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Abstract

We consider a one-dimensional symmetric simple exclusion process in contact with slowed reservoirs:
at the left (resp. right) boundary, particles are either created or removed at rates given by α/n or (1 − α)/n
(resp. β/n or (1 − β)/n) where α, β > 0 and n is a scaling parameter. We obtain the non-equilibrium
fluctuations and from the latter we obtain also the non-equilibrium stationary fluctuations.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most difficult problems in the field of interacting particle systems is the rigorous
mathematical derivation of the non-equilibrium fluctuations of a system around its hydrodynamic
limit. The main difficulty one faces when trying to show that result is the fact that the systems
exhibit long-range space–time correlations and for that reason the non-equilibrium fluctuations
have only been derived for very few models, see, for example, [4,13,17] and references therein.
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Moreover, the study of non-equilibrium steady states has attracted a lot of attention over the last
twenty years and up to now the microscopic description of these states is still incipient, see, for
example, the review [3].

In [15], the non-equilibrium stationary fluctuations for the symmetric simple exclusion in
contact with fixed reservoirs were derived as a consequence of its non-equilibrium fluctuations.
In this article we examine the dynamical non-equilibrium fluctuations of the symmetric simple
exclusion process in contact with slowed reservoirs. In this model the exclusion dynamics is
superposed with a Glauber dynamics at each endpoint of a one-dimensional lattice with n − 1
points. According to this dynamics, particles perform continuous time symmetric random walks
in the discrete lattice {1, . . . , n − 1} which we call bulk, in such a way that two particles cannot
occupy the same site at a given time, the so-called exclusion rule, and at the endpoints of the
bulk, namely at the sites 1 and n − 1, particles can be injected and removed at a certain rate,
which is slowed with respect to the jump rate in the bulk.

Our main interest is the derivation of the non-equilibrium fluctuations and the non-equilibrium
stationary fluctuations for this model. We chose a regime in which the Glauber dynamics is
slowed enough so that the hydrodynamic behavior of the system is macroscopically different
from the case in which the Glauber dynamics is not slowed, as in [15], for instance. More
precisely, in [15] the Glauber dynamics is defined in such a way that particles can get in and
out of the system at rate α and β, respectively. In our model, these rates are slowed by a factor
depending on a parameter n. As a consequence of having slowed reservoirs, the hydrodynamical
profile in our model is different from the one of [15], the latter being a solution of the heat
equation with Dirichlet boundary conditions in which the solution is fixed at the boundaries
by ρ(t, 0) = α and ρ(t, 1) = β. In the model considered here, it has been proved in [1] that
the hydrodynamical profile is a solution of the heat equation with a type of Robin boundary
conditions in which the value of the profile at the boundaries is not fixed, but instead it fixes the
values of its spatial derivative, namely: ∂uρ(t, 0) = ρ(t, 0) − α and ∂uρ(t, 1) = β − ρ(t, 1),
see (2.4). These boundary conditions reflect the fact that the mass transfer, given by ∂uρ(t, ·), at
the boundaries is proportional to the difference of concentration. Contrarily to what happens
in the model of [15] which fixes the density at the reservoirs, in our case we do not have
ρ(t, 0) = α, so that the term ρ(t, 0) − α represents the difference of concentration between
the bulk and the boundary. We also note that in [1] it has been analyzed the hydrodynamic limit
for a generalization of our model. There, the rates at the reservoirs are slowed with respect to
the rate in the bulk by a factor nθ , where θ > 0, and our model corresponds to the choice
θ = 1. We note that, as proved in [1], for θ < 1 (resp. θ > 1) the hydrodynamical profile
is the unique weak solution of the heat equation with Dirichlet (resp. Neumann) boundary
conditions.

We would also like to refer other articles on this subject as, for example, [5–7], where the
authors consider models with slowed boundaries but one boundary acts only for the creation of
particles and the other boundary acts only on the annihilation of particles. As a consequence, the
density of particles in the reservoirs remains the same, and the hydrodynamical profile in such
case is a solution of the heat equation with Dirichlet boundary conditions.

We observe that when α = β = ρ, the reservoirs do not induce any current in the system
contrarily to what happens if, for example, α < β, since in this case particles can get in
the system more easily from the right boundary, and there is a current of particles, due to the
reservoirs, from the right reservoir to the left reservoir. In the case α = β = ρ, the Bernoulli
product measures given by νρ{η : η(x) = 1} = ρ are invariant and due to the absence of an
external current, they are called equilibrium measures. However, in the non-equilibrium scenario,
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that is when α ̸= β, this fact is no longer true. Nevertheless, there exists a unique stationary
measure that we denote by µss . Since α ̸= β, the reservoirs induce a current of particles in the
system and for that reason µss is a non-equilibrium stationary measure. This measure has been
partially characterized in, for example, [8] and it has been proved in [1, Theorem 2.2] that it is
associated to a profile ρ(·) which is stationary with respect to the hydrodynamic equation, so that
ρ(·) is linear and ρ(0) =

2α+β

3 and ρ(1) =
α+2β

3 . We emphasize here that, as one can see from
the previous properties on the stationary profile, in our model the density at the reservoirs is not
fixed as being α at u = 0 and β at u = 1.

To analyze the non-equilibrium fluctuations we consider a space of smooth test functions
f satisfying the boundary conditions of the homogeneous hydrodynamic equation, that is, the
hydrodynamic equation with α = β = 0. Our setting for initial states is quite general and can
be described as follows. We consider initial measures µn associated to a measurable profile
ρ0 : [0, 1] → [0, 1] in the sense of (2.3). Moreover, denoting for x ∈ {1, . . . , n − 1},
ρn

0 (x) = Eµ[η(x)], we ask ρn
0 (·) to be close to the given ρ0(·) as stated in Assumption 2.2

and we also ask that the corresponding space correlations to vanish as n → ∞, as stated in
Assumption 2.3. In this case we show that the sequence of density fluctuation fields is tight
and we characterize its limiting points so that, for a fixed time t , the solution is given by the
sum of a Gaussian random variable and the initial condition, see the relation (2.14). Besides
that, if on top of the aforementioned assumptions we ask that at the initial time the sequence of
density fields converges to a mean-zero Gaussian process, then the convergence takes place and
the limiting process is an Ornstein–Uhlenbeck process solution of (2.18). We also note that from
our results we can obtain the non-equilibrium fluctuations starting from a product measure with
slowly varying density. More precisely, if we fix a profile γ : [0, 1] → [0, 1] and consider µn

as the Bernoulli product measure such that µn{η : η(x) = 1} = γ ( x
n ), then the result also holds,

leading to an Ornstein–Uhlenbeck process in the limit.
As a consequence of the previous results we can derive the non-equilibrium stationary

fluctuations. For that purpose we just have to check that the imposed conditions on the initial
states are satisfied by the non-equilibrium stationary state and to recover the corresponding
covariance we perform a careful analysis of the time limit of the covariance obtained in the
general non-equilibrium scenario.

To prove the non-equilibrium fluctuations, since we consider the system starting from general
initial measures, which can develop long-range correlations, we need a sharp bound on the space
correlations in order to make our method work. For that purpose we make a careful analysis of
solutions of a bidimensional discrete scheme which has non-trivial boundary conditions.

As a future work we plan to derive our results for the models studied in [1] for the case θ ̸= 1.
The main difficulty we will face is the derivation of sharp bounds on the space correlations of
the system, and we will also need to perform a careful analysis of some additive functionals
associated to the system.

Here follows an outline of this article. In Section 2 we present the model, we recall its
hydrodynamic limits and we enunciate our results, namely: Theorem 2.4, where we state the
non-equilibrium fluctuations for general initial measures; Theorem 2.5, where we state the non-
equilibrium fluctuations when the limit is an Ornstein–Uhlenbeck process for which the initial
measures have to satisfy a Gaussian central limit theorem and, as a consequence of the previous
results; Theorem 2.8 where we state the non-equilibrium stationary fluctuations. In Section 3
we present some necessary results related to the hydrodynamic equation and its semigroup. In
Sections 4, 5 and 6 we prove, respectively, Theorems 2.5, 2.4 and 2.8. Section 7 is devoted to
tightness and Section 8 is devoted to space correlations estimates.
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2. Statement of results

2.1. The model

Given n ≥ 1 let Σn = {1, . . . , n − 1}. The symmetric simple exclusion process with slow
boundaries is a family of Markov processes {ηt : t ≥ 0} with state space Ωn := {0, 1}

Σn . We
denote the configurations of the state space Ωn by η, so that for x ∈ Σn , η(x) = 0 means that the
site x is vacant while η(x) = 1 means that the site x is occupied. We characterize this Markov
process in terms of its infinitesimal generator Ln as follows. Let Ln = Ln,o + Ln,b, where, for
a given function f : Ωn → R, we have

(Ln,o f )(η) =

n−2∑
x=1

(
f (ηx,x+1) − f (η)

)
, (2.1)

(Ln,b f )(η) =
1
n

∑
x∈{1,n−1}

[
rx (1 − η(x)) + (1 − rx )η(x)

](
f (σ xη) − f (η)

)
, (2.2)

with r1 = α and rn−1 = β. Above, for x ∈ {1, . . . , n − 2}, the configuration ηx,x+1 is obtained
from η by exchanging the occupation variables η(x) and η(x + 1), i.e.,

(ηx,x+1)(y) =

⎧⎨⎩η(x + 1) , if y = x ,
η(x) , if y = x + 1 ,
η(y) , otherwise,

and for x ∈ {1, n − 1} the configuration σ xη is obtained from η by flipping the occupation
variable η(x), i.e,

(σ xη)(y) =

{
1 − η(y) , if y = x ,
η(y) , otherwise.

The dynamics of this model can be described in words in the following way. In the bulk, particles
move accordingly to continuous time symmetric random walks under the additional exclusion
rule: whenever a particle tries to jump to an occupied site, such jump is suppressed. Additionally,
at the left boundary, particles can be created (resp. removed) at rate α/n (resp. at rate (1 − α)/n)
and at the right boundary, particles can be created (resp. removed) at rate β/n (resp. at rate
(1−β)/n). See Fig. 1 for an illustration. Note that when α = β = ρ, for which there is no external
current induced by the reservoirs, it is easy to check that the Bernoulli product measures given by
νρ{η : η(x) = 1} = ρ are invariant. However, when α ̸= β this is no longer true. Nevertheless,
for α ̸= β, there is a unique stationary measure of the system, that we denote by µss , which is
no longer a product measure. For further properties on this measure we refer the reader to, for
example, [8]. In particular, it is shown in [1, Theorem 2.2] that this measure is associated to a
profile ρ(·) which is stationary with respect to the hydrodynamic equation, so that ρ(·) is linear
and ρ(0) = α +

β−α

3 and ρ(1) = α + 2 β−α

3 . We observe that in the case where the reservoirs
are not slowed, as in [15], the stationary profile associated to the hydrodynamic equation, which
is the heat equation with Dirichlet boundary conditions, is the linear interpolation between α
and β.

2.2. Hydrodynamic limit

Fix a measurable density profile ρ0 : [0, 1] → [0, 1]. For each n ∈ N, let µn be a probability
measure on Ωn . We say that the sequence {µn}n∈N is associated to the profile ρ0(·) if, for any
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Fig. 1. Illustration of jump rates. The leftmost and rightmost rates are the entrance/exiting rates.

δ > 0 and any continuous function f : [0, 1] → R the following limit holds:

lim
n→∞

µn

[
η :

⏐⏐⏐1
n

n−1∑
x=1

f (
x
n

) η(x) −

∫
f (u) ρ0(u) du

⏐⏐⏐ > δ

]
= 0 . (2.3)

Fix T > 0. Let D([0, T ],Ωn) be the space of trajectories which are right continuous, with
left limits and taking values in Ωn . Denote by Pµn the probability on D([0, T ],Ωn) induced
by the Markov process with generator n2Ln and the initial measure µn and denote by Eµn the
expectation with respect to Pµn . From [1] we have the following result, known in the literature
as hydrodynamic limit.

Theorem 2.1 (Hydrodynamic Limit, [1]). Suppose that the sequence {µn}n∈N is associated to a
profile ρ0(·) in the sense of (2.3). Then, for each t ∈ [0, T ], for any δ > 0 and any continuous
function f : [0, 1] → R,

lim
n→+∞

Pµn

[
η· :

⏐⏐⏐1
n

n−1∑
x=1

f (
x
n

) ηtn2 (x) −

∫
f (u) ρ(t, u) du

⏐⏐⏐ > δ

]
= 0 ,

where ρ(t, ·) is the unique weak solution of the heat equation with Robin boundary conditions
given by⎧⎪⎪⎨⎪⎪⎩

∂tρ(t, u) = ∂2
uρ(t, u) , for t > 0 , u ∈ (0, 1) ,

∂uρ(t, 0) = ρ(t, 0) − α , for t > 0 ,
∂uρ(t, 1) = β − ρ(t, 1) , for t > 0 ,
ρ(0, u) = ρ0(u) , u ∈ [0, 1] .

(2.4)

2.3. Density fluctuations

2.3.1. The space of test functions
By f ∈ C∞([0, 1]) we mean that both f : [0, 1] → R as well as all its derivatives are

continuous functions in [0, 1]. Next, we define a subspace of C∞([0, 1]) which is intrinsically
associated to the limiting fluctuations, as we shall see later on. Inspired in [10,9], we define

Definition 2.1. Let S denote the set of functions f ∈ C∞([0, 1]) such that for any k ∈ N ∪ {0}

it holds that ∂2k+1
u f (0) = ∂2k

u f (0) and ∂2k+1
u f (1) = −∂2k

u f (1).

Notice that for k = 0, the conditions above are nothing but the boundary conditions that
appear in the homogeneous version of (2.4), i.e., imposing α = β = 0. For k = 1, the conditions
above are again these boundary conditions, but imposed for the Laplacian of f , and so on.
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Definition 2.2. Let Tt : S → S be the semigroup associated to (2.4) with α = β = 0. That
is, given f ∈ S , by Tt f we mean the solution of the homogeneous version of (2.4) with initial
condition f .

Rigorously speaking, above we should not have written Tt : S → S , since we do not
know yet if the image of Tt is contained in S . But this is true and it will be proved below in
Corollary 3.2.

Remark 2.2. Although not used in what follows, we observe that the solution of (2.4) can be
written as the sum of Ttρ0 and the stationary profile ρ(·), see also Corollary 3.5.

Definition 2.3. Let ∆ : S → S be the Laplacian operator which is defined on f ∈ S as

∆ f (u) =

⎧⎨⎩
∂2

u f (u) , if u ∈ (0, 1) ,
∂2

u f (0+) , if u = 0 ,
∂2

u f (1−) , if u = 1 .
(2.5)

Above, ∂2
u f (a±) denotes the side limits at the point a. The definition of the operator ∇ : S →

C∞[0, 1] is analogous.

We will also use the notations ∂u and ∂2
u for ∇ and ∆, respectively.

Definition 2.4. Let S ′ be the topological dual of S with respect to the topology generated by
the seminorms

∥ f ∥k = sup
u∈[0,1]

|∂k
u f (u)| , (2.6)

where k ∈ N ∪ {0}. In other words, S ′ consists of all linear functionals f : S → R which are
continuous with respect to all the seminorms ∥ · ∥k .

In order to avoid topological issues we fix once and for all a finite time horizon T . Let
D([0, T ],S ′) (resp. C ([0, T ],S ′)) be the space of trajectories which are right continuous, with
left limits (resp. continuous) and taking values in S ′.

2.3.2. The density fluctuation field
Fix an initial measure µn in Ωn . For x ∈ Σn and t ≥ 0, let

ρn
t (x) = Eµn [ηtn2 (x)] . (2.7)

We extend this definition to the boundary by setting

ρn
t (0) = α and ρn

t (n) = β , for all t ≥ 0 . (2.8)

A simple computation shows that ρn
t (·) is a solution of the discrete equation given by⎧⎨⎩∂tρ

n
t (x) =

(
n2Bnρ

n
t

)
(x) , x ∈ Σn , t ≥ 0 ,

ρn
t (0) = α , t ≥ 0 ,
ρn

t (n) = β , t ≥ 0 ,
(2.9)

where the operator Bn acts on functions f : Σn ∪ {0, n} → R as

(Bn f )(x) =

n∑
y=0

ξ n
x,y

(
f (y) − f (x)

)
, for x ∈ Σn , (2.10)
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where

ξ n
x,y =

⎧⎪⎨⎪⎩
1 , if |y − x | = 1 and x, y ∈ Σn ,
1
n
, if x = 1, y = 0 and x = n − 1 , y = n ,

0 , otherwise.

Remark 2.3. If µn := µss is the non-equilibrium stationary measure of the system, then the
profile ρn

t (·) defined in (2.7) is also stationary in time. In this context, we denote it by ρn
ss(·). As

one can see in [1, Lemma 3.1], ρn
ss(·) is given by

ρn
ss(x) = an x + bn for x ∈ Σn , (2.11)

where an =
β−α

3n−2 and bn = an(n − 1) + α. If we extend the definition of ρn
ss(·) to the boundary

of Σn , as in (2.8) we get that ρn
ss(·) is the stationary solution of (2.9).

Now we define the non-equilibrium density fluctuation field as follows.

Definition 2.5 (Density Fluctuation Field). We define the density fluctuation field Y n
·

as the
time-trajectory of linear functionals acting on functions f ∈ S as

Y n
t ( f ) =

1
√

n

n−1∑
x=1

f ( x
n )

(
ηtn2 (x) − ρn

t (x)
)
. (2.12)

2.3.3. Non-equilibrium fluctuations
In the next result we assume the following conditions on the initial state µn .

Assumption 2.1. For each n ∈ N, the measure µn is associated to a measurable profile
ρ0 : [0, 1] → [0, 1] in the sense of (2.3).

Assumption 2.2. There exists a constant C1 > 0 not depending on n such that

max
x∈Σn

⏐⏐ ρn
0 (x) − ρ0( x

n )
⏐⏐ ≤

C1

n
.

Assumption 2.3. There exists a constant C2 > 0 not depending on n such that for

ϕn
0 (x, y) = Eµn [η(x)η(y)] − ρn

0 (x)ρn
0 (y) (2.13)

it holds that

max
1≤x<y≤n−1

⏐⏐ϕn
0 (x, y)

⏐⏐ ≤
C2

n
.

For each n ≥ 1, let Qn be the probability measure on D([0, T ],S ′) induced by the density
fluctuation field Y n

·
and the measure µn .

Theorem 2.4 (Non-equilibrium Fluctuations). The sequence of measures {Qn}n∈N is tight
on D([0, T ],S ′) and all limit points Q are probability measures concentrated on paths Y·

satisfying

Yt ( f ) = Y0(Tt f ) + Wt ( f ) , (2.14)
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for any f ∈ S . Above Tt is the semigroup given in Definition 2.2 and Wt ( f ) is a mean zero
Gaussian variable of variance∫ t

0
∥∇Tt−r f ∥

2
L2(ρr )dr , (2.15)

where for r > 0

⟨ f, g⟩L2(ρr ) =
[
α + (1 − 2α)ρ(r, 0)

]
f (0)g(0) +

[
β + (1 − 2β)ρ(r, 1)

]
f (1)g(1)

+

∫ 1

0
2χ (ρ(r, u)) f (u)g(u) du ,

(2.16)

ρ(t, u) is the solution of the hydrodynamic equation (2.4), and χ (u) = u(1 − u). Moreover, Y0

and Wt are uncorrelated in the sense that EQ

[
Y0( f ) Wt (g)

]
= 0 for all f, g ∈ S .

Since Y0( f ) and Wt (g) are uncorrelated and have Gaussian distributions, it is natural to ask
if they are independent. However, this is not a simple question. One reason for this is the fact
that S is not a Hilbert space (see [12] for Gaussian measures on Hilbert spaces, for instance).
We believe that, in fact, Y0( f ) and Wt (g) are independent and we conjecture that this would be
enough to derive the uniqueness of Yt . If the latter holds, then the convergence of the sequence
of fluctuation fields would follow.

Theorem 2.5 (Ornstein–Uhlenbeck Limit). Assume that the sequence of initial density fields
{Y n

0 }n∈N converges, as n → ∞, to a mean-zero Gaussian field Y with covariance given on
f, g ∈ S by

lim
n→∞

Eµn

[
Y n

0 ( f )Y n
0 (g)

]
= E

[
Y0( f )Y0(g)

]
:= σ ( f, g) . (2.17)

Then, the sequence {Qn}n∈N converges, as n → ∞, to a generalized Ornstein–Uhlenbeck (O.U.)
process, which is the formal solution of the equation:

∂tYt = ∆Yt dt +
√

2χ (ρt )∇Wt , (2.18)

where Wt is a space–time white noise of unit variance and ∆, ∇ are given in Definition 2.3. As
a consequence, the covariance of the limit field Yt is given on f, g ∈ S by

E [Yt ( f )Ys(g)] = σ (Tt f, Ts g) +

∫ s

0
⟨∇Tt−r f,∇Ts−r g⟩L2(ρr )dr . (2.19)

In Section 5.1 we present the precise definition of such generalized O.U. process. As a
consequence of the previous result we obtain the non-equilibrium fluctuations starting from a
Local Gibbs state.

Corollary 2.6 (Local Gibbs State). Fix a Lipschitz profile ρ0 : [0, 1] → [0, 1] and suppose
to start the process from a Bernoulli product measure given by µn{η : η(x) = 1} = ρ0( x

n ).
Then, Theorem 2.5 remains in force and the covariance in this case is given on f, g ∈ S by

E [Yt ( f )Ys(g)] =

∫ 1

0
χ (ρ0(u)) Tt f (u)Ts g(u) du +

∫ s

0
⟨∇Tt−r f,∇Ts−r g⟩L2(ρr )dr , (2.20)

where ρ(t, u) is the solution of the hydrodynamic equation (2.4) with initial condition given by
ρ0(·).



T. Franco, P. Gonçalves and A. Neumann / Stochastic Processes and their Applications 129 (2019) 1413–1442 1421

Remark 2.7. From Theorem 2.5 to prove the last result, it is enough to show the convergence at
the initial time, that is:

lim
n→∞

Eµn

[
Y n

0 ( f )Y n
0 (g)

]
=

∫ 1

0
χ (ρ0(u)) f (u)g(u) du ,

which can be easily verified by means of the convergence of characteristic functions, in the same
way of [14, page 297, Cor. 2.2]. We leave the details to the reader.

2.3.4. Stationary fluctuations
Fix α ̸= β. Consider the process starting from the stationary measure µss . Note that the

density fluctuation field defined on (2.12) is simply given on f ∈ S by

Y n
t ( f ) =

1
√

n

n−1∑
x=1

f ( x
n )

(
ηtn2 (x) − ρn

ss(x)
)
, (2.21)

where ρn
ss(x) is defined in (2.7) with µn = µss and given explicitly in (2.11).

Theorem 2.8 (Stationary Fluctuations). Suppose to start the process from µss with α ̸= β. Then,
Y n converges to the centered Gaussian field Y with covariance given on f, g ∈ S by:

Eµss [Y ( f )Y (g)] =

∫ 1

0
χ (ρ(u)) f (u)g(u) du −

(β − α

3

)2
∫ 1

0
[(−∆)−1 f (u)]g(u) du

+
2(2β + α)(2β − 1)

3

∫
∞

0
Tt f (1)Tt g(1) dt +

2(β + 2α)(2α − 1)
3

∫
∞

0
Tt f (0)Tt g(0) dt ,

(2.22)

with ρ(u) =
(
β−α

3

)
u +

β+2α
3 , which is the stationary solution of (2.4).

The time integrals above are well defined in view of the fast decaying of the semigroup Tt ,
see Corollary 3.3.

We interpret the covariance formula above in the following way: the first term at the right
hand side of (2.22) corresponds to the covariance associated to ρ in the bulk; the second term
corresponds to the covariance associated to ∂uρ = (β − α)/3 also in the bulk. The third and
fourth terms are associated to ρ at the boundaries. Note that for the particular value α = 1/2 (or
β = 1/2) the corresponding boundary term vanishes.

3. Semigroup results

In this section we present some useful results about the hydrodynamic equation. We start with
the homogeneous version of (2.4), i.e., considering α = β = 0 as displayed below:⎧⎪⎪⎨⎪⎪⎩

∂tρ(t, u) = ∂2
uρ(t, u) , for t > 0 , u ∈ (0, 1) , (a)

∂uρ(t, 0) = ρ(t, 0) , for t > 0 , (b)
∂uρ(t, 1) = −ρ(t, 1) , for t > 0 , (c)
ρ(0, u) = ρ0(u) , u ∈ [0, 1] . (d)

(3.1)

Proposition 3.1. Suppose that ρ0 ∈ L2[0, 1]. Then the previous equation has a solution given
by

(Ttρ0)(u) :=

∞∑
n=1

an e−λn t Ψn(u) , (3.2)
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where {Ψn}n∈N is an orthonormal basis of L2[0, 1] constituted by eigenfunctions of the
associated Regular Sturm–Liouville problem (see (3.3)(a)–(c) below), and an are the Fourier
coefficients of ρ0 in that basis. In particular, we prove that λn ∼ n2π2, and as a consequence,
the series (3.2) converges exponentially fast, implying that (Ttρ0)(u) is smooth in space and time
for t > 0. Moreover, if we assume ρ0 ∈ S , then (Ttρ0)(u) will be C∞ in space and time for
t ≥ 0.

Proof. We start the proof with the associated Regular Sturm–Liouville Problem, for details on
this subject we refer to [2], for instance. For λ ∈ R, consider the following second-order ordinary
differential equation:⎧⎨⎩Ψ ′′(u) + λΨ (u) = 0 , u ∈ (0, 1) , (a)

Ψ (0) = Ψ ′(0) , (b)
Ψ (1) = −Ψ ′(1) . (c)

(3.3)

We claim that there is no solution for λ ≤ 0 aside from the null function. In the case
λ = 0, any solution Ψ of (3.3)(a) must be a line and from the boundary conditions (3.3)(b)
and (c), Ψ is the null function. In the case λ < 0, any solution of (3.3)(a) is of the form
Ψ (u) = C1eu

√
−λ

+ C2e−u
√

−λ, which is a consequence of the fact that the vectorial space of
solutions has dimension two. To ease notation, we write p =

√
−λ. Applying the boundary

conditions (3.3)(b) and (c) we obtain the linear system{
(1 − p)C1 + (1 + p)C2 = 0 , (a)
(ep

+ pep)C1 + (e−p
− pe−p)C2 = 0 , (b) (3.4)

whose discriminant is given by

∆(p) = (1 − p)2e−p
− (1 + p)2ep < 0 ,

for any p > 0. In such a case, we get C1 = C2 = 0, which means that Ψ (u) is the null function.
For λ > 0, the general solution of (3.3)(a) is of the form Ψ (u) = A sin(

√
λ u)+ B cos(

√
λ u) .

Then, the boundary condition (3.3)(b) implies B =
√
λ A . To avoid the null solution, we

henceforth impose A ̸= 0. On the other hand, the boundary condition (3.3)(c) gives

A sin(
√
λ) + A

√
λ cos(

√
λ) = −

[
A
√
λ cos(

√
λ) − A(

√
λ)2 sin(

√
λ)

]
,

which becomes the transcendental equation

tan(
√
λ) =

2
√
λ

λ− 1
, (3.5)

for which there exists a countable number of solutions.
For each n ∈ N, let λn be the solution of (3.5) satisfying (n − 1)π ≤

√
λn ≤ nπ , see Fig. 2.

Thus 0 < λ1 < λ2 < λ3 < · · · and λn ∼ n2π2 as n → ∞. Denote now

Ψn(u) = An sin(
√
λn u) + An

√
λn cos(

√
λn u) , (3.6)

where An is a normalizing constant in such a way Ψn has unitary L2[0, 1]-norm.
Note that Ψn is the solution of the Sturm–Liouville problem above associated to the eigenvalue

−λn . Moreover, the set {Ψn}n∈N is an orthonormal basis of L2[0, 1]. The orthogonality comes
from the fact the associated Sturm–Liouville operator is self-adjoint and a proof of it can be
found in [2, page 303, Theorem 1]. The proof of completeness can be found in [2, page 363,
Section 9].
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Fig. 2. In solid line, the graph of f (u) = tan(u). In dashed line, the graph of g(u) = 2u/(u2
− 1).

Since now we have an orthonormal basis of eigenfunctions, we will apply the heuristics of
the classical method of separation of variables to obtain the solution of (3.1)(a)–(d). We start
supposing that the solution has the form ρ(u, t) = Ψ (u)Φ(t). By (3.1)(a) we get that

Φ ′(t)
Φ(t)

= −λ =
Ψ ′′(u)
Ψ (u)

,

for some λ ∈ R. The first equality in the previous display gives Φ(t) = ce−λt for some c ∈ R,
while the second equality, under the boundary conditions in (3.1)(c) and (d), corresponds to
the Sturm–Liouville problem stated above. Therefore, the solution we seek will be of the form
ce−λn tΨn(u). Assuming that ρ0 ∈ L2[0, 1], the completeness of the basis permits to write

ρ0(u) =

∞∑
n=1

anΨn(u) , (3.7)

where an = ⟨ρ0 ,Ψn⟩ are the Fourier coefficients, and ⟨·, ·⟩ is the inner product w.r.t. L2[0, 1].
Now it is a simple task to check that the solution of (3.1)(a)–(d) is given by ρ(t, u) =∑

∞

n=1an e−λn t Ψn(u).
Under the assumption that ρ0 ∈ L2[0, 1], by the Cauchy–Schwarz inequality, we have that

|an| = |⟨ρ0,Ψn⟩L2[0,1]| ≤ ∥ρ0∥L2[0,1]. Therefore, the Fourier coefficients are bounded in absolute
value. In view of λn ∼ n2π2, this implies that the series in (3.2) converges exponentially fast
for t > 0, leading to the smoothness in space and time of (Ttρ0)(u) for t > 0. In order to
achieve the smoothness in space and time of (Ttρ0)(u) for t ≥ 0, the previous boundedness on
the coefficients an is not enough: the assumption ρ0 ∈ S now plays a role. Recalling that the
associated Sturm–Liouville operator d2/du2 is self-adjoint, we have that

an = ⟨ρ0,Ψn⟩L2[0,1] =
1

−λn
⟨ρ0,−λnΨn⟩L2[0,1] =

1
−λn

⟨d2ρ0

du2 ,Ψn

⟩
L2[0,1] . (3.8)

Again by the Cauchy–Schwarz inequality, we conclude that |an| ≤
1
λn

∥
d2ρ0
du2 ∥L2[0,1] ≤

c1
n2 for

some constant c1 > 0 which does not depend on n. This estimate on an assures that the series
in (3.7) converges in the supremum norm, which can be used to show that Ttρ0 defined in (3.2)
is C0 in space and time for t ≥ 0 (details are omitted here). Repeating the trick of (3.8) and
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noticing that d2ρ0
du2 ∈ S , we obtain that

an ==
1

−λn

⟨d2ρ0

du2 ,Ψn

⟩
L2[0,1] =

1
(−λn)2

⟨d2ρ0

du2 ,−λnΨn

⟩
L2[0,1]

=
1

(−λn)2

⟨d4ρ0

du4 ,Ψn

⟩
L2[0,1].

The Cauchy–Schwarz inequality then yields |an| ≤ ∥
d4ρ0
du4 ∥L2[0,1]/λ

2
n ≤

c2
n4 for some constant

c2 > 0 which does not depend on n. This can be used to show that Ttρ0 is C1 in space and time
for t ≥ 0. With this idea in mind, an induction procedure can be made, showing that Ttρ0 is C∞

in space and time for t ≥ 0. This completes the proof. □

The previous proposition implies the next results, which play an important role when showing
the uniqueness of the associated generalized Ornstein–Uhlenbeck process of Theorem 2.5.

Corollary 3.2. If f ∈ L2[0, 1], then for any t > 0 we have that Tt f ∈ S and ∆Tt f ∈ S .

Proof. Since Ψn is a linear combination of sine and cosine, and the conditions of Definition 2.1
are linear, then Ψn ∈ S for all n ∈ N. This property is inherited by Tt f and ∆Tt f due to the
explicit formula (3.2) and its exponential convergence. □

Corollary 3.3. For any f ∈ L2[0, 1], we have limt→∞Tt f = 0 in the supremum norm.
Moreover, this convergence is exponentially fast.

Proof. This is a consequence of the formula (3.2) and the fact obtained in the proof
of Proposition 3.1 that the Fourier coefficients an are bounded under the assumption that
f ∈ L2[0, 1]. □

Note that, in particular, Corollaries 3.2 and 3.3 hold for any f ∈ S .

Corollary 3.4. The operator ∆ : S → S is a bijection. Moreover, for any f ∈ S ,

(a) (−∆)−1 f (u) =

∫
+∞

0
Tt f (u) dt ,

(b) lim
t→∞

∫ t

0

∫ 1

0
2

(
Tr f (u)

)2 du dr =

∫ 1

0
f (u)(−∆)−1 f (u) du .

Proof. First of all, notice that all the time integrals above are well defined due to Corollary 3.3.
We start by showing (a). Let f ∈ S and write f =

∑
∞

n=1anΨn . We claim that

∆

∫
∞

0
Tt f (u) dt = ∆

∫
∞

0

( ∞∑
n=1

ane−λn tΨn(u)
)

dt = ∆

∞∑
n=1

(∫
∞

0
ane−λn tΨn(u)

)
dt

= ∆

∞∑
n=1

(an

λn

)
Ψn(u) =

∞∑
n=1

(an

λn

)
∆Ψn(u) = −

∞∑
n=1

anΨn(u) = − f (u) ,

which will prove (a). Let us make rigorous each step of the sequence of equalities
above.
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The first equality is due to Proposition 3.1. For the second equality, denote fM (t) =∑M
n=1ane−λn tΨn(u). To interchange the sum and the integral, we want to apply the Dominated

Convergence Theorem, so it is necessary to prove that | fM (t)| ≤ g(t) for some non-negative
function g such that

∫
∞

0 g(t)dt < ∞. Recall from the proof of Proposition 3.1 that, for each
k ∈ N there exists c1 > 0 such that |an| ≤ c1/n2. Thus,

| fM (t)| ≤

M∑
n=1

|ane−λn tΨn(u)| ≤ e−λ1t
∞∑

n=1

C
n2 ,

which gives the desired bound and guarantees the second equality. The third equality is simply
integration. In the fourth equality we have used the fast decaying of an that we obtained in
the proof of Proposition 3.1. In the fifth equality, have used the fact that −λn is the eigenvalue
associated to the eigenfunction Ψn . This finishes the proof of (a).

Now we prove (b). Since {Ψn}n∈N is an orthonormal basis of L2[0, 1], again by Proposition 3.1
we have that ⟨Tr f, Tr f ⟩ = ⟨ f, T2r f ⟩. Therefore,∫ t

0

∫ 1

0
2

(
Tr f (u)

)2 du dr =

∫ t

0

∫ 1

0
2 f (u)T2r f (u) du dr =

∫ 2t

0

∫ 1

0
f (u)Tr f (u) du dr.

Now, first apply Fubini’s Theorem, then take the limit as t → ∞ and recall (a). This finishes the
proof. □

Corollary 3.5. Let ρ(·) be the stationary solution of (2.4). Then, the solution ρ(t, ·) of (2.4) is
given by

ρ(t, u) = ρ(u) + Tt
(
ρ0 − ρ

)
(u) , u ∈ [0, 1] , t ≥ 0 ,

where Tt is the semigroup previously described. In particular, the solution ρ(t, ·) of (2.4) is
smooth in space and time.

Proof. First we note that from [1, Theorem 2.2] we have, for u ∈ [0, 1], that

ρ(u) =

(β − α

3

)
u +

(
α +

β − α

3

)
.

Then, the time derivative of the function ρ(·) is null, as well as its second derivative in space. On
other hand, ρ(·) satisfies the required non-homogeneous boundary conditions. The result then
easily follows by a direct verification. □

Corollary 3.6. Let ρ(t, ·) be the solution of (2.4). Then, for any u ∈ [0, 1],

lim
t→∞

ρ(t, u) = ρ(u) ,

in the supremum norm.

Proof. Immediate from Corollaries 3.5 and 3.3. □

4. Proof of Theorem 2.4

In this section we prove Theorem 2.4 which is the main result of this paper. We start with the
martingale decomposition of the process.
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4.1. Martingale decomposition

Let φ : [0, T ] × [0, 1] → R be a test function. We refer to [14, p. 330] for a proof that

Mn
t (φ) := Y n

t (φ) − Y n
0 (φ) −

∫ t

0
Λn(φ) ds , (4.1)

N n
t (φ) := (Mn

t (φ))2
−

∫ t

0
Γ n

s (φ) ds (4.2)

are martingales with respect to the natural filtration Ft := σ (ηs : s ≤ t), where

Λn(φ) := (∂s + n2Ln)Y n
s (φ) ,

Γ n
s (φ) := n2LnY

n
s (φ)2

− 2Y n
s (φ)n2LnY

n
s (φ) .

By a long but elementary computation,

Λn(φ) =Y n
s (∂sφ) +

1
√

n

n−1∑
x=1

∆nφ( x
n )

(
ηsn2 (x) − ρn

s (x)
)

ds

+
√

n
[
∇

+

n φ(0) − φ
(1

n

)](
ηsn2 (1) − ρn

s (1)
)

+
√

n
[
φ( n−1

n ) + ∇
−

n φ(1)
](
ηsn2 (n − 1) − ρn

s (n − 1)
)
.

(4.3)

Note that the second term at the right hand side of the previous expression is Y n
s (∆nφ). Above,

we have used the notations

∆nφ(x) = n
[
φ( x+1

n ) + φ( x−1
n ) − 2φ( x

n )
]
,

∇
+

n φ(x) = n
[
φ( x+1

n ) − φ( x
n )

]
and ∇

−

n φ(x) = n
[
φ( x

n ) − φ( x−1
n )

]
.

Also by direct computations we get that

Γ n
s (φ) =

1
n

n−2∑
x=1

(
∇

+

n φ
( x

n

))2(
ηsn2 (x) − ηsn2 (x + 1)

)2

+

(
φ
(1

n

))2(
α − 2αηsn2 (1) + ηsn2 (1)

)
+

(
φ
(n − 1

n

))2

(
β − 2βηsn2 (n − 1) + ηsn2 (n − 1)

)
.

(4.4)

4.2. Proof of Theorem 2.4

Lemma 4.1. For φ ∈ S , the sequence of martingales {Mn
t (φ); t ∈ [0, T ]}n∈N converges in

the topology of D([0, T ],R), as n → ∞, towards a mean-zero Gaussian process Wt (φ) with
quadratic variation given by∫ t

0

{ ∫ 1

0
2χ (ρ(r, u))

(
∇φ(u)

)2du+
[
α + (1 − 2α)ρ(r, 0)

](
φ(0)

)2

+
[
β + (1 − 2β)ρ(r, 1)

](
φ(1)

)2
}

dr ,

(4.5)

where ρ(t, u) is the solution of the hydrodynamic equation (2.4).
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Proof. To prove this lemma we can apply [11, Theorem VIII.3.12]. We note that by Assertion
VIII.3.5 in [11], both [δ̂5-D] and (3.8) are consequence of

lim
n→∞

Eµn

[
sup
s≤t

⏐⏐Mn
s (φ) − Mn

s−(φ)
⏐⏐] = 0.

The last result can be proved by noting that when a jump occurs, the configuration η only changes
its value in at most two sites, hence we have that

sup
s≤t

⏐⏐Mn
s (φ) − Mn

s−(φ)
⏐⏐ = sup

s≤t

⏐⏐Y n
s (φ) − Y n

s−(φ)
⏐⏐ ≤

2∥φ∥∞√
n ,

from where the limit follows. Moreover, [γ5-D] (defined in 3.3 page 470 of [11]) is a consequence
of the following argument. In view of (4.4) and recalling Assumption 2.1, we may apply
[1, Lemma 5.7] and [1, Theorem 2.7] and standard arguments to conclude that∫ t

0
Γ n

s (φ)ds , (4.6)

which is an additive functional of the exclusion process ηt , converges in distribution, as n → ∞,
towards (4.5). Moreover, since the expression above is deterministic, the convergence holds, in
fact, in probability. This finishes the proof. □

Remark 4.2. We point out that expression (4.5) simply writes as∫ t

0
∥∇φ∥

2
L2(ρr ) dr ,

provided φ ∈ S (φ(0) = ∇φ(0) and φ(1) = −∇φ(1)) for any time r ∈ [0, T ], see (2.16).

As a consequence of the previous result, for each t , the random variable Wt (φ) is Gaussian
with mean zero and with variance

∫ t
0 ∥∇φ∥

2
L2(ρr )

dr .

Moreover, the random variables Wt ( f ) and Y0(g) are uncorrelated for any f, g ∈ S . In fact,
E

[
Wt ( f )Y0(g)

]
= E

[
Y0(g) E

[
Wt ( f )|F0

]]
= 0, since W0( f ) = 0.

The proof of tightness is postponed to Section 7. From this point on (in this subsection), fix
t ∈ [0, T ] and restrict the processes to the time interval [0, t]. Choose now the particular test
function

φ(u, s) := (Tt−s f )(u) , (4.7)

where Tt is given in Definition 2.2 and f ∈ S . Note that φ is well-defined for all s ∈ [0, t] and
that φ ∈ S in view of Corollary 3.2. For this choice of the test function, (4.3) writes as

Λn(Tt−s f ) =Y n
s

(
∆nTt−s f − ∆Tt−s f

)
+ Y n

s

(
∆Tt−s f + ∂s Tt−s f

)
+

√
n

(
∇

+

n (Tt−s f )(0) − (Tt−s f )
(1

n

))
·
(
ηsn2 (1) − ρn

s (1)
)

+
√

n
(
∇

−

n (Tt−s f )(1) − (Tt−s f )
(n − 1

n

))
·
(
ηsn2 (n − 1) − ρn

s (n − 1)
)
.

(4.8)

We claim that Λn(Tt−s f ) goes to zero as n → ∞. Let us examine the four terms at the right
hand side of (4.8). By Proposition 3.1, we know that Tt−s f is smooth, hence ∆nTt−s f −∆Tt−s f
is of order O(n−2), which implies that Y n

t (∆nTt−s f − ∆Tt−s f ) = O(n−3/2). The second term
at the right hand side of (4.8) is identically zero, since ∂s Tt−s f = −∆Tt−s f . The third and
fourth terms at the right hand side of (4.8) go to zero as n → ∞, because Tt−s f satisfies the
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boundary conditions (3.1)(b) and (c), respectively. This proves the claim, which implies also
that

∫ t
0 Λn(Tt−s f ) ds goes to zero. In other words, by choosing (4.7), the integral term in (4.1)

vanishes in the limit as n → ∞.
Let us now look at (4.1) for a fixed time t ∈ [0, T ] and for the choice (4.7). As a consequence

of the previous results, together with tightness which is proved in Section 7, any limit point of
the sequence {Y n

t ( f )}n∈N must be of the form

Yt ( f ) = Y0(Tt f ) + Wt ( f ) , (4.9)

where Y0(Tt f ) and Wt ( f ) are uncorrelated and Wt ( f ) is a mean zero Gaussian variable of
variance given by (2.15). This finishes the proof of Theorem 2.4.

5. Proof of Theorem 2.5

In this section we start by showing the uniqueness of the Ornstein–Uhlenbeck process solution
of (2.18) by a martingale problem and then we prove Theorem 2.5.

5.1. Uniqueness of the Ornstein–Uhlenbeck process

Proposition 5.1. There exists a unique random element Y taking values in the space
C ([0, T ],S ′) such that:

(i) For every function f ∈ S ,

Wt ( f ) := Yt ( f ) − Y0( f ) −

∫ t

0
Ys(∆ f )ds , (5.1)

Nt ( f ) :=
(
Wt ( f )

)2
−

∫ t

0
∥∇ f ∥

2
L2(ρr ) dr (5.2)

are martingales with respect to the filtration Ft := σ (Ys(g); s ≤ t, g ∈ S ).
(ii) Y0 is a Gaussian field of mean zero and covariance given on f, g ∈ S by

E
[
Y0( f )Y0(g)

]
= σ ( f, g) , (5.3)

where σ was defined in (2.17).

Under the conditions above we have that: for each f ∈ S , the process {Yt ( f ) ; t ≥ 0} is
Gaussian. Moreover, for s < t the distribution of Yt ( f ) conditionally to Fs is normal of mean
Ys(Tt−s f ) and variance

∫ t
s ∥∇Tt−r f ∥

2
L2(ρr )

dr.

Before proving the proposition we make some comments. The existence of the random
element Y is a consequence of tightness, which is proved in Section 7. The fact that (5.1) and
(5.2) are martingales motivates us to call the random element Y the formal solution of (2.18).
From this formal equation (2.18) the random element Y coins the name generalized Ornstein–
Uhlenbeck. We strongly emphasize that Eq. (2.18) is solely formal and that the norm ∥ · ∥L2(ρr )
plays a role in the definition of this generalized Ornstein–Uhlenbeck process.

The next lemma is the key in the proof of Proposition 5.1.

Lemma 5.2. For any f ∈ S , Tt+ε f − Tt f = ε∆Tt f + o(ε, t), where o(ε, t) denotes a function
in S such that limε↘0

o(ε,t)
ε

= 0 holds in the topology of S . Moreover, the limit is uniform in
compact time intervals.
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Proof. The proof is a direct consequence of the explicit formula (3.2). Notice that the inclusion
o(ε, t) ∈ S is immediate from Corollary 3.2. Details are omitted here. □

Proof of Proposition 5.1. The structure of proof is the same of [14, page 307]. By (5.1) and
(5.2), we have that

Wt ( f ) ·

(
1
t

∫ t

0
∥∇ f ∥

2
L2(ρr )dr

)−
1
2

is a standard Brownian motion.
Fix f ∈ S and s > 0. By Itô’s Formula (see [19, Theorem. 3.3 and Cor. 3.3]) and the

previous comment, the process {X s
t ( f ) ; t ≥ s} defined by

X s
t ( f ) = exp

{
1
2

∫ t

s
∥∇ f ∥

2
L2(ρr )dr + i

(
Yt ( f ) − Ys( f ) −

∫ t

s
Yr (∆ f ) dr

)}
is a (complex) martingale. Fix S > 0. We claim now that the process {Z t ; 0 ≤ t ≤ S} defined
by

Z t = exp
{

1
2

∫ t

0
∥∇TS−r f ∥

2
L2(ρr ) dr + i Yt (TS−t f )

}
is also a complex martingale. To prove this claim, consider two times 0 ≤ t1 < t2 ≤ S and a
partition of the interval [t1, t2] in n intervals of equal size, that is, t1 = s0 < s1 < · · · < sn = t2 ,
with s j+1 − s j = (t2 − t1)/n. Observe that

n−1∏
j=0

X
s j
s j+1 (TS−s j f )

= exp
{ n−1∑

j=0

1
2

∫ s j+1

s j

∥∇TS−s j f ∥
2
L2(ρr )dr

+ i
n−1∑
j=0

(
Ys j+1 (TS−s j f ) − Ys j (TS−s j f ) −

∫ s j+1

s j

Yr (∆TS−s j f ) dr
)}
.

As n → +∞, the first sum inside the exponential above converges to

1
2

∫ t2

t1

∥∇TS−r f ∥
2
L2(ρr ) dr ,

due to the smoothness of the semigroup Tt . The second sum inside the exponential can be
rewritten as

Yt2 (T
S−t2+

(t2−t1)
n

f ) − Yt1 (TS−t1 f )

+

n−1∑
j=1

(
Ys j (TS−s j−1 f − TS−s j f ) −

∫ s j+1

s j

Yr (∆TS−s j f ) dr
)
. (5.4)

Note that, by Lemma 5.2 the previous sum can be written as
n−1∑
j=1

(∫ s j+1

s j

(
Ys j (∆TS−s j f ) − Yr (∆TS−s j f )

)
dr + Ys j

(
o( t2−t1

n , S − s j )
))
.
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Keep in mind that f ∈ S and t ∈ [0, T ]. By Proposition 3.1, the function t ↦→ Tt f is C∞,
which in particular says that the function t ↦→ ∆Tt f is uniformly continuous. This, together
with Y ∈ C ([0, T ],S ′) imply that (s, t) ↦→ Ys(∆Tt f ) is continuous for fixed f ∈ S . The
time horizon considered is the compact set [0, T ], hence the function (s, t) ↦→ Ys(∆Tt f ) is
uniformly continuous for fixed f ∈ S .

The last uniform continuity shows that the integrand function above vanishes and from this we
obtain that (5.4) converges almost surely to Yt2 (TS−t2 f ) − Yt1 (TS−t1 f ) . Hence we have proved
that

lim
n→+∞

n−1∏
j=0

X
s j
s j+1 (TS−s j f )

= exp
{

1
2

∫ t2

t1

∥∇TS−r f ∥
2
L2(ρr )dr + i

(
Yt2 (TS−t2 f ) − Yt1 (TS−t1 f )

)}
,

which is equal to
Zt2
Zt1

almost surely. Since the complex exponential is bounded, the Dominated
Convergence Theorem gives additionally the L1 convergence, which implies

E
[
G

Z t2

Z t1

]
= lim

n→+∞
E

[
G

n−1∏
j=0

X
s j
s j+1 (TS−s j f )

]
,

for any measurable bounded function G. Take G bounded and Ft1 -measurable. Since for any
f ∈ S the process X s

t ( f ) is a martingale, we take the conditional expectation with respect to
Fsn−1 , and we are led to

E
[
G

n−1∏
j=0

X
s j
s j+1 (TS−s j f )

]
= E

[
G

n−2∏
j=0

X
s j
s j+1 (TS−s j f )

]
.

By induction, we conclude that

E
[
G

Z t2

Z t1

]
= E

[
G

]
,

for any G bounded and Ft1-measurable, proving that {Z t ; t ≥ 0} is, in fact, a martingale. From
E [Z t |Fs] = Zs , we get

E
[
exp

{1
2

∫ t

0
∥∇TS−r f ∥

2
L2(ρr )dr + i Yt (TS−t f )

}⏐⏐⏐Fs

]
= exp

{
1
2

∫ s

0
∥∇TS−r f ∥

2
L2(ρr )dr + i Ys(TS−s f )

}
,

which in turn gives

E
[
exp

{
i Yt (TS−t f )

}⏐⏐Fs

]
= exp

{
−

1
2

∫ t

s
∥∇TS−r f ∥

2
L2(ρr )dr + i Ys(TS−s f )

}
.

Note that TS−s f = Tt−s TS−t f . Thus, writing g = TS−t f we get

E
[
exp

{
i Yt (g)

}⏐⏐Fs

]
= exp

{
−

1
2

∫ t

s
∥∇Tt−r g∥

2
L2(ρr )dr + i Ys(Tt−s g)

}
.
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Replacing back g by λ f , where λ ∈ R, we obtain

E
[
exp

{
i λYt ( f )

}⏐⏐Fs

]
= exp

{
−
λ2

2

∫ t

s
∥∇Tt−r f ∥

2
L2(ρr )dr + i λYs(Tt−s f )

}
,

which means that, conditionally to Fs , the random variable Yt ( f ) has Gaussian distribution
of mean Ys(Tt−s f ) and variance

∫ t
s ∥∇Tt−r f ∥

2
L2(ρr )

dr . Since the distribution at time zero is
determined by (5.3), by successively conditioning we get the uniqueness of the finite dimensional
distributions of the process {Yt ( f ) ; t ∈ [0, T ]}, which assures uniqueness in law of the random
element Y . □

5.2. Characterization of limit points

We prove here that any limit point of {Qn}n∈N is concentrated on solutions of (2.18), i.e., the
limit satisfies (i) and (ii) of Proposition 5.1. Fix a test function f ∈ S (note that f does not
depend on time) and let us look at the martingale (4.1) taking φ = f . Lemma 4.1 guarantees
the convergence of the martingale Mn

t ( f ) towards a mean-zero Gaussian process Wt ( f ),
whose quadratic variation is given by

∫ t
0 ∥∇ f ∥

2
L2(ρr )

dr , see Remark 4.2. By the hypothesis
of Theorem 2.5, {Y n

0 }n∈N converges, as n → ∞, to a mean-zero Gaussian field Y0 with
covariance given by (2.17). Thus {Y n

0 ( f )}n∈N converges, as n → ∞, to Y0( f ) as well. By
tightness proved in Section 7, we can pick a subsequence of N such that {Y n

t ; t ∈ [0, T ]}n∈N
is convergent in the Skorohod topology of D([0, T ],S ′) as n → ∞. Therefore, {Y n

t ( f ); t ∈

[0, T ]}n∈N also converges in the Skorohod topology of D([0, T ],R), as n → ∞. By abuse of
notation, we denote this subsequence by n. Let us look to the integral part of the martingale
Mn

t ( f ). Due to (4.3),∫ t

0
n2LnY

n
s ( f ) ds =

∫ t

0

{
Y n

s (∆ f ) + Rn
s ( f )

}
ds ,

where

Rn
s ( f ) = Y n

s

(
∆n f − ∆ f

)
+

√
n

(
∇

+

n f (0) − f
(1

n

))
·
(
ηsn2 (1) − ρn

s (1)
)

+
√

n
(
∇

−

n f (1) + f
(n − 1

n

))
·
(
ηsn2 (n − 1) − ρn

s (n − 1)
)
.

Since f ∈ S , it follows that

lim
n→∞

Rn
s ( f ) = 0 .

On the other hand, by Corollary 3.2 we know that ∆ f ∈ S , which together with the
convergence of Y n

t gives us that

lim
n→∞

∫ t

0
Y n

s (∆ f ) ds =

∫ t

0
Ys(∆ f ) ds ,

so that

Wt ( f ) = Yt ( f ) − Y0( f ) −

∫ t

0
Ys(∆ f ) ds ,

concluding the characterization of limit points.

Proof of Theorem 2.5. The convergence follows from Proposition 5.1, the previous charac-
terization of limit points and tightness proved in Section 7. It remains only to prove that the
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covariance is as given in (2.19). By (2.14) we have that (2.19) is a consequence of the fact that Wt
is Gaussian of variance (2.15) and that Y0 and Wt are uncorrelated. This finishes the proof. □

Remark 5.3. We note that above we took test functions in the space S . These functions have
boundary conditions of Robin type, namely the same boundary conditions that appear at the level
of the hydrodynamics but taking the parameters α = β = 0. If we do not take S as the space of
test functions then the boundary terms in Rn

t might not vanish and then we would have to control
their variance. We believe that the variance of these terms is of order one and for that reason in
(5.1) there would be extra terms corresponding to those boundary terms. In that case we would
need to derive another characterization of the Ornstein–Uhlenbeck process.

6. Proof of Theorem 2.8

Before presenting the proof we give some description about the argument. First we check that
the conditions that we impose on the initial measure in Theorem 2.4 are fulfilled by the stationary
measure µss . Then, from Theorem 2.4 we conclude that the sequence {Yn}n∈N is tight and that
all limits points satisfy (2.14) where Wt ( f ) is a mean zero Gaussian variable of variance∫ t

0

∫ 1

0
2χ (ρ(u))(∇Ts f (u))2 du ds

+

∫ t

0

[
α − (1 − 2α)ρ(0)

]
(∇Ts f (0))2

+
[
β − (1 − 2β)ρ(1)

]
(∇Ts f (1))2 ds.

(6.1)

Then, we take Yt a solution of (2.18), whose covariance is given by (2.19), we compute the
asymptotic behavior of this covariance and we prove that it converges to (2.22). This, together
with the fact that Corollary 3.5 implies that limt→∞Tt f = 0 in the L2[0, 1] norm, we conclude
that the variance of Wt ( f ) converges to (2.22). As a consequence of these arguments the proof
ends.

Before checking that the stationary measures satisfy the assumptions of Theorem 2.4, we
make an observation about the sequence ρn

ss(x). Consider the stationary solution of (2.4) denoted
by ρ : [0, 1] → [0, 1]. By [1, Theorem 2.2] ρ(·) is given by ρ(u) = a u + b, for all u ∈ [0, 1],
where a =

β−α

3 , and b = α +
β−α

3 . By [1, Lemma 3.1], we have
⏐⏐ρn

ss(x) − ρ( x
n )

⏐⏐ ≤
C
n , for all

x ∈ Σn , where C does not depend on x . As we extended ρn
ss(·) to 0 and n as ρn

ss(0) = α and
ρn

ss(n) = β, this convergence is not true at x = 0 and x = n. But it is not a problem in this paper,
here it is enough to have the convergence in (0, 1). Moreover, if we needed the convergence in the
whole interval [0, 1], we just had to consider the extension of ρn

ss(·) to 0 and n as ρn
ss(0) = bn and

ρn(n)ss = ann +bn . From the previous considerations, Assumption 2.2 is trivially satisfied when
µn coincides with the stationary measure µss . Moreover, from [1, Lemma 3.2] Assumption 2.3 is
also valid in this case. From the previous observations we conclude that the result of Theorem 2.4
is true when we start the system from the stationary measure. Now, from Theorem 2.4 we know
that the sequence {Yn}n∈N is tight, all limits points satisfy (2.14) and Wt ( f ) is a mean zero
Gaussian variable of variance (6.1). Now we take Yt a solution of (2.18), whose covariance is
given by (2.19) and we compute the asymptotic behavior of this covariance. We claim that it
converges to (2.22). Note that by Corollary 3.5 limt→∞Tt f = 0 in the L2[0, 1] norm. To prove
the claim, we note that by the polarization identity it is enough to analyze the variance. For this
purpose, fix f ∈ S and take g = f and s = t in (2.19) to have that:

E[(Yt ( f ))2] = σ (Tt f, Tt f ) +

∫ t

0
⟨∇Tt−r f,∇Tt−r f ⟩L2(ρr )dr ,
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where Tt is given in Definition 2.2. By Corollary 3.3, Tt f vanishes as t → +∞, hence the first
term at the right hand side of the previous expression converges to zero, as t → ∞.

Now we analyze the remaining term that we denote by Rt ( f ) which, by (2.16), is given by∫ t

0

∫ 1

0
2χ (ρ(r, u))(∇Tt−r f (u))2 du dr (6.2)

+

∫ t

0

(
α − (1 − 2α)ρ(r, 0)

)
(∇Tt−r f (0))2 dr (6.3)

+

∫ t

0

(
β − (1 − 2β)ρ(r, 1)

)
(∇Tt−r f (1))2 dr. (6.4)

We start by dealing with the first term above. Performing an integration by parts in space we can
rewrite (6.2) as:∫ t

0
2χ (ρ(r, u))∇Tt−r f (u)Tt−r f (u)

⏐⏐u=1
u=0 dr

−

∫ t

0

∫ 1

0
2∇

(
χ (ρ(r, u))∇Tt−r f (u)

)
Tt−r f (u) du dr .

Since Tt is the semigroup associated to the Laplacian operator of Definition 2.2, then ∂u Tt−r f (0)
= Tt−r f (0) and ∂u Tt−r f (1) = −Tt−r f (1). As a consequence, the first term in last expression is
equal to

−

∫ t

0

(
2χ (ρ(r, 1))(Tt−r f (1))2

+ 2χ (ρ(r, 0))(Tt−r f (0))2
)

dr , (6.5)

while the second term is equal to

−

∫ t

0

∫ 1

0
2∇χ (ρ(r, u)) ∇Tt−r f (u) Tt−r f (u) du dr

−

∫ t

0

∫ 1

0
2χ (ρ(r, u)) ∆Tt−r f (u) Tt−r f (u) du dr.

Since 2 f ∂u f = ∂u f 2, last expression becomes

−

∫ t

0

∫ 1

0
∇χ (ρ(r, u))∇(Tt−r f (u))2du dr −

∫ t

0

∫ 1

0
2χ (ρ(r, u))(∆Tt−r f (u))Tt−r f (u)du dr.

On the other hand since ∂r Tt−r f = −∆Tt−r f , we can rewrite the last expression as:

−

∫ t

0

∫ 1

0
∇χ (ρ(r, u))∇(Tt−r f (u))2du dr +

∫ t

0

∫ 1

0
2χ (ρ(r, u))∂r Tt−r f (u)Tt−r h(u)du dr,

which equals to

−

∫ t

0

∫ 1

0
∇χ (ρ(r, u))∇(Tt−r f (u))2 du dr +

∫ t

0

∫ 1

0
χ (ρ(r, u))∂r (Tt−r f (u))2 du dr .
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Integrating by parts in time the second term above, we write the last expression as

−

∫ t

0

∫ 1

0
∇χ (ρ(r, u)) ∇(Tt−r f (u))2 du dr

+

∫ 1

0
χ (ρ(t, u))( f (u))2du −

∫ 1

0
χ (ρ(0, u))(Tt f (u))2du

−

∫ t

0

∫ 1

0
∂rχ (ρ(r, u))(Tt−r f (u))2 du dr .

Integrating by parts in space the first term above, then the previous expression is equal to

−

∫ t

0

[
(1 − 2ρ(r, 1))∇ρ(r, 1)(Tt−r f (1))2

− (1 − 2ρ(r, 0))∇ρ(r, 0)(Tt−r f (0))2
]

dr

+

∫ t

0

∫ 1

0
∆χ (ρ(r, u))(Tt−r f (u))2 du dr

+

∫ 1

0
χ (ρ(t, u))( f (u))2du −

∫ 1

0
χ (ρ(0, u))(Tt f (u))2du

−

∫ t

0

∫ 1

0
∂rχ (ρ(r, u))(Tt−r f (u))2 du dr .

Since −∂rχ (ρ(r, u)) + ∆χ (ρ(r, u)) = −2(∇ρ(r, u))2, last expression is equal to

−

∫ t

0

[
(1 − 2ρ(r, 1))∇ρ(r, 1)(Tt−r f (1))2

− (1 − 2ρ(r, 0))∇ρ(r, 0)(Tt−r f (0))2
]

dr

−

∫ t

0

∫ 1

0
2(∇ρ(r, u))2(Tt−r f (u))2 du dr

+

∫ 1

0
χ (ρ(r, u))( f (u))2du −

∫ 1

0
χ (ρ(0, u))(Tt f (u))2du .

In short, we have that Rt ( f ) is the sum of the expression above, (6.5), (6.3) and (6.4). Then,
since ρ(r, u) is the solution of the hydrodynamic equation and using the fact that ∂u Tt−r f (0) =

Tt−r f (0) and ∂u Tt−r f (1) = −Tt−r f (1) we can rewrite Rt ( f ) as

−

∫ t

0

∫ 1

0
2(∇ρ(r, u))2(Tt−r f (u))2 du dr (6.6)

+

∫ 1

0
χ (ρ(t, u))( f (u))2du −

∫ 1

0
χ (ρ(0, u))(Tt f (u))2 du (6.7)

+

∫ t

0

[
2ρ(r, 1)(2β − 1)(Tt−r f (1))2

+ 2ρ(r, 0)(2α − 1)(Tt−r f (0))2
]

dr . (6.8)

At this point we take the limit of Rt ( f ) as t → +∞. By Corollaries 3.3 and 3.6, (6.7) converges
to ∫ 1

0
χ (ρ(u))( f (u))2du . (6.9)
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Denote g(r, u) = (∇ρ(r, u))2 for short. By a change of variables in time, (6.6) can be rewritten
as

−

∫ t

0

∫ 1

0
g(t − r, u) · 2

(
Tr f (u)

)2 du dr . (6.10)

From (b) in Corollary 3.4, limt→+∞g(t − r, u) =
(
∇ρ(u)

)2 and limr→+∞Tr f = 0. Then, some
analysis permits to conclude that (6.10) converges to

−

∫ 1

0

(
∇ρ(u)

)2 f (u) (−∆)−1 f (u) du . (6.11)

It remains to deal with (6.8). Since limt→+∞ρ(r, 1) = ρ(1), limt→+∞ρ(r, 0) = ρ(0) and
limt→+∞Tt f = 0, similarly to what we have done above, we deduce that (6.8) converges to∫

∞

0
2ρ(1)(2β − 1)(Tr f (1))2 dr +

∫
∞

0
2ρ(0)(2α − 1)(Tr f (0))2 dr . (6.12)

In conclusion, the limit of Rt ( f ) as t → +∞ is the sum of (6.9), (6.11) and (6.12), that is,

−

∫ 1

0
(∇ρ(u))2 f (u)(−∆)−1 f (u) du +

∫ 1

0
χ (ρ(u))( f (u))2du

+ 2ρ(1)(2β − 1)
∫

∞

0
(Tt f (1))2 dr + 2ρ(0)(2α − 1)

∫
∞

0
(Tt f (0))2 dr .

(6.13)

Since ∇ρ(u) =
β−α

3 , ρ(0) =
β+2α

3 and ρ(1) =
2β+α

3 , we have just proved the claim. In particular,
the variance of Wt ( f ) converges, as t → ∞, to (2.22), so that Wt ( f ) converges in distribution
to a mean zero Gaussian random variable with variance given by (2.22). Collecting the previous
results we get that the random variables Yt ( f ) are mean zero Gaussian with covariance given by
(2.22). Since the process is stationary this ends the proof of Theorem 2.8.

7. Tightness

Now we prove that the sequence of processes {Y n
t ; t ∈ [0, T ]}n∈N is tight. Recall that we have

defined the density fluctuation field on test functions f ∈ S . Since we want to use Mitoma’s
criterion [16] for tightness, we need the following property from the space S .

Proposition 7.1. The space S endowed with the semi-norms given in (2.6) is a Fréchet space.

Proof. The definition of a Fréchet space can be found, for instance, in [18]. Since C∞([0, 1])
endowed with the semi-norms (2.6) is a Fréchet space, and a closed subspace of a Fréchet space
is also a Fréchet space, it is enough to show that S is a closed subspace of C∞([0, 1]), which is
a consequence of the fact that uniform convergence implies point-wise convergence. □

As a consequence of Mitoma’s criterion [16] and Proposition 7.1, the proof of tightness of the
S ′ valued processes {Y n

t ; t ∈ [0, T ]}n∈N follows from tightness of the sequence of real-valued
processes {Y n

t ( f ); t ∈ [0, T ]}n∈N, for f ∈ S .

Proposition 7.2 (Mitoma’s Criterion, [16]). A sequence of processes {xt ; t ∈ [0, T ]}n∈N
in D([0, T ],S ′) is tight with respect to the Skorohod topology if, and only if, the sequence
{xt ( f ); t ∈ [0, T ]}n∈N of real-valued processes is tight with respect to the Skorohod topology of
D([0, T ],R), for any f ∈ S .
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Now, to show tightness of the real-valued process we use the Aldous’ criterion:

Proposition 7.3. A sequence {xt ; t ∈ [0, T ]}n∈N of real-valued processes is tight with respect to
the Skorohod topology of D([0, T ],R) if:

(i) limA→+∞ lim supn→+∞ Pµn

(
sup0≤t≤T |xt | > A

)
= 0 ,

(ii) for any ε > 0 , limδ→0 lim supn→+∞ supλ≤δ supτ∈TT
Pµn (|xτ+λ − xτ | > ε) = 0 ,

where TT is the set of stopping times bounded by T .

Fix f ∈ S . By (4.1), it is enough to prove tightness of {Y n
0 ( f )}n∈N, {

∫ t
0 Γ

n
s ( f ) ds; t ∈

[0, T ]}n∈N, and {M n
t ( f ); t ∈ [0, T ]}n∈N.

7.1. Tightness at the initial time

To prove that the sequence {Y n
0 ( f )}n∈N is tight, it is enough to observe that

Eµn

[(
Y n

0 ( f )
)2]

=
1
n

n−1∑
x=1

f 2
( x

n

)
χ (ρn

0 (x)) +
2
n

∑
x<y

f
( x

n

)
f
( y

n

)
ϕn

0 (x, y)

and by Assumption 2.3 last expression is bounded.

7.2. Tightness of the martingales

By Lemma 4.1 since the sequence of martingales converges, in particular, it is tight.

7.3. Tightness of the integral terms

Let us check the first claim of Aldous’ criterion for the integral term
∫ t

0 Γ
n
s ( f ) ds. Since

f ∈ S and by the Cauchy–Schwarz inequality we have that

Eµn

[
sup
t≤T

(∫ t

0
Γ n

s ( f ) ds
)2]

≤ T
∫ T

0
Eµn

[( 1
√

n

n−1∑
x=1

∆n f ( x
n )(ηsn2 (x) − ρn

s (x))
)2]

ds

plus a term O(n−1). The term on the right hand side of last expression is bounded from above by
T 2 times

1
n

n−1∑
x=1

(
∆n f ( x

n )
)2

sup
t≤T

χ (ρn
t (x)) +

1
n

n−1∑
x ̸=y

x,y=1

∆n f ( x
n )∆n f ( y

n ) sup
t≤T

ϕn
t (x, y) , (7.1)

where ϕn
t (x, y) is given in (8.1). Then, by Proposition 8.1 and since f ∈ S , last expression is

bounded by a constant. Now we need to check the second claim. For that purpose, fix a stopping
time τ ∈ TT . By the Chebychev’s inequality together with (7.1), we get that

Pµn

(⏐⏐⏐ ∫ τ+λ

τ

Γ n
s ( f ) ds

⏐⏐⏐ > ε
)

≤
1
ε2 Eµn

[(∫ τ+λ

τ

Γ n
s ( f ) ds

)2]
≤
δ2C
ε2 ,

which vanishes as δ → 0.

8. Discrete equations

In this section we prove some technical estimates that are needed along the paper.
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8.1. Two-point correlation function

Definition 8.1 (Two-Point Correlation Function). For each x, y ∈ Σn , x < y, and t ∈ [0, T ],
we define the two-point correlation function as

ϕn
t (x, y) = Eµn [ηtn2 (x)ηtn2 (y)] − ρn

t (x)ρn
t (y) , (8.1)

where ρn
t was defined in (2.7). Moreover, for x = 0 or y = n, we set ϕn

t (x, y) = 0,

Proposition 8.1. There exists C > 0 such that

sup
t≥0

max
(x,y)∈Vn

|ϕn
t (x, y)| ≤

C
n
, (8.2)

where Vn = {(x, y) ; x, y ∈ N, 0 < x < y < n}.

Proof. First, observe that ϕn
t (x, y) can be rewritten as

Eµn [(ηtn2 (x) − ρn
t (x))(ηtn2 (y) − ρn

t (y))] ,

so that from Kolmogorov’s forward equation, we have that

∂tϕ
n
t (x, y) = Eµn

[
(n2Ln + ∂t )(ηtn2 (x) − ρn

t (x))(ηtn2 (y) − ρn
t (y))

]
.

Applying (2.1) and (2.2) and performing some long, but elementary, calculations we deduce that
ϕn

t solves the following system of ODE’s:⎧⎨⎩∂tϕ
n
t (x, y) = n2Anϕ

n
t (x, y) + gn

t (x, y) , for (x, y) ∈ Vn , t > 0 ,
ϕn

t (x, y) = 0 , for (x, y) ∈ ∂Vn , t > 0 ,
ϕn

0 (x, y) = Eµn [η0(x)η0(y)] − ρn
0 (x)ρn

0 (y) , for (x, y) ∈ Vn ∪ ∂Vn ,

(8.3)

where An is the linear operator that acts on functions f : Vn ∪ ∂Vn → R as

(An f )(u) =

∑
v∈Vn

cn(u, v)
[

f (v) − f (u)
]
, for u ∈ Vn ,

with

cn(u, v) =

⎧⎨⎩
1 , if ∥u − v∥ = 1 and u, v ∈ Vn ,

n−1 , if ∥u − v∥ = 1 and u ∈ Vn, v ∈ ∂Vn ,

0 , otherwise,

and ∂Vn represents the boundary of the set Vn , which we define as

∂Vn = {(0, 1), . . . , (0, n)} ∪ {(1, n), . . . , (n − 1, n)} ,

see Fig. 3 for an illustration. Above we have that

gn
t (x, y) = − n2(ρn

t (x) − ρn
t (x + 1))2

· 1{Dn}(x, y) , (8.4)

where the diagonal Dn is defined by

Dn = {(x, y) ∈ Vn; y = x + 1}

and 1{Γ } is the indicator function of the set Γ .
Above, ∥ · ∥ denotes the supremum norm. Note that An is the generator of a random walk in

Vn ∪ ∂Vn , , denoted by {X tn2; t ≥ 0}, which has jump rates given by cn(u, v) and is absorbed
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Fig. 3. Black balls are elements of Vn and gray balls are elements of ∂Vn .

at the boundary ∂Vn . We observe that the random walk {X tn2; t ≥ 0} is the two-dimensional
analogue of the one-dimensional random walk with generator Bn given in (2.10). Denote by Pu
and Eu the corresponding probability and expectation, respectively, starting from the position
u ∈ Vn . Now we introduce the function

φn
t (x, y) = E(x,y)

[
ϕn

0 (X tn2 ) +

∫ t

0
gn

t−s(Xsn2 ) ds
]
, (8.5)

with ϕn
0 and gn

t given above. Since E(x,y)[ f (X tn2 )] = (etn2An f )(x, y) is a semigroup and by
using Kolmogorov’s forward equation and Leibniz Integral Rule, we can show that the function
φn

t is solution of the semi-linear system (8.3), so that φn
t = ϕn

t . Therefore, in order to prove the
proposition we just have to estimate the two terms at the right hand side of last display, since

max
(x,y)∈Vn

|ϕn
t (x, y)| ≤ max

(x,y)∈Vn
|ϕn

0 (x, y)| + max
(x,y)∈Vn

⏐⏐⏐E(x,y)

[∫ t

0
gn

t−s(Xsn2 ) ds
]⏐⏐⏐ .

From Assumption 2.3, the first term on the right hand side of last expression is bounded from
above by c/n. It remains to deal with the second term. Note that since the operator n2An is a
bounded operator (for n fixed) it generates a uniformly continuous semigroup {esn2An ; s ≥ 0}

on Vn ∪ ∂Vn . By Fubini’s Theorem

E(x,y)

[∫ t

0
gn

t−s(Xsn2 ) ds
]

=

∫ t

0

(
esn2An gn

t−s

)
(x, y) ds .

Changing variables, the right hand side of last expression can be written as∫ t

0

(
e(t−r )n2An gn

r

)
(x, y) dr .

Thus, the proof ends as a consequence of the next lemma. □

Before stating the next lemma, we notice that for u, v ∈ Vn ∪ ∂Vn

etn2An (u, v) = Pu

[
X tn2 = v

]
. (8.6)

Lemma 8.2. There exists C > 0 which does not depend on n such that

sup
t≥0

max
(x,y)∈Vn

⏐⏐⏐ ∫ t

0

(
e(t−r )n2An gn

r

)
(x, y) dr

⏐⏐⏐ ≤
C
n
.
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Proof. Since the function gn
r defined in (8.4) is supported on the diagonal Dn , we can rewrite

(e(t−r )n2An gn
r )(x, y) as

n−2∑
z=1

e(t−r )n2An
(
(x, y), (z, z + 1)

)
gn

r (z, z + 1) .

Then, for all (x, y) ∈ Vn ,⏐⏐⏐ ∫ t

0

(
e(t−r )n2An gn

r

)
(x, y) dr

⏐⏐⏐ ≤ Sn ·

∫ t

0

n−2∑
z=1

e(t−r )n2An
(
(x, y), (z, z + 1)

)
dr , (8.7)

where

Sn = sup
r≥0

max
z∈{1,...,n−2}

|gn
r (z, z + 1)| . (8.8)

First we will estimate the time integral at the right hand side of (8.7) and then we will estimate
Sn . By (8.6) together with a change of variables and by the definition of Dn , we get∫ tn2

0

n−2∑
z=1

P(x,y)
[
Xs = (z, z + 1)

] ds
n2 =

∫ tn2

0
P(x,y)

[
Xs ∈ Dn

] ds
n2 .

Extending the interval of integration to infinity and applying Fubini’s Theorem on the last
integral, we bound it from above by

1
n2 E(x,y)

[∫ ∞

0
1{Xs∈Dn} ds

]
.

Note that the expectation above is the total time spent by the random walk {Xs; s ≥ 0} on the
diagonal Dn . We claim that

E(x,y)

[∫ ∞

0
1{Xs∈Dn} ds

]
≤ C n ,

for all (x, y) ∈ Vn . To prove the claim, we note that in Section 3 of [1], the authors introduced
a coupling to compare a random walk with slow rates at the boundary with the random walk
presented in Section 4 of [15]. In equation (4.2) of [15] there is an explicit expression for the
total time spent by the random walk on the diagonal Dn . Moreover, if in [1] we take θ = 1 the
random walk considered there becomes the random walk {X tn2 ; t ≥ 0} defined above. Then, by
the aforementioned coupling we prove the claim.

As a consequence of the previous estimate, the integral at the right hand side of (8.7) is
bounded from above by C/n. In order to conclude the proof, we need to prove that Sn , which
was defined in (8.8), is bounded. By the definition of gn

r given in (8.4), it is enough to prove that⏐⏐ρn
t (x + 1) − ρn

t (x)
⏐⏐ ≤

C
n
,

for all x ∈ {1, . . . , n − 2} and uniformly in t ≥ 0 and this follows from Proposition 8.3. □

8.2. Estimates for the discrete equation

Proposition 8.3. Let ρn
t (·) be the solution of (2.9). Then, there exists C > 0 which does not

depend on n such that⏐⏐ρn
t (x + 1) − ρn

t (x)
⏐⏐ ≤

C
n
, (8.9)

for all x ∈ {1, . . . , n − 2}, uniformly in t ≥ 0.
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Proof. Let ρ(t, u) be the solution of the equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tρ(t, u) = ∂2

uρ(t, u) , for t > 0 , u ∈ (0, 1) ,
∂uρ(t, 0) = ρ(t, 0+) − ρ(t, 0) , for t > 0 ,
∂uρ(t, 1) = ρ(t, 1) − ρ(t, 1−) , for t > 0 ,
ρ(t, 0) = α , ρ(t, 1) = β , for t > 0 ,
ρ(0, u) = ρ0(u) , u ∈ [0, 1] .

(8.10)

We notice that ρt is essentially the solution of the hydrodynamic equation given in (2.4), but
discontinuous at 0 and 1. By Corollary 3.5, we have assured the smoothness of ρ(t, u) in (0, 1).

Let γ n
t (x) := ρn

t (x) − ρt ( x
n ) for x ∈ Σn ∪ {0, n}. Then γ n

t satisfies the equation{
∂tγ

n
t (x) = (n2Bnγ

n
t )(x) + Fn

t (x) , x ∈ Σn , t ≥ 0 ,
γ n

t (0) = 0 , γ n
t (n) = 0 , t ≥ 0 ,

(8.11)

where, for x ∈ {2, . . . , n − 2}, Fn
t accounts for the difference between discrete and continuous

Laplacians and, for x ∈ {1, n − 1}, Fn
t (x) = (n2Bn − ∂2

u )ρt ( x
n ).

In order to prove (8.9), we add and subtract ρt
( x+1

n

)
and ρt

( x
n

)
to |ρn

t (x + 1) − ρn
t (x)| and use

the triangle inequality to have that⏐⏐ρn
t (x + 1) − ρn

t (x)
⏐⏐ ≤

⏐⏐γ n
t (x + 1)

⏐⏐ +
⏐⏐γ n

t (x)
⏐⏐ +

⏐⏐⏐ρt ( x+1
n ) − ρt ( x

n )
⏐⏐⏐ .

Since ρt is smooth in (0, 1), it remains to show that γ n
t is bounded by c/n. For that purpose, let

{Xs, s ≥ 0} be the random walk on Σn ∪ {0, n}, with generator Bn , absorbed at the boundaries
{0, n}. Denote by Ex the expectation with respect to the probability induced by the generator Bn

and the initial position x . As before, we can write the solution of (8.11) as

γ n
t (x) = Ex

[
γ n

0 (Xtn2 ) +

∫ t

0
Fn

t−s(Xsn2 ) ds
]
.

Then,

sup
t≥0

max
x∈Σn

|γ n
t (z)| ≤ max

x∈Σn
|γ n

0 (x)| + sup
t≥0

max
x∈Σn

⏐⏐⏐Ex

[∫ t

0
Fn

t−s(Xsn2 ) ds
]⏐⏐⏐ .

Since γ n
0 (x) = |ρn

0 (x)−ρ0(x)|, by Assumption 2.2 we only need to control the second term at the
right hand side of the previous expression. Repeating the same strategy as before, we decompose
the expectation above into the possible positions of the chain at time s and we are left to estimate∫ t

0

n−1∑
z=1

Px

[
Xsn2 = z

]
· Fn

t−s(z) ds . (8.12)

Since the discrete Laplacian approximates the continuous Laplacian, we conclude that Fn
t (x) ≤

C/n2 for any x ∈ {2, . . . , n − 2} and for any t ≥ 0. Therefore, we can bound (8.12) by

C
n2 +

∑
k∈{1,n−1}

Ex

[∫ ∞

0
1{Xsn2 =k} ds

]
· |Fn

t (k)| . (8.13)

Moreover, we also have that

Fn
t (1) = n2

(
ρt

(2
n

)
− ρt

(1
n

))
− n

(
ρt

(0
n

)
− ρt

(1
n

))
− ∂uρt

(1
n

)
= n

(
∂uρt

(1
n

)
− ρt

(0
n

)
− ρt

(1
n

))
+ O(1) ,
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and by the boundary conditions in (8.10) we obtain that |Fn
t (1)| ≤ C for any t ≥ 0. For k = n−1

we obtain exactly the same bound as for k = 1.
The expectation in (8.13) is the average time spent by the random walk at the site k until its

absorption. As an application of the Markov Property, it can be expressed as the solution of the
elliptic equation{

−Bnψ
n(x) = Cδx=k , ∀ x ∈ Σn ,

ψn(0) = 0 , ψn(n) = 0 ,

where C is a constant. A simple computation shows that, for k = 1,

ψn(x) = −
1

3n2 − 2n
x +

2n − 1
3n2 − 2n

, ∀ x ∈ Σn ,

so that maxx=1,...,n−1|ψ
n(x)| ≤ C/n. For k = n − 1 the same bound holds. Putting all the

estimates together, the proof ends. □
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