〈πt , H〉 − 〈π0, H〉 −
∫ t

0
〈πs,
H〉 ds

∣∣∣ > δ
]

= 0 .

Proof Since Q
β,N
μN converges weakly to Qβ∗ , by Portmanteau’s Theorem (see [2, Theorem

2.1]),

Q
β∗

[
π. : sup

0≤t≤T

∣∣∣〈πt , H〉 − 〈π0, H〉 −
∫ t

0
〈πs,
H〉 ds

∣∣∣ > δ
]

≤ lim
N→∞Q

β,N
μN

[
π. : sup

0≤t≤T

∣∣∣〈πt , H〉 − 〈π0, H〉 −
∫ t

0
〈πs,
H〉 ds

∣∣∣ > δ
]

(6.5)

since the supremum above is a continuous function in the Skorohod metric, see Proposition
A.1. Recall thatQβ,N

μN is the probability measure induced by Pβ
μN via the empirical measure.

With this in mind and then adding and subtracting 〈π N
s , N 2

LN H〉, expression (6.5) can be
bounded from above by

lim
N→∞P

β
μN

[
π. : sup

0≤t≤T

∣∣∣〈π N
t , H〉 − 〈π N

0 , H〉 −
∫ t

0
〈π N

s , N 2
LN H〉 ds

∣∣∣ > δ/2
]

+ lim
N→∞P

β
μN

[
π. : sup

0≤t≤T

∣∣∣
∫ t

0
〈π N

s ,
H − N 2
LN H〉 ds

∣∣∣ > δ/2
]
.

By Lemma 6.1, the first term above is null. Since there is at most one particle per site, the
second term in last expression is bounded by

lim
N→∞P

β
μN

[ T

N d

∑
x /∈�N

∣∣∣
H
( x

N

)
− N 2

LN

( x

N

)∣∣∣ > δ/4
]

+ lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣
∫ t

0

1

N d

∑
x∈�N

{

H

( x

N

)
− N 2

LN

( x

N

)}
ηs(x) ds

∣∣∣ > δ/4
]
.

Outside �N , the operator N 2
LN coincides with the discrete Laplacian. Since H ∈ C2(Td),

the first probability above vanishes for N sufficiently large. Recall that the number of elements
in �N is of order N d−1. Applying the triangular inequality, the second expression in the
previous sum becomes bounded by the sum of

lim
N→∞P

β
μN

[
O(N−1)T ‖
H‖∞ > δ/8

]
(6.6)

and

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣
∫ t

0

1

N d−1

∑
x∈�N

NLN

( x

N

)
ηs(x) ds

∣∣∣ > δ/8
]
. (6.7)

For large N , the probability in (6.6) vanishes. We deal now with (6.7). Let x ∈ �N . By
definition of �N , some adjacent bond to x is a slow bond. Thus, the opposite vertex to x with
respect to this bond is also in �N , see Fig. 5.
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Fig. 5 Illustration of sites
x, y, z ∈ �N . We note that two
adjacent edges to x are slow
bonds, and two adjacent edges are
not. Besides, any opposite vertex
to x will be of the form x ± e j

Λ

Λ

N−1
T
d
N

x
N

y
N

z
N

Recall the definition of LN in (3.1). Whenever {x, x − e j } neither {x, x + e j } are slow
bonds, the expression

ξ N
x,x+e j

[
H

( x+e j
N

) − H
( x

N

)]
+ ξ N

x,x−e j

[
H

( x−e j
N

) − H
( x

N

)]

is of order O(N−2) due to assumption H ∈ C2(Td). Therefore, in (6.7) we can disregard
terms of this kind, reducing the proof that (6.7) is null to prove that

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

A(e) ds
∣∣∣ > δ/16

]
= 0 , (6.8)

where

A(e) =
[
αN 1−β

(
H

( x+e j
N

) − H
( x

N

))
+ H

( x−e j
N

) − H
( x

N

)

1/N

]
ηs(x)

+
[

H
( x+2e j

N

) − H
( x+e j

N

)

1/N
+ αN 1−β

(
H

( x
N

) − H
( x+e j

N

))]
ηs(x + e j ) .

Since H is smooth, the terms inside parenthesis involving N 1−β are of order O(N−β) and
hence negligible. On the other hand, the remaining terms are close to plus or minus the
derivative of H at x/N . We have thus reduced the proof of (6.8) to the proof of

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηs(x+e j ) − ηs(x)

)
ds

∣∣∣ > δ/32
]

= 0 .

(6.9)

Let t0 = 0 < t1 < · · · < tn = T be a partition of [0, T ] with mesh bounded by an arbitrary
ε̃ > 0. Via the triangular inequality, if we prove that

n∑
k=0

lim
N→∞P

β
μN

[ ∣∣∣
∫ tk

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηs(x + e j ) − ηs(x)

)
ds

∣∣∣ > δ
]
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vanishes, then we will conclude that (6.9) vanishes as well. Therefore, it is enough now to
show that, for any δ > 0 and any t ∈ [0, T ],

lim
N→∞P

β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηs(x + e j ) − ηs(x)

)
ds

∣∣∣ > δ
]

= 0 .

Markov’s inequality then allows us to bound the expression above by

lim
N→∞ δ−1

E
β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηs(x + e j ) − ηs(x)

)
ds

∣∣∣
]
. (6.10)

Adding and subtracting ηεN
s (x) and ηεN

s (x + e j ), we bound (6.10) from above by

lim
N→∞ δ−1

E
β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηs(x + e j ) − ηεN

s (x + e j )
)

ds
∣∣∣
]

+ lim
N→∞ δ−1

E
β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηεN

s (x + e j ) − ηεN
s (x)

)
ds

∣∣∣
]

+ lim
N→∞ δ−1

E
β
μN

[ ∣∣∣
∫ t

0

1

N d−1

∑
e={x,x+e j }

e is a slow bond

∂u j H
( x

N

)(
ηεN

s (x) − ηs(x)
)

ds
∣∣∣
]
.

Since |{ηεN
s (x+e j )−ηεN

s (x)}| ≤ 2(εN )d−1

(εN )d = 2
εN , |�N | is of order N d−1 and‖∂u j H‖∞ < ∞,

the second term above vanishes. For the remaining terms, we apply Lemma 5.2, finishing the
proof. ��

6.2 Characterization of Limit Points forˇ = 1

This subsection is devoted to the proof of the next proposition. Keep in mind that Proposi-
tion 5.7 allows us to write π(t, u) = ρ(t, u)du when considering the measure Qβ∗ .

Proposition 6.3 Let H ∈ C2(Td\∂�). For all δ > 0,

Q
β∗

[
π. : sup

0≤t≤T

∣∣∣〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,
H〉 ds

−
∫ t

0

∫

∂�

ρs(u
+)

d∑
j=1

∂u j H(u+)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

ρs(u
−)

d∑
j=1

∂u j H(u−)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

α(ρs(u
−) − ρs(u

+))(H(u+) − H(u−))

d∑
j=1

|〈�ζ (u), e j 〉| d S(u)ds
∣∣∣ > δ

]
= 0.

(6.11)
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Λ

Λ

N−1
T
d
N

Λ

Λ

N−1
T
d
N

e2

e1

Fig. 6 In the left, an illustration of the set �N ,−, whose elements are represented by black balls. In the right,

an illustration of the sets �
j ,left
N ,− and �

j ,right
N ,− for j = 2, whose elements are represented by gray and black

balls, respectively

Let us gather some ingredients for the proof of above. The first one is a suitable expression
for NLN over �N . Define

�N ,− = �N ∩ {
x ∈ T

d
N : x

N ∈ �
}

and

�N ,+ = �N ∩ {
x ∈ T

d
N : x

N ∈ ��} (6.12)

Such a notation has been chosen to agree with (2.4). Let us focus on �N ,−, being the analysis
for �N ,+ completely analogous. It is convenient to consider the decomposition �N ,− =⋃d

j=1 �
j
N ,−, where

�
j
N ,− = �

j,left
N ,− ∪ �

j,right
N ,− , with

�
j,left
N ,− =

{
x ∈ �N ,− : x − e j

N
∈ ��

}
and �

j,right
N ,− =

{
x ∈ �N ,− : x + e j

N
∈ ��

}
,

see Fig. 6 for an illustration. Note that �
j,right
N ,− and �

j,left
N ,− are not necessarily disjoint for a

fixed j . Nevertheless, due to the smoothness of ∂�, the number of elements in the intersection
of these two sets is of order O(N d−2), hence negligible to our purposes. We will henceforth
assume that � j,right

N ,− and �
j,left
N ,− are disjoint sets for all j = 1, . . . , d .

Remark 6.4 At first sight, the reader may imagine that �N ,− is equal to �
j,left
N ,− ∪ �

j,right
N ,− for

any j , or at least very to close to. This is false, as illustrated by Fig. 6.Moreover, for i �= j and
large N , the sets �

j
N ,− and �i

N ,− in general are not disjoint with a no negligible intersection.

Define now

NL
j
N H( x

N ) = Nξ N
x,x+e j

(
H(

x+e j
N ) − H( x

N )
) + Nξ N

x,x−e j

(
H(

x−e j
N ) − H( x

N )
)
.
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Then, by By Fubini’s Lemma,

∑
x∈�N ,−

NLN H
( x

N

)
ηεN

s (x) =
∑

x∈�N ,−

d∑
j=1

NL
j
N H

( x
N

)
ηεN

s (x)

=
d∑

j=1

{ ∑

x∈�
j,right
N ,−

NL
j
N H

( x
N

)
ηεN

s (x) +
∑

x∈�
j,left
N ,−

NL
j
N H

( x
N

)
ηεN

s (x)
}

. (6.13)

If x ∈ �
j,right
N ,− , then ξ N

x,x+e j
= α/N and ξ N

x,x−e j
= 1, see Fig. 5. In this case,

NL
j
N H

( x
N

) = α
(

H
( x+e j

N

) − H
( x

N

))
− ∂u j H

( x
N

) + O(N−1) .

On the other hand, if x ∈ �
j,left
N ,− , then ξ N

x,x−e j
= α/N and ξ N

x,x+e j
= 1. In this case,

NL
j
N H

( x
N

) = ∂u j H
( x

N

) + α
(

H
( x−e j

N

) − H
( x

N

))
+ O(N−1) .

Now, let u : Td → ∂� be a function such that

‖u(u) − u‖ = min
v∈∂�

‖v − u‖ , (6.14)

and u is continuous in a neighborhood of ∂�. That is, u maps u ∈ T
d to some of its closest

points over ∂� and u is continuous on the set (∂�)ε = {u ∈ T
d : dist(u, ∂�) < ε} for

some small ε > 0. There are more than one function fulfilling (6.14), but any choice among
them will be satisfactory for our purposes, once this function is continuous near ∂�. With
this mind we can rewrite (6.13), achieving the formula

1

N d−1

∑
x∈�N ,−

NLN H
( x

N

)
ηεN

s (x)

= 1

N d−1

d∑
j=1

{ ∑

x∈�
j,right
N ,−

[
α

(
H(u+) − H(u−)

) − ∂u j H(u−)
]
ηεN

s (x)

+
∑

x∈�
j,left
N ,−

[
∂u j H(u−) + α

(
H(u+) − H(u−)

)]
ηεN

s (x)

}
.

(6.15)

plus a negligible error, where by H(u−) and H(u+) are the sided limits of H at u. The
dependence of u on x/N will be dropped to not overload notation. Defining

�
j
N ,+ = �

j,left
N ,+ ∪ �

j,right
N ,+ , with

�
j,left
N ,+ =

{
x ∈ �N ,+ : x + e j

N
∈ �

}
and �

j,right
N ,+ =

{
x ∈ �N ,+ : x − e j

N
∈ �

}
,
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we similarly have

1

N d−1

∑
x∈�N ,+

NLN H
( x

N

)
ηεN

s (x)

= 1

N d−1

d∑
j=1

{ ∑

x∈�
j,right
N ,+

[
∂u j H(u+) + α

(
H(u−) − H(u+)

)]
ηεN

s (x)

+
∑

x∈�
j,left
N ,+

[
α

(
H(u−) − H(u+)

) − ∂u j H(u+)
]
ηεN

s (x)

}
.

(6.16)

The second ingredient is about convergence of sums over �N towards integrals over
∂�. Let us review some standard facts about integrals over surfaces. Consider a smooth
compact manifoldM ⊂ R

d of dimension (d − 1). Assume thatM is the graph of a function
f : R ⊂ R

d−1 → R, that is, M = {(x, f (x)) : x ∈ R}. Then, given a smooth function
g : M → R, the surface integral of g over M will be given by

∫

M
g(u) d S(u) =

∫

R
g(x, f (x))

dx

| cos(γ (x, f (x)))|
=

∫

R
g

(
x1, . . . , xd−1, f (x1, . . . , xd−1)

) dx1 · · · dxd−1

|〈�ζ (x1, . . . , xd−1), ed 〉| ,

(6.17)

where γ (x, f (x)) is defined as the angle between the normal exterior vector �ζ (u) =
�ζ (x1, . . . , xd−1) and ed , the d-th element of the canonical basis ofRd . Of course, a manifold
in general is only locally a graph of a function as above. Nevertheless, the notion of partition
of unity allows to use this local property to evaluate a surface integral. Recall the definition
of u given in (6.14).

Lemma 6.5 Let g : �\(∂�) ⊂ T
d → R be a function which is continuous near ∂� with an

extension to � which is also continuous near ∂�. Then,∫

∂�

g(u−)|〈�ζ (u), e j 〉| d S(u) = lim
N→∞

1

N d−1

∑

x∈�
j
N ,−

g
( x

N

)
and (6.18)

∫

∂�

g(u−)〈�ζ (u), e j 〉 d S(u) = lim
N→∞

1

N d−1

[ ∑

x∈�
j,right
N ,−

g
( x

N

) −
∑

x∈�
j,left
N ,−

g
( x

N

)]
. (6.19)

Analogously, if g : �� ⊂ T
d → R is a function which is continuous near ∂� with an

extension to the closure of �� which is also continuous near ∂�, then
∫

∂�

g(u+)|〈�ζ (u), e j 〉| d S(u) = lim
N→∞

1

N d−1

∑

x∈�
j
N ,+

g
( x

N

)
and (6.20)

∫

∂�

g(u+)〈�ζ (u), e j 〉 d S(u) = lim
N→∞

1

N d−1

[ ∑

x∈�
j,right
N ,+

g
( x

N

) −
∑

x∈�
j,left
N ,+

g
( x

N

)]
. (6.21)

Proof In view of the previous discussion, we claim that

lim
N→∞

1

N d−1

∑

x∈�
j
N ,−

h
( x

N

)
∣∣〈�ζ (

u( x
N )

)
, e j

〉∣∣ =
∫

∂�

h(u−) d S(u) . (6.22)
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for any continuous function h : � → R such that h(u) = 0 on the set {u ∈ ∂� : 〈�ζ (u), e j 〉 =
0}. This is due to the fact that the sum in the left hand side of (6.18) is equal to a Riemann
sum for the integral on the right hand side of (6.17) modulus a small error. To see this, it is
enough to note that if x ∈ �N ,−, then x/N is at a distance less or equal than 1/N to ∂�, and
recall that � is compact, thus any continuous function over � is uniformly continuous.

Consider now the function h : � → R given by

h(u) := g(u) |〈�ζ (
u(u)

)
, e j 〉| .

Since u(u) = u for u ∈ ∂�, we have that h(u) = 0 on the set {u ∈ ∂� : 〈�ζ (u), e j 〉 = 0}.
Then, considering this particular function h in (6.22) leads to (6.18). The limit (6.19) can be
derived from (6.18) noticing that, for N sufficiently large,

• if x ∈ �
j,right
N ,− , then 〈�ζ (

u(x/N )
)
, e j 〉 > 0 and

• if x ∈ �
j,left
N ,− , then 〈�ζ (

u(x/N )
)
, e j 〉 < 0,

see Fig. 5 for support. The proofs for (6.20) and (6.21) are analogous. ��

Proof of Proposition 6.3 The fact that boundary integrals are not well-defined in the whole
Skorohod space D([0, T ],M) forbids us to directly apply Portmanteau’s Theorem. To cir-
cumvent this technical obstacle, fix ε > 0 which will be taken small later. Adding and
subtracting the convolution of ρ(t, u)with the approximation of identity ιε defined in (5.14),
we bound the probability in (6.11) by the sum of

Q
β∗

[
π. : sup

0≤t≤T

∣∣∣〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,
H〉 ds

−
∫ t

0

∫

∂�

(ρs ∗ ιε)(u
+)

d∑
j=1

∂u j H(u+)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

(ρs ∗ ιε)(u
−)

d∑
j=1

∂u j H(u−)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

α((ρs ∗ ιε)(u
−) − (ρs ∗ ιε)(u

+))

× (H(u+) − H(u−))

d∑
j=1

|〈�ζ (u), e j 〉| d S(u)ds
∣∣∣ > δ/2

]

(6.23)

and

Q
β∗

[
π. : sup

0≤t≤T

∣∣∣
∫ t

0

∫

∂�

(
(ρs ∗ ιε)(u

+) − ρs(u
+)

) d∑
j=1

H(u+)〈�ζ (u), e j 〉 d S(u)ds

−
∫ t

0

∫

∂�

(
(ρs ∗ ιε)(u

−) − ρs(u
−)

) d∑
j=1

∂u j H(u−)〈�ζ (u), e j 〉 d S(u)ds

−
∫ t

0

∫

∂�

α
(
(ρs ∗ ιε)(u

−) − ρs(u
−)

)
(H(u+) − H(u−))

d∑
j=1

|〈�ζ (u), e j 〉| d S(u)ds
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+
∫ t

0

∫

∂�

α
(
(ρs ∗ ιε)(u

+) − ρs(u
+)

)

× (H(u+) − H(u−))

d∑
j=1

|〈�ζ (u), e j 〉| d S(u)ds
∣∣∣ > δ/2

]
. (6.24)

where ιε and the convolution ρs ∗ ιε were defined in (5.15). Adapting results of [1,
Chapter III] to our context, the reader can check that functions in the Sobolev space
L2

([0, T ];H1(Td\∂�)
)
are continuous in T

d\∂�. Thus, Lemma 5.7 gives us that (6.24)
vanishes as ε → 0. It remains to deal with (6.23). By Portmanteau’s Theorem, (6.23) is
bounded from above by

lim
N→∞Q

β,N
μN

[
π. : sup

0≤t≤T

∣∣∣〈πt , H〉 − 〈π0, H〉 −
∫ t

0
〈πs,
H〉 ds

−
∫ t

0

∫

∂�

(πs ∗ ιε)(u
+)

d∑
j=1

∂u j H(u+)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

(πs ∗ ιε)(u
−)

d∑
j=1

∂u j H(u−)〈�ζ (u), e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

α((πs ∗ ιε)(u
−)−(πs ∗ ιε)(u

+))

× (H(u+)−H(u−))

d∑
j=1

|〈�ζ (u), e j 〉| d S(u)ds
∣∣∣ > δ/2

]
,

since the supremumabove is a continuous function in theSkorohodmetric.Now, recalling that
Q

β,N
μN is the probability induced by P

β
μN via the empirical measure, adding and subtracting

〈π N
s , N 2

LN H〉, adding and subtracting 1
N d−1

∑
x∈�N

NLN H( x
N )ηεN

s (x), applying (5.16)
and the Lemma 6.5, we can bound the previous expression by the sum of

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣〈π N
t , H〉 − 〈π N

0 , H〉 −
∫ t

0
〈π N

s , N 2
LN H〉 ds

∣∣∣ > δ/8
]
, (6.25)

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣
∫ t

0

∑
x /∈�N

(
N 2

LN H
( x

N

) − 
H
( x

N

))
ηs(x) ds

∣∣∣ > δ/8
]
, (6.26)

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣ 1

N d−1

∫ t

0

∑
x∈�N

NLN H
( x

N

)
(ηs(x) − ηεN

s (x)) ds
∣∣∣ > δ/8

]
(6.27)

and

lim
N→∞P

β
μN

[
sup

0≤t≤T

∣∣∣
∫ t

0

∑
x∈�N

NLN H
( x

N

)
ηεN

s (x) ds

+
d∑

j=1

∫ t

0

1

N d−1

∑

x∈�
j,right
N ,−

ηεN
s (x)∂u j H(u−) ds

−
d∑

j=1

∫ t

0

1

N d−1

∑

x∈�
j,left
N ,−

ηεN
s (x)∂u j H(u−) ds
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−
d∑

j=1

∫ t

0

1

N d−1

∑

x∈�
j,right
N ,+

ηεN
s (x)∂u j H(u+) ds

+
d∑

j=1

∫ t

0

1

N d−1

∑

x∈�
j,left
N ,+

ηεN
s (x)∂u j H(u+) ds

+
d∑

j=1

∫ t

0

1

N d−1

∑

x∈�
j
N ,−

α ηεN
s (x)(H(u+) − H(u−)) ds

−
d∑

j=1

∫ t

0

1

N d−1

∑

x∈�
j
N ,+

α ηεN
s (x)(H(u+) − H(u−)) ds + err(N )

∣∣∣ > δ/8
]
, (6.28)

where err(N ) is a error that goes in modulus to zero as N → ∞. Proposition 6.1 tells us
that (6.25) is null. The approximation of the continuous Laplacian by the discrete Laplacian
assures that (6.26) is null. Since NLN H is a sequence of uniformly bounded functions,
Lemma 5.4 allows we conclude that (6.27) vanishes as ε ↘ 0. Finally, provided by formulas
(6.15) and (6.16) and recalling the decomposition �N = �N ,+ ∪ �N ,−, we can see that,
except for the error term, all terms inside the supremum in (6.28) cancel. This concludes the
proof. ��

6.3 Characterization of Limit Points forˇ ∈ (1,∞]

Proposition 6.6 Let H ∈ C2(Td\∂�). For all δ > 0,

Q
β∗

[
π. : sup

0≤t≤T

∣∣∣〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,
H〉 ds

−
∫ t

0

∫

∂�

ρs(u
+)

d∑
j=1

∂u j H(u+)〈�ζ , e j 〉 d S(u)ds

+
∫ t

0

∫

∂�

ρs(u
−)

d∑
j=1

∂u j H(u−)〈�ζ , e j 〉 d S(u)ds
∣∣∣ > δ

]
= 0.

(6.29)

Proof The proof of this proposition is similar, in fact, simpler than the one of Proposition 6.3.
In this case,

1

N d−1

∑
x∈�N ,−

NLN H
( x

N

)
ηεN

s (x)

= 1

N d−1

d∑
j=1

{ ∑

x∈�
j,right
N ,−

[
αN 1−β

(
H(u+) − H(u−)

) − ∂u j H(u−)
]
ηεN

s (x)

+
∑

x∈�
j,left
N ,−

[
∂u j H(u−) + αN 1−β

(
H(u+) − H(u−)

)]
ηεN

s (x)

}
.

(6.30)
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and

1

N d−1

∑
x∈�N ,+

NLN H
( x

N

)
ηεN

s (x)

= 1

N d−1

d∑
j=1

{ ∑

x∈�
j,right
N ,+

[
∂u j H(u+) + αN 1−β

(
H(u−) − H(u+)

)]
ηεN

s (x)

+
∑

x∈�
j,left
N ,+

[
αN 1−β

(
H(u−) − H(u+)

) − ∂u j H(u+)
]
ηεN

s (x)

}
.

(6.31)

Since β ∈ (1,∞], we conclude that all terms above involving α disappear in the limit as
N → ∞. Noting that there are no surface integrals in (6.29) involving α, it is a simple game
to repeat the steps in the proof of Proposition 6.3 to finally conclude (6.29). ��

7 Uniqueness of Weak Solutions

The hydrodynamic equation (2.3) is the classical heat equation, which does not need any
consideration about uniqueness of weak solutions. Thus, we only need to guarantee that
weak solutions of (2.5) and (2.6) are unique.

Let us trace the strategy for the proof of uniqueness, which works for both (2.5) and (2.6).
Considering in each case β = 1 or β ∈ (1,∞] a suitable set of test functions, we can annul
all surface integrals. Being more precise, consider the following definitions:

Definition 4 Let DRob ⊂ L2(Td) be the set of functions H : Td → R such that H(u) =
h1(u)1�(u) + h2(u)1�

�(u), where

(i) hi ∈ C2(Td) for i = {1, 2}.
(ii) 〈∇h1(u), �ζ (u)〉 = 〈∇h2(u), �ζ (u)〉 = (

h2(u) − h1(u)
) d∑

j=1

|〈�ζ (u), e j 〉| , ∀u ∈ ∂�.

Define the operator LRob : DRob → L2(Td) by

LRobH(u) =
{


h1(u), if u ∈ �,


h2(u), if u ∈ �� .

Definition 5 Let DNeu ⊂ L2(Td) be the set of functions H : Td → R such that H(u) =
h1(u)1�(u) + h2(u)1�

�(u), where:

(i) hi ∈ C2(Td) for i = {1, 2}.
(i) 〈∇h1(u), �ζ (u)〉 = 〈∇h2(u), �ζ (u)〉 = 0 , ∀u ∈ ∂�.

Define the operator LNeu : DNeu → L2(Td) by

LNeuH(u) =
{


h1(u) if u ∈ �,


h2(u) if u ∈ �� .

It is straightforward to check that, if ρ is a weak solution of (2.5), then

〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,L

RobH〉 ds = 0 , ∀H ∈ DRob , ∀t ∈ [0, T ] , (7.1)
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while, if ρ is a weak solution of (2.6), then

〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,L

NeuH〉 ds = 0 , ∀H ∈ DNeu , ∀t ∈ [0, T ] . (7.2)

In both cases, if an orthonormal basis of L2(Td) composed of eigenfunctions for the cor-
responding operator (associated to nonpositive eigenvalues) is available, this would easily
lead to the proof of uniqueness, as we shall see later. However, this is not the case. So, to
overcome this situation we extend the corresponding operator via a Friedrichs extension (see
[12] on the subject) to achieve the desired orthonormal basis.

Let us briefly explain the notion of Friedrichs extension. Let X be a Hilbert space and
denote by 〈·, ·〉 and ‖ · ‖ its inner product and norm, respectively. Consider a linear, strongly
monotone and symmetric operatorA : D ⊂ X → X , where by strongly monotone we mean
that there exists c > 0 such that

〈AH , H〉 ≥ c‖H‖2 , ∀ H ∈ D .

Denote by 〈·, ·〉E(A) the so-called energetic inner product on D associated to A, which is
defined by

〈F, G〉E(A) := 〈F, AG〉 .

Let HFried be the set of all functions F in X for which there exists a sequence {Fn : n ≥ 1}
in D such that Fn converges to F in X and Fn is Cauchy for the inner product 〈·, ·〉E(A). A
sequence {Fn : n ≥ 1} with these properties will be called an admissible sequence for F .
For F , G in HFried, let

〈F, G〉Fried := lim
n→∞〈Fn, Gn〉E(A) , (7.3)

where {Fn : n ≥ 1}, {Gn : n ≥ 1} are admissible sequences for F and G, respectively.
By [12, Proposition 5.3.3], the limit exists and does not depend on the admissible sequence
chosen and, moreover, the space HFried endowed with the scalar product 〈·, ·〉Fried is a real
Hilbert space, usually called the energetic space associated to A.

The Friedrichs extensionAFried : DFried → X of the operatorA is then defined as follows.
Let DFried be the set of vectors in F ∈ HFried for which there exists a vector f ∈ X such
that

〈F, G〉Fried = 〈 f , G〉 , ∀G ∈ HFried .

and let AFriedF = f . See the excellent book [12] for why this operator AFried : DFried → X
is indeed an extension of A : D → X and more details on the construction. The main result
about Friedrichs extensions and eigenfunctions we cite here is the next one.

Theorem 7.1 [12, Theorem 5.5C] Let A : D ⊆ X → X be a linear, symmetric and strongly
monotone operator and let AFried : DFried ⊆ X → X be its Friedrichs extension. Assume
additionally that the embedding HFried ↪→ X is compact. Then,

(a) The eigenvalues of −AFried form a countable set 0 < c ≤ μ1 ≤ μ2 ≤ · · · with
limn→∞ μn = ∞, and all these eigenvalues have finite multiplicity.

(b) There exists a complete orthonormal basis of X composed of eigenvectors of AFried.

Denote by I the identity operator. If L : D ⊆ X → X is a symmetric nonpositive operator,
then I − L : D → X is symmetric and strongly monotone with c = 1. In fact,

〈(I − L)H , H〉 = ‖H‖2 + 〈−LH , H〉 ≥ ‖H‖2 , ∀ H ∈ D .

123



T. Franco, M. Tavares

Therefore, under the hypothesis that L : D ⊆ X → X is a symmetric and nonpositive linear
operator, we may consider the Friedrichs extension of (I − L).

Proposition 7.2 Let L : D ⊆ X → X be a symmetric nonpositive operator. Denote by
(I − L)Fried : DFried → X the Friedrichs extension of (I − L) : D → X and by HFried the
corresponding energetic space. Assume that the embedding HFried ↪→ X is compact. Then,
there exists at most one measurable function ρ : [0, T ] → X such that

sup
t∈[0,T ]

‖ρt‖ < ∞ (7.4)

and

〈ρt , H〉 − 〈ρ0, H〉 −
∫ t

0
〈ρs,LH〉 ds = 0 , ∀H ∈ D , ∀t ∈ [0, T ] .

where ρ0 is a fixed element of X.

Proof Consider ρ1, ρ2 two solutions of above and write ρ = ρ1 − ρ2. By linearity,

〈ρt , H〉 −
∫ t

0
〈ρs,LH〉 ds = 0 , ∀H ∈ D , ∀t ∈ [0, T ] .

which is the same as

〈ρt , H〉 +
∫ t

0
〈ρs, (I − L)H〉 ds −

∫ t

0
〈ρs, H〉 ds = 0 , ∀H ∈ D , ∀t ∈ [0, T ] .

Since DFried ⊆ HFried, the last equation can be extended to

〈ρt , H〉 +
∫ t

0
〈ρs, (I − L)FriedH〉 ds −

∫ t

0
〈ρs, H〉 ds = 0 , ∀H ∈ DFried , ∀t ∈ [0, T ] .

(7.5)

By Theorem 7.1, the Friedrichs extension (I − L)Fried : DFried → X has eigenvalues 1 ≤
λ1 ≤ λ2 ≤ · · · , all of them having finite multiplicity with limn→∞ λn = ∞, and there exists
a complete orthonormal basis {� j }i∈N of L2(Td) composed of eigenfunctions. Denote

LFried := I − (I − L)Fried .

Thus, {� j } j∈N is also a set of eigenfunctions for the operator LFried whose eigenvalues are
given by μ j = 1 − λ j ≤ 0. Define

R(t) =
∞∑
j=1

1

j2(1 − μ j )
〈ρt , � j 〉2 for t ∈ [0, T ] .

Since ρ satisfy (7.5), we have that

d

dt
〈ρt , � j 〉2 = 2〈ρt , � j 〉〈ρt ,LFried� j 〉 = 2μ j 〈ρt , � j 〉2 . (7.6)

By (7.4) and the Cauchy-Schwarz inequality, we have that

∞∑
j=1

2|μ j |
j2(1 − μ j )

〈ρt , � j 〉2 ≤
∞∑
j=1

2|μ j |
j2(1 − μ j )

(
sup

t∈[0,T ]
‖ρt‖2

)
< ∞ ,
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which together with (7.6) implies that

d

dt
R(t) =

∞∑
j=1

2μ j

j2(1 − μ j )
〈ρt , � j 〉2 ≤ 0 .

Since R(t) ≥ 0, R(0) = 0, and d R/dt ≤ 0, we conclude that R(t) = 0 for all t ∈ [0, T ] and
hence 〈ρt , � j 〉2 = 0 for any t ∈ [0, T ]. Due to {� j } j∈N be a complete orthonormal basis of
X , we deduce that ρ ≡ 0, finishing the proof. ��

In view of (7.1) and (7.2), considering X as the Hilbert space L2(Td) and applying the
last proposition, to achieve the uniqueness of weak solutions of (2.5) and (2.6) it is enough
to assure that

(1) The operators I−LRob : DRob ⊆ L2(Td) → L2(Td) and I−LNeu : DNeu ⊆ L2(Td) →
L2(Td) are symmetric nonpositive linear operators.

(2) Denoting by H Rob
Fried and H Neu

Fried their respective energetic spaces, the embeddings

H Rob
Fried ↪→ L2(Td) and H Neu

Fried ↪→ L2(Td) are compact.

This is precisely what we are going to do in the next four propositions. Denote by �ζ (u) =
−�ζ (u) the normal exterior vector to the region �� at u ∈ ∂�. Recall that 〈·, ·〉 is used for
both the inner products in L2(Td) and in Rd .

Proposition 7.3 The operator −LRob : DRob → L2(Td) is symmetric and nonnegative.

Proof Let H , G ∈ DRob. We can write H = h11� + h21�
� and G = g11� + g21�

�, where
h1, h2, g1, g2 ∈ C2(Td). By the third Green identity (see Appendix A, Theorem A.2),

∫

Td

(
h
g − g
h

)
du =

∫

∂�

(
h〈∇g, �ζ 〉 − g〈∇h, �ζ 〉

)
d S ,

where d S is an infinitesimal volume element of ∂�. Thus,

〈H ,−LRobG〉 =〈h11� + h21�� ,−
g11� − 
g21��〉

= −
∫

�

h1
g1 du −
∫

��
h2
g2 du

= −
∫

�

g1
h1 du −
∫

∂�

(
h1〈∇g1, �ζ 〉 − g1〈∇h1, �ζ 〉

)
d S

−
∫

��
g2
h2 du −

∫

∂��

(
h2〈∇g2, �ζ 〉 − g2〈∇h2, �ζ 〉

)
d S

= −
∫

�

g1
h1 du −
∫

∂�

(
h1〈∇g1, �ζ 〉 − g1〈∇h1, �ζ 〉

)
d S

−
∫

��
g2
h2 du −

∫

∂��

(
g2〈∇h2, �ζ 〉 − h2〈∇g2, �ζ 〉

)
d S .

Using the boundary condition in the item (ii) of Definition 4 and ∂�� = ∂�, we conclude
that the last expression above is equal to
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−
∫

�

g1
h1 du −
∫

��
g2
h2 du

−
∫

∂�

(
(h1−h2)

d∑
j=1

|〈�ζ , e j 〉|(g2−g1)−(g1 − g2)
d∑

j=1

|〈�ζ , e j 〉|(h2 − h1)
)

d S

= −
∫

�

g1
h1 du −
∫

��
g2
h2 du .

Then, 〈H ,−LRobG〉 = − ∫
�

g1
h1 du −∫
�� g2
g2 du = 〈−LRobH , G〉. For the nonneg-

ativeness, note that

〈H ,−LRobH〉 = −
∫

�

h1
h1 du −
∫

��
h2
h2 du

=
∫

�

|∇h1|2 du +
∫

��
|∇h2|2 du −

∫

∂�

(
〈∇h1, �ζ 〉h1 + 〈∇h2, �ζ 〉h2

)
d S

where the second equality above holds by the second Green identity, see Appendix, Theorem
A.2, and ∂(��) = ∂�. Since

∫
�

|∇hi |2 du ≥ 0, for i = 1, 2, it is enough to check that

− ∫
∂�

(
〈∇h1, �ζ 〉h1 + 〈∇h2, �ζ 〉h2

)
d S ≥ 0. In fact,

−
∫

∂�

(
〈∇h1, �ζ 〉h1 + 〈∇h2, �ζ 〉h2

)
d S = −

∫

∂�

(
〈∇h1, �ζ 〉h1 − 〈∇h2, �ζ 〉h2

)
d S

=
∫

∂�

d∑
j=1

|〈�ζ , e j 〉|
(
(h2 − h1)h2 − (h2 − h1)h1

)
d S

= 2
∫

∂�

d∑
j=1

|〈�ζ , e j 〉|(h2 − h1)
2 d S ≥ 0 ,

where the second equality holds by item (ii) of Definition 4. ��
Proposition 7.4 The embedding H Rob

Fried ↪→ L2(Td) is compact.

Proof Let {Hn} be a bounded sequence in H Rob
Fried. Fix {Fn} a sequence in DRob such that

‖Fn − Hn‖ → 0 when n → ∞ and {Fn} is also bounded in H Rob
Fried. Thus, to show the

compact embedding we need prove that {Hn} have a convergent subsequence in L2(Td). To
get a convergent subsequence of {Hn}, it is sufficient to find a convergent subsequence of
{Fn} in L2(Td). Write Fn = fn1� + f̃n1�� , with fn, f̃n ∈ C2(Td). Then,

〈Fn, Fn〉E(I−LRob) = 〈Fn, Fn〉 + 〈Fn,−LRobFn〉
= 〈 fn1� + f̃n1�� , fn1� + f̃n1��〉 + 〈 fn1� + f̃n1�� ,−
 fn1� − 
 f̃n1��〉 .

Expanding the right hand side of above and using Green identity (see Appendix A, Theorem
A.2), we get that

∫

�

f 2n du +
∫

��
f̃n

2
du −

∫

�

fn
 fn du −
∫

��
f̃n
 f̃n du

= ‖ fn1�‖2 + ‖ f̃n1��‖2 + ‖∇ fn1�‖2 + ‖∇ f̃n1��‖2

+ 2
∫

∂�

d∑
j=1

|〈�ζ , e j 〉|( fn − f̃n)2d S .
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Under the hypotheses of boundedness of the sequence {Fn} in the norm induced by
〈·, ·〉E(I−LRob), the sequences {‖ fn1�‖2}, {‖ f̃n1��‖2}, {‖∇ fn1�‖2} and {‖∇ f̃n1��‖2} are
bounded. By theRellich-Kondrachov compactness theorem (see [3, Theorem5.7.1]), { fn1�},
{ f̃n1��} have a common convergent subsequence in L2(Td). This implies that {Fn} has a
convergent subsequence. ��
Proposition 7.5 The operator −LNeu : DNeu → L2(Td) is symmetric and nonnegative.

Proof Let H , G ∈ DNeu. We can write H = h11� + h21�
� and G = g11� + g21�

�, where
h1, h2, g1, g2 ∈ C2(Td). By the third Green identity, see Appendix A, Theorem A.2, we
have that ∫

Td
h
g du − g
h du =

∫

∂�

h〈∇g, �ζ 〉 − g〈∇h, �ζ 〉 d S = 0 ,

where d S is the infinitesimal volume element of ∂�. Thus,

〈H ,−LNeuG〉 = 〈h11� + h21�� ,−
g11� − 
g21��〉
= −

∫

�

h1
g1du −
∫

��
h2
g2du = −

∫

�

g1
h1du −
∫

��
g2
g2du = 〈−LNeuH , G〉.

For nonnegativeness,

〈H ,−L� H〉 = −
∫

�

h1
h1 du −
∫

��
h2
h2 du =

∫

�

|∇h1|2 du +
∫

��
|∇h2|2 du ≥ 0,

where the second equality above holds due to the second Green identity, see Appendix A,
Theorem A.2. ��
Lemma 7.6 The embedding H Neu

Fried ↪→ L2(Td) is compact.

Proof Let {Hn} be a bounded sequence in H Neu. Fix a sequence {Fn} of functions in DNeu

such that ‖Fn − Hn‖ → 0 when n → ∞ and {Fn} is also bounded in H Neu
Fried. Thus, to show

the compact embedding we need to prove that {Hn} has a convergent subsequence in L2(Td).
To get a convergent subsequence of {Hn}, it is sufficient to find a convergent subsequence of
{Fn} in L2(Td). Write Fn = fn1� + f̃n1�� , with fn ∈ C2(Td). Then,

〈Fn, Fn〉E(I−LNeu) = 〈Fn, Fn〉 + 〈Fn,−LNeuFn〉
= 〈 fn1� + f̃n1�� , fn1� + f̃n1��〉 + 〈 fn1� + f̃n1�� ,−
 fn1� − 
 f̃n1��〉.

Expanding the right hand side and using Green identity, see Appendix A, Theorem A.2, we
get that

∫

�

f 2n du +
∫

��
f̃n

2
du −

∫

�

fn
 fn du −
∫

��
f̃n

2

 f̃n du

= ‖ fn1�‖2 + ‖ f̃n1��‖2 + ‖∇ fn1�‖2 + ‖∇ f̃n1��‖2 .

Under the hypotheses of boundedness of the sequence {Fn} in the norm induced by
〈·, ·〉E(I−LNeu), the sequences {‖ fn1�‖2}, {‖ f̃n1��‖2}, {‖∇ fn1�‖2} and {‖∇ f̃n1��‖2} are
bounded. By the Rellich-Kondrachov Compactness Theorem, { fn1�}, { f̃n1��} have a com-
mon convergent subsequence in L2(Td). This implies that {Fn}has a convergent subsequence.
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Appendix A: Auxiliary Results

Proposition A.1 ([5]) Let G1, G2, G3 are continuous functions defined on the torus d-
dimensionalTd . Then, the application from D([0, T ],M) toR that associates to a trajectory
{πt : 0 ≤ t ≤ T } the number

sup
0≤t≤T

∣∣∣〈πt , G1〉 − 〈π0, G2〉 −
∫ t

0
〈πs, G3〉 ds

∣∣∣

is continuous in the Skorohod metric of D([0, T ],M).

Theorem A.2 (Green’s formulas, see for instance Appendix C of [3]) Let u, v ∈ C2(Ū ),
where U is a bounded open subset of Rn, and ∂U is C1. Denote by · the inner product in R

n,
and by ν the normal exterior unitary vector to U at ∂U. Then,

(i)
∫

U 
udx = ∫
∂U

∂u
∂ν

d S,

(ii)
∫

U ∇v · ∇u dx = − ∫
U u
v dx + ∫

∂U
∂u
∂ν

u d S,

(iii)
∫

U u
v − v
u dx = ∫
∂U u ∂u

∂ν
− v ∂u

∂ν
d S.
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