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Abstract

We analyze the equilibrium fluctuations of density, current and tagged particle in symmetric exclusion
with a slow bond. The system evolves in the one-dimensional lattice and the jump rate is everywhere
equal to one except at the slow bond where it is αn−β , with α > 0, β ∈ [0, +∞] and n is the scaling
parameter. Depending on the regime of β, we find three different behaviors for the limiting fluctuations
whose covariances are explicitly computed. In particular, for the critical value β = 1, starting a tagged
particle near the slow bond, we obtain a family of Gaussian processes indexed in α, interpolating a fractional
Brownian motion of Hurst exponent 1/4 and the degenerate process equal to zero.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The exclusion process is a standard interacting particle system, widely studied in Probability
and Statistical Mechanics. Informally, such model corresponds to particles performing
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continuous time random walks in a lattice, except when a particle tries to jump to an already
occupied site. In such case, the jump is forbidden and the particle has to wait a new random
time.

There is an intensive research on the behavior of exclusion processes in many different
aspects and from varied points of view. In particular, on the behavior of exclusion processes
in random/non homogeneous medium, see for instance [2–4,6].

In this paper we analyze the fluctuations of the one-dimensional symmetric exclusion process
with a slow bond, for which the hydrodynamic limit was treated in [4,5]. The dynamics of
this model can be described as follows. On the one-dimensional lattice, it is allowed at most
one particle per site. To each bond is associated a Poisson clock. When this clock rings, the
occupation variables at the vertices of the bond are interchanged with a certain rate. Of course,
if both the sites are occupied or empty, nothing happens. All bonds have a Poisson clock of
parameter one, except one special bond, the slow bond, in which the Poisson clock has parameter
αn−β , where α > 0, β ∈ [0, +∞] and n is the integer scaling parameter. At the end n leads to
infinity. The process starts from the equilibrium measure, namely a Bernoulli product measure
of parameter ρ ∈ (0, 1), and it is seen in the diffusive time scale, or else, in times of order n2.

We are concerned with the fluctuations, that is, the Central Limit Theorem (C.L.T.) for the
density, the current of particles through a fixed bond and the tagged particle. Such results are
well known for the classical symmetric exclusion, where all the Poisson clocks have parameter
one. For the density, the fluctuations are given by a generalized Ornstein–Uhlenbeck process,
while the fluctuations of the current and the tagged particle are both given by the fractional
Brownian motion of Hurst exponent 1/4, see [11,13].

The introduction of the slow bond changes dramatically the scenario. Not so intuitively, the
value β = 1 is critical. For β ∈ [0, 1), we obtain ipsis litteris the same results for the fluctuations
of the symmetric exclusion just mentioned. This means that, in this case, the jump rate at the
slow bond is not sufficiently strong in order to change the macroscopic behavior of the system.
Nevertheless, the proof of this result is not straightforward and requires a Local Replacement
which is sharp for this regime of β. For β ∈ (1, +∞], it is proved here that the fluctuations of the
density are driven by the semigroup of the heat equation with Neumann’s boundary conditions.
This means that for this regime of β, the slow bond splits the system into two separate regions in
which the macroscopic dynamics evolves independently.

Finally, at the critical value β = 1, we prove that the density fluctuation field converges to
a generalized Ornstein–Uhlenbeck process driven by the semigroup of the partial differential
equation∂t u(t, x) = ∂2

xx u(t, x), t ≥ 0, x ∈ R \ {0}

∂x u(t, 0+) = ∂x u(t, 0−) = α{u(t, 0+) − u(t, 0−)}, t ≥ 0
u(0, x) = g(x), x ∈ R

(1)

if the slow bond is located near the origin. If the slow bond is located elsewhere, the result
is the same, but with the boundary conditions stated above for the corresponding macroscopic
point. We remark that the last equation is similar to the heat equation with a boundary condition
of Robin’s type, but relating the positive and negative half-lines. Notice that, for this regime
of β, the parameter α survives in the limit. In the case α = 1, we characterize explicitly the
Ornstein–Uhlenbeck process obtained in [3]. More precisely, the authors of [3] consider the
process evolving on Tn , take a general measure W and prove that the density fluctuation field
converges to an Ornstein–Uhlenbeck process, which is not explicit. Taking W as the sum of the
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Lebesgue measure and a delta of Dirac and considering the process evolving in infinite volume,
we give an explicit description of the aforementioned process.

Knowing the density fluctuations, we obtain, for the three regimes of β, the corresponding
current fluctuations and we compute explicitly the covariances for the limiting Gaussian
processes. It is worth remarking the behavior of the fluctuations of the current through the
slow bond. For β ∈ [0, 1) we get a fractional Brownian motion of Hurst exponent 1/4 and
for β ∈ (1, +∞] we get the degenerate process equal to zero. For β = 1, the current
fluctuations are given by a family of Gaussian processes indexed in α interpolating the fractional
Brownian motion of Hurst exponent 1/4 and the degenerate process equal to zero. By this,
we mean that we can recover these two processes from the case β = 1 by taking the limit as
α → +∞ or as α → 0, respectively, being the convergence in the sense of finite dimensional
distributions.

Finally, as a consequence of the previous result, it is straightforward to obtain the C.L.T. for
a tagged particle. In this case, we consider as initial measure the Bernoulli product measure
conditioned to have a particle at a given site. Therefore, the system is no longer in equilibrium,
but anyhow we can use the previous result to deduce the behavior of a tagged particle in this non-
equilibrium situation. Following [7,10] and since we are in dimension one, the aforementioned
result follows from relating the position of a tagged particle with the current and the density of
particles.

The paper is divided as follows. In Section 2, we introduce notation and state the results. In
Section 3, we present the C.L.T. for the density of particles. In Section 4, we get an explicit
formula for the semigroup of (1). In Section 5 we give a martingale characterization of the
generalized Ornstein–Uhlenbeck processes obtained in the fluctuations of the density of particles.
In Section 6, we prove the C.L.T. for the current. Section 7 contains some useful estimates that
we will use along the text.

2. Definitions and main results

2.1. The model

The symmetric simple exclusion process with conductances ξn
x,x+1 ≥ 0 is a Markov process

{ηt : t ≥ 0}, with configuration space Ω := {0, 1}
Z. We denote by η the configurations of the

state space Ω so that η(x) = 0, if the site x is vacant, and η(x) = 1, if the site x is occupied. Its
infinitesimal generator Ln acts on local functions f : Ω → R as

(Ln f )(η) =


x∈Z

ξn
x,x+1


f (ηx,x+1) − f (η)


, (2)

where ηx,x+1 is the configuration obtained from η by exchanging the occupation variables η(x)

and η(x + 1):

(ηx,x+1)(y) =

η(x + 1), if y = x,

η(x), if y = x + 1,

η(y), otherwise.

We define the symmetric exclusion with a slow bond at {−1, 0} by taking the conductances as

ξn
x,x+1 =


αn−β , if x = −1,

1, otherwise.
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We notice that when β = 0 and α = 1, the process becomes the well known symmetric simple
exclusion process. We are interested in analyzing the behavior of the process when α > 0 and
β ∈ (0, +∞].

A simple computation shows that the Bernoulli product measures {νρ : 0 ≤ ρ ≤ 1} are
invariant, in fact reversible, for the symmetric simple exclusion process with conductances, in
particular also for the considered process. More precisely, νρ is a product measure over Ω with
marginals given by νρ{η : η(x) = 1} = ρ, for x in Z.

Denote by {ηtn2 : t ≥ 0} the Markov process on Ω associated to the generator n2Ln . Let
D(R+,Ω) be the path space of càdlàg trajectories (continuous from the right with limits from
the left) with values in Ω . For a measure µn on Ω , denote by Pβ

µn the probability measure on
D(R+,Ω) induced by the initial state µn and the Markov process {ηtn2 : t ≥ 0}. Expectation
with respect to Pβ

µn will be denoted by Eβ
µn . To simplify notation, we will denote Pβ

νρ by Pβ
ρ

and we do not index Pβ
µn nor Eβ

µn in α. We define also χ(ρ) := ρ(1 − ρ), the so-called static
compressibility of the system.

2.2. The operators ∆β and ∇β

We introduce some spaces we will use in the sequel.

Definition 2.1. Let L2
β(R) be the space of functions H : R → R with ∥H∥2,β < +∞, where

∥H∥
2
2,β =




R
H(u)2du, if β ≠ 1

R
H(u)2du + H(0)2, if β = 1.

Notice that, for β ≠ 1, the norm ∥ · ∥2,β is the usual L2(R)-norm with respect to the Lebesgue
measure that we denote by λ. For simplicity in this case we write ∥ · ∥2. For β = 1, the norm
∥·∥2,β is the L2(R)-norm with respect to the measure λ+δ0, where δu denotes the Dirac measure
at the point u ∈ R.

In the sequel, given H : R → R, we denote

H(0+) := lim
u→0,
u>0

H(u) and H(0−) := lim
u→0,
u<0

H(u),

when the above limits exist. For k ∈ N, we denote by H (k)(x), the kth-derivative of H at the
point x ∈ R. For k = 0, H (0)(x) means H(x).

Definition 2.2. Define S (R \ {0}) as the space of functions H : R → R such that H ∈

C∞(R \ {0}), H is continuous from the right at x = 0 and H satisfies

∥H∥k,ℓ := sup
x∈R\{0}

|(1 + |x |
ℓ) H (k)(x)| < ∞,

for all integers k, ℓ ≥ 0 and H (k)(0−) = H (k)(0+), for all k integer, k ≥ 1.

Next, we present the domains for ∆β and ∇β .

Definition 2.3. For β ∈ [0, 1), we define Sβ(R) as the subset of S (R \ {0}) composed of
functions H satisfying

H(0−) = H(0+).
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Notice that the space above is nothing more than the usual Schwartz space S (R). Fix now
α > 0.

Definition 2.4. For β = 1, we define Sβ(R) as the subset of S (R \ {0}) composed of functions
H satisfying

H (1)(0+) = H (1)(0−) = α


H(0+) − H(0−)

.

Definition 2.5. For β ∈ (1, +∞], we define Sβ(R) as the subset of S (R \ {0}) composed of
functions H satisfying

H (1)(0+) = H (1)(0−) = 0.

Proposition 2.1. For any chosen β ∈ [0, +∞], the space Sβ(R) is a Fréchet space.

The definition of a Fréchet space can be found, for instance, in [14]. The proof that S (R\{0})

is a Fréchet space follows the same lines of that of [14] for the usual Schwartz space S (R), and
for that reason it will be omitted. Since the spaces Sβ(R) are closed vector spaces of S (R\{0}),
this implies they are also Fréchet spaces. We notice that along the paper we only use this fact
when we invoke the result of [12] about tightness of stochastic process taking values in Fréchet
spaces.

Definition 2.6. We define the operators ∆β : Sβ(R) → S (R) and ∇β : Sβ(R) → S (R) by

∇β H(u) =


H (1)(u), if u ≠ 0 ,

H (1)(0+), if u = 0,
and ∆β H(u) =


H (2)(u), if u ≠ 0,

H (2)(0+), if u = 0.

Notice that the operators ∇β and ∆β are essentially the usual derivative and the usual second
derivative, but defined in specific domains.

2.3. Hydrodynamic limit, PDE’s and semigroups

The hydrodynamic limit for the exclusion process with a slow bond was already studied in
[4,5]. We state it here for completeness. Let g : R → [0, 1] be a piecewise continuous function
and suppose that there exists a constant Cg such that g − Cg has compact support. Let n ∈ N be
a scaling parameter. We define a probability measure µn in Ω by

µnη(z1) = 1, . . . , η(zℓ) = 1


=

ℓ
i=1

g(zi/n),

for any set {z1, . . . , zℓ} ⊆ Z and ℓ ∈ N. Let {ηtn2; t ≥ 0} have initial distribution µn . We define
the empirical measure {πn

t ; t ≥ 0} as the measure-valued process given by

πn
t (dx) =

1
n


x∈Z

ηtn2(x)δ x
n
(dx).

In words, the empirical measure represents the time evolution of the spatial density of particles.
Now, let M+ be the space of positive measures on R with total mass bounded by one, endowed

with the weak topology.

Theorem 2.2 (Franco, Gonçalves, Neumann [4,5]). For any β ∈ [0, +∞] and for any T ≥ 0,
as n → +∞, the sequence of measure valued processes {πn

t (dx); t ∈ [0, T ]}n∈N converges in
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probability with respect to the Skorohod topology of D([0, T ], M+(R)), to some {u(t, x)dx; t ∈

[0, T ]}. Moreover,

• For β ∈ [0, 1), {u(t, x); t ≥ 0, x ∈ R} is the unique weak solution of the heat equation
∂t u(t, x) = ∂2

xx u(t, x), t ≥ 0, x ∈ R
u(0, x) = g(x), x ∈ R.

(3)

• For β = 1, {u(t, x); t ≥ 0, x ∈ R} is the unique weak solution of the heat equation with a
boundary condition of Robin’s type at x = 0∂t u(t, x) = ∂2

xx u(t, x), t ≥ 0, x ∈ R \ {0}

∂x u(t, 0+) = ∂x u(t, 0−) = α{u(t, 0+) − u(t, 0−)}, t ≥ 0
u(0, x) = g(x), x ∈ R.

(4)

• For β ∈ (1, +∞], {u(t, x); t ≥ 0, x ∈ R} is the unique weak solution of the heat equation
with a boundary condition of Neumann’s type at x = 0∂t u(t, x) = ∂2

xx u(t, x), t ≥ 0, x ∈ R \ {0}

∂x u(t, 0+) = ∂x u(t, 0−) = 0, t ≥ 0
u(0, x) = g(x), x ∈ R.

(5)

The previous theorem corresponds to Theorem 4.1 of [4] and Theorem 2.1 of [5], considering
the process evolving in finite volume (periodic). However, the proof for infinite volume is the
same, aside from some topological adaptations. The definitions of weak solutions of Eqs. (3)–(5)
are the same as given in [5] for the finite volume case, with the additional usual assumption that
the test functions are compactly supported.

Each one of the partial differential equations mentioned above is linear. As we will see later,
in order to prove the existence of an Ornstein–Uhlenbeck process with characteristics ∆β and
∇β , we will make use of the explicit expression for the semigroups corresponding to ∆β . The
semigroup of (3) is classical and it acts on g ∈ Sβ(R) with β ∈ [0, 1) given in Definition 2.3,
as

Tt g(x) =
1

√
4π t


R

e−
(x−y)2

4t g(y)dy, for x ∈ R. (6)

The semigroup of (5) is also known and it acts on g ∈ Sβ(R) with β ∈ (1, +∞] given in
Definition 2.5, as

T Neu
t g(x) =


1

√
4π t


+∞

0


e−

(x−y)2

4t + e−
(x+y)2

4t


g(y)dy, for x > 0,

1
√

4π t


+∞

0


e−

(x−y)2

4t + e−
(x+y)2

4t


g(−y)dy, for x < 0 .

(7)

Denote by geven and godd the even and odd parts of a function g : R → R, respectively, or
else, for x ∈ R,

geven(x) =
g(x) + g(−x)

2
and godd(x) =

g(x) − g(−x)

2
.



4162 T. Franco et al. / Stochastic Processes and their Applications 123 (2013) 4156–4185

Proposition 2.3. The semigroup of (4) acts on g ∈ Sβ(R) with β = 1 given in Definition 2.4,
as

T α
t g(x) =

1
√

4π t


R

e−
(x−y)2

4t geven(y)dy

+ e2αx


+∞

x
e−2αz


+∞

0


z − y + 4αt

2t


e−

(z−y)2

4t

+


z + y − 4αt

2t


e−

(z+y)2

4t


godd(y)dydz


,

for x > 0 and

T α
t g(x) =

1
√

4π t


R

e−
(x−y)2

4t geven(y)dy

− e−2αx


+∞

−x
e−2αz


+∞

0


z − y + 4αt

2t


e−

(z−y)2

4t

+


z + y − 4αt

2t


e−

(z+y)2

4t


godd(y)dydz


,

for x < 0.

Throughout the text we will simply write T β
t for the three semigroups Tt , T α

t and T Neu
t ,

corresponding to the regimes β ∈ [0, 1), β = 1 and β ∈ (1, +∞], respectively.

Remark 2.4. Since a smooth solution is a weak solution, the classical formulas (6) and (7) and
the previous proposition guarantee that the weak solutions in Theorem 2.2 are, indeed, smooth
solutions.

Notice that T Neu
t evolves a function in independent ways in each half-line, but T α

t does not.
From this characterization of the semigroup T α

t , we get almost for free the following result.

Proposition 2.5. Let u, uα, uNeu
: R+ × R → [0, 1] be the unique smooth solution of (3)–(5),

respectively. Then,

lim
α→+∞

uα(t, x) = u(t, x) and lim
α→0

uα(x, t) = uNeu(t, x),

for all (t, x) ∈ R+ × (R \ {0}). Besides that, for fixed t > 0, the following convergence holds

lim
α→+∞

∥uα(t, ·) − u(t, ·)∥L p(R) = 0 and lim
α→0

∥uα(t, ·) − uNeu(t, ·)∥L p(R) = 0,

for all p ∈ [1, +∞].

The convergence above can be improved to some extent related to space and time simultaneously.
Since this is not the main issue of this paper, we do not enter into details on this.

2.4. Ornstein–Uhlenbeck process

Based on [9,11], we give here a characterization of the generalized Ornstein–Uhlenbeck
process which is a solution of

dYt = ∆βYt dt +


2χ(ρ)∇βdWt , (8)
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where Wt is a space–time white noise of unit variance, in terms of a martingale problem. We will
see later that this process governs the equilibrium fluctuations of the density of particles. In spite
of having a dependence of Yt on β, in order to keep notation simple, we do not index on it.

In what follows S ′
β(R) denotes the space of bounded linear functionals f : Sβ(R) → R and

D([0, T ], S ′
β(R)) (resp. C ([0, T ], S ′

β(R))) is the space of càdlàg (resp. continuous) S ′
β(R)

valued functions endowed with the Skohorod topology.

Proposition 2.6. There exists a unique random element Y taking values in the space C ([0, T ],

S ′
β(R)) such that:

(i) For every function H ∈ Sβ(R), Mt (H) and Nt (H) given by

Mt (H) = Yt (H) − Y0(H) −

 t

0
Ys(∆β H)ds,

Nt (H) =

Mt (H)

2
− 2χ(ρ)t∥∇β H∥

2
2,β

(9)

are Ft -martingales, where for each t ∈ [0, T ], Ft := σ(Ys(H); s ≤ t, H ∈ Sβ(R)).
(ii) Y0 is a Gaussian field of mean zero and covariance given on G, H ∈ Sβ(R) by

Eβ
ρ


Y0(G)Y0(H)


= χ(ρ)


R

G(u)H(u)du. (10)

Moreover, for each H ∈ Sβ(R), the stochastic process {Yt (H); t ≥ 0} is Gaussian, being the

distribution of Yt (H) conditionally to Fs , for s < t , normal of mean Ys(T β
t−s H) and variance t−s

0 ∥∇β T β
r H∥

2
2,β dr.

We call the random element Y· the generalized Ornstein–Uhlenbeck process of characteristics
∆β and ∇β . From the second equation in (9) and Levy’s Theorem on the martingale
characterization of Brownian motion, the process

Mt (H)(2χ(ρ)∥∇β H∥
2
2,β)−1/2 (11)

is a standard Brownian motion. Therefore, in view of Proposition 2.6, it makes sense to say that
Y is the formal solution of (8).

2.5. Equilibrium density fluctuations

In order to establish the C.L.T. for the empirical measure under the invariant state νρ , we need
to introduce the density fluctuation field as the linear functional acting on test functions H as

Y n
t (H) =

1
√

n


x∈Z

H
 x

n


(ηtn2(x) − ρ).

We are in position to state the fluctuations for the density of particles.

Theorem 2.7 (C.L.T. for the Density of Particles). Consider the Markov process {ηtn2 : t ≥ 0}

starting from the invariant state νρ . Then, the sequence of processes {Y n
t }n∈N converges in

distribution, as n → +∞, with respect to the Skorohod topology of D([0, T ], S ′
β(R)) to Yt

in C ([0, T ], S ′
β(R)), the generalized Ornstein–Uhlenbeck process of characteristics ∆β , ∇β

which is the formal solution of the equation

dYt = ∆βYt dt +


2χ(ρ)∇βdWt , (12)
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where Wt is a space–time white noise of unit variance and the operators ∆β and ∇β were defined
in Section 2.2.

2.6. Equilibrium current fluctuations

Next, we introduce the notion of current of particles through a fixed bond for our microscopic
dynamics of generator Ln evolving on the diffusive time scale tn2 and starting from the invariant
state νρ .

For a site x ∈ Z, denote by J n
x,x+1(t) the current of particles over the bond {x, x + 1}, which

is the total number of jumps from the site x to the site x + 1 minus the total number of jumps
from the site x + 1 to the site x in the time interval [0, tn2

].
Let u ∈ R be a macroscopical point, to which we associate in the microscopical lattice the

bond of vertices {⌊un⌋ − 1, ⌊un⌋}. Here ⌊un⌋ denotes the biggest integer not larger than un. To
simplify notation, we will simply write

J n
u (t) := J n

⌊un⌋−1,⌊un⌋
(t).

Now, we state the C.L.T. for the current. For that purpose we need to introduce some notation.
Denote by Φ2t (·) the tail of the distribution function of a Gaussian random variable with mean
zero and variance 2t , that is, for x ∈ R,

Φ2t (x) :=


+∞

x

e−u2/4t

√
4π t

du.

Theorem 2.8 (C.L.T. for the Current of Particles). Under Pβ
ρ , for every t ≥ 0 and every u ∈ R,

J n
u (t)
√

n
−−−−→
n→+∞

Ju(t)

in the sense of finite-dimensional distributions, where Ju(t) is Gaussian with covariances given
by the following.

• For β ∈ [0, 1),

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)


t

π
+


s

π
−


t − s

π


, (13)

that is Ju(t) is a fractional Brownian motion of Hurst exponent 1/4.
• For β = 1,

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)


t

π
+

Φ2t (2u + 4αt) e4αu+4α2t

2α
−

Φ2t (2u)

2α

+


s

π
+

Φ2s(2u + 4αs) e4αu+4α2s

2α
−

Φ2s(2u)

2α

−


t − s

π
−

Φ2(t−s)(2u + 4α(t − s))e4αu+4α2(t−s)

2α
+

Φ2(t−s)(2u)

2α


.
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• For β ∈ (1, +∞],

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)


t

π


1 − e−u2/t


+ 2uΦ2t (2u)

+


s

π


1 − e−u2/s


+ 2u Φ2s(2u)

−


t − s

π


1 − e−u2/(t−s)


− 2u Φ2(t−s)(2u)


. (14)

It is of particular interest the covariance at u = 0, corresponding to the current through the
slow bond {−1, 0}. If β ∈ [0, 1), the covariance corresponds to the one of a fractional Brownian
motion of Hurst exponent 1/4. If β ∈ (1, +∞], the covariance equals zero as expected, since
the Neumann’s boundary conditions at x = 0 make of it an isolated boundary. Finally, for
β = 1, we obtain a family, indexed in the parameter α, of Gaussian processes interpolating
the fractional Brownian motion of parameter 1/4 and the degenerate process identically equal to
zero. Such interpolation is made clear in the next corollary. Before its statement, we emphasize
that at the critical value β = 1, the limit of J n

u (t)/
√

n does depend on α. Let us denote it by
Jα

u (t).

Corollary 2.9. For every t ≥ 0 and every u ∈ R,

Jα
u (t) −−−−→

α→+∞
Ju(t),

where Ju(t) is the fractional Brownian motion with Hurst exponent 1/4 and

Jα
u (t) −−−→

α→0
Ju(t),

where Ju(t) is the Gaussian process with covariances given by (14). The convergence is in the
sense of finite dimensional distributions.

2.7. Fluctuations of a tagged particle

As a consequence of last construction, we are able to deduce the behavior of a single tagged
particle as done in [7,10]. For that purpose, fix ρ ∈ (0, 1), u > 0 and consider ηtn2 starting
from the measure νρ conditioned to have a particle at the site ⌊un⌋, that we denote by νu

ρ . More
precisely, νu

ρ (·) := νρ(·|ηtn2(⌊un⌋) = 1). We notice that from symmetry arguments, the same
reasoning holds for u < 0. We couple the system starting from νu

ρ and starting from νρ , in such
a way that both processes differ at most in one site at any given time. Then, the analogue of
the results stated in Theorems 2.7 and 2.8 for the starting measure νu

ρ follow from those results
where the system is taken starting from νρ .

Let Xn
u (t) denote the position at time tn2 of a tagged particle initially at the site ⌊un⌋. Since

we are in dimension one, the order between particles is preserved and as a consequence, for all
k ≥ 1,

{Xn
u (t) ≥ k} =


J n

u (t) ≥

⌊un⌋+k−1
x=⌊un⌋

ηtn2(x)


. (15)

Last relation together with Theorem 2.8 gives us the following.
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Theorem 2.10 (C.L.T. for a Tagged Particle). Under Pβ
νu
ρ
, for all β ∈ [0, +∞], every u ∈ R and

t ≥ 0

Xn
u (t)
√

n
−−−−→
t→+∞

Xu(t)

in the sense of finite-dimensional distributions, where Xu(t) = Ju(t)/ρ in law and Ju(t) is
the same as in Theorem 2.8. In particular, the covariances of the process Xu(t) are given by
Eβ

ρ [Xu(t)Xu(s)] = ρ−2 Eβ
ρ [Ju(t)Ju(s)].

We do not present the proof of this theorem since it is very similar to the one presented in
[7,10]. We only remark that in this case the mean of the current and the tagged particle is zero
since the dynamics is symmetric. For tightness issues we refer the reader to [13], in which the
case β = 0 and α = 1 was considered.

We observe that in the case β ∈ (1, +∞], the tagged particle starting at the origin moves
microscopically but we do not see its fluctuations macroscopically, since the variance of X0(t)
equals zero.

Here we describe the paper structure. Propositions 2.3 and 2.5 are proved in Section 4. We
remark that Proposition 2.5 is an extra result, which is not applied along the text. Proposition 2.3
is invoked in Sections 5 and 6. Proposition 2.6 and Theorem 2.7 are proved in Sections 3 and
5 in the following way. The existence of the Ornstein–Uhlenbeck process and convergence of
the density fluctuation field along subsequences is proved in Section 3, while the uniqueness
of the Ornstein–Uhlenbeck process is reserved to Section 5. Theorem 2.8, Corollary 2.9 and
Theorem 2.10 are proved in Section 6. Finally, in Section 7, we present L2-estimates that are
invoked in Sections 3 and 6.

3. Central limit theorem for the density of particles

In this section we prove Theorem 2.7. As usual in convergence of stochastic process, there are
two facts to be shown: convergence of finite-dimensional distributions of Y n

t to those of Yt and
tightness of the sequence {Y n

t }n∈N. We start by the former.

3.1. Characterization of limit points

In this section we want to prove that the limit points of the sequence {Y n
t }n∈N satisfy

Proposition 2.6. We start by showing that any limit point of the sequence {Y n
t }n∈N solves (9).

3.1.1. Martingale problem
By Dynkin’s formula, for a given function H ∈ Sβ(R),

M n
t (H) = Y n

t (H) − Y n
0 (H) −

 t

0
n2Ln Y n

s (H) ds

is a martingale with respect to the natural filtration G n
t = σ(ηsn2 , s ≤ t). Doing simple

computations we get

M n
t (H) = Y n

t (H) − Y n
0 (H) − I n

t (H), (16)

where

I n
t (H) =

 t

0

1
√

n


x∈Z

n2Ln H
 x

n


ηsn2(x) ds (17)
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and Ln is the generator of the random walk on Z given on H : Z → R and x ∈ Z by

(Ln H)
 x

n


= ξn

x,x+1


H


x + 1

n


− H

 x

n


+ ξn

x−1,x


H


x − 1

n


− H

 x

n


.

Note that, despite we do not index, the operator Ln depends on β.

We take in particular H ∈ Sβ(R). By the fact that the sum


x∈Z n2Ln H( x
n ) is null and by

adding and subtracting
 t

0 Y n
s (∆β H) ds to I n

t (H), we can rewrite the martingale M n
t (H) as

M n
t (H) = Y n

t (H) − Y n
0 (H) −

 t

0
Y n

s (∆β H)ds − Rn,β
t (H),

where

Rn,β
t (H) :=

 t

0

1
√

n


x∈Z


n2Ln H

 x

n


− (∆β H)

 x

n


η̄sn2(x) ds

and for each x ∈ Z, the centered random variable η̄sn2(x) denotes ηsn2(x) − ρ.

In some points ahead we will write 0
n as zero to emphasize the discretization of space and

make easier to follow the computations.

We start by showing that Rn,β
t (H) is negligible in L2(Pβ

ρ ), for all H ∈ Sβ(R).

Proposition 3.1. For every t ∈ [0, T ], β ∈ [0, +∞] and H ∈ Sβ(R),

lim
n→+∞

Eβ
ρ


Rn,β

t (H)
2

= 0.

Proof. Separating the sites close to the slow bond, we can rewrite

Rn,β
t (H) =

 t

0

1
√

n


x≠−1,0


n2Ln H

 x

n


− (∆β H)

 x

n


η̄sn2(x)ds

+

 t

0

1
√

n


n2Ln H


−1
n


− (∆β H)


−1
n


η̄sn2(−1)ds

+

 t

0

1
√

n


n2Ln H


0
n


− (∆β H)


0
n


η̄sn2(0)ds. (18)

The operator ∆β distinguishes the usual Laplacian operator essentially in the domain. Outside
the macroscopic point 0, for any β, the operator ∆β behaves as the usual Laplacian. Besides
that, for x ≠ −1, 0, the term n2Ln(x) is exactly the discrete Laplacian. Hence, by the classical
approximation of the continuous Laplacian by the discrete Laplacian, the first integral in (18) is
O(1/

√
n).

Since ∆β H is bounded, in order to show that the sum of the second and third integrals in (18)
goes to zero, it is enough to show that

rn,β
t :=

 t

0

1
√

n


n2Ln H


−1
n


η̄sn2(−1) ds +

 t

0

1
√

n


n2Ln H


0
n


η̄sn2(0) ds
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goes to zero, as n → +∞. Recalling the definition of Ln we arrive at

rn,β
t =

 t

0

1
√

n


αn2−β


H


0
n


− H


−1
n


− n2


H


−1
n


− H


−2
n


η̄sn2(−1) ds

+

 t

0

1
√

n


n2


H


1
n


− H


0
n


− αn2−β


H


0
n


− H


−1
n


η̄sn2(0) ds. (19)

For each regime of β, namely, β ∈ [0, 1), β = 1 and β ∈ (1, +∞], we present a specific
argument to show that rn,β

t vanishes in L2(Pβ
ρ ), as n → +∞. Let us begin with the following.

• Case β ∈ [0, 1).
Recall that in this case Sβ(R) = S (R) and thus H is smooth. Let

(∆n H)


x

n


= n2


H


x + 1

n


+ H


x − 1

n


− 2H


x

n


be the discrete Laplacian. Summing and subtracting suitable increments of H in (19), rn,β

t can
be rewritten as t

0

1
√

n


αn2−β


H
0

n


− H


−1
n


− n2


H

−1
n


− H


−2
n


− (∆n H)


−1
n


η̄sn2(−1)ds

+

 t

0

1
√

n


n2


H
1

n


− H

0
n


− αn2−β


H
0

n


− H


−1
n


− (∆n H)

0
n


η̄sn2(0)ds,

plus a negligible term in L2(Pβ
ρ ), since H is smooth and therefore ∆n H is bounded. Then, we

have that

rn,β
t =

 t

0

1
√

n
(αn2−β

− n2)


H


0
n


− H


−1
n


η̄sn2(−1) − η̄sn2(0)


ds.

Since n

H
 0

n


− H


−1
n


is bounded, in order to show that rn,β

t goes to zero in L2(Pβ
ρ ) as

n → +∞, it is enough to show that

lim
n→+∞

Eβ
ρ

 t

0

√
n

η̄sn2(−1) − η̄sn2(0)


ds

2
= 0. (20)

For that purpose we will make use of a comparison with empirical averages on boxes of a suitable
size. Let

η̄ℓ(x) =
1
ℓ

x+ℓ−1
y=x

η̄(y), (21)



T. Franco et al. / Stochastic Processes and their Applications 123 (2013) 4156–4185 4169

denote the centered empirical average of particles in a box of size ℓ. Summing and subtracting
the empirical mean at the sites −1 and 0, and applying the elementary inequality (a + b + c)2

≤

4(a2
+ b2

+ c2), we bound the expectation in (20) from above by

4Eβ
ρ

 t

0

√
n

η̄sn2(−1) − η̄ℓ

sn2(−1)

ds

2
+ 4Eβ

ρ

 t

0

√
n

η̄ℓ

sn2(−1) − η̄ℓ
sn2(0)


ds
2

+ 4Eβ
ρ

 t

0

√
n

η̄ℓ

sn2(0) − η̄sn2(0)

ds

2
.

In order to estimate the first expectation we use Lemma 7.1 which guarantees that it is bounded
from above by Ct (αnβ−1

+ ℓ/n), where C is a constant. By Remark 7.3 the third expectation is
bounded from above by C ′tℓ/n, where C ′ is a constant. On the other hand, a simple computation
shows that the remaining expectation is bounded from above by C̃t2n/ℓ2, where C̃ is a constant.
Putting together the previous computations, we have that

Eβ
ρ

 t

0

√
n

η̄sn2(−1) − η̄sn2(0)


ds

2
≤ 4C


tαnβ−1

+
tℓ

n


+ 4C̃

t2n

ℓ2 + 4C ′
tℓ

n
. (22)

Choose ℓ := εn. Therefore, letting n → +∞ and then ε → 0, the claim (20) follows.
• Case β = 1.
In this case, by the definition of Sβ(R), we have that α


H(0+) − H(0−)


= H (1)(0+) =

H (1)(0−). Since H is continuous from the right at x = 0, we have that

H


0
n


− H


−1
n


=


H(0+) − H(0−)


+ O(1/n), (23)

and

n


H


−1
n


− H


−2
n


= H (1)(0−) + O(1/n). (24)

We claim that the first integral in (19) is of order O(t/
√

n). Since η̄sn2(−1) is bounded by
one, the modulus of the first integral in (19) is bounded by t

0

 1
√

n


αn2−β


H


0
n


− H


−1
n


− n2


H


−1
n


− H


−2
n

 ds

=
t

√
n

αn2−β


H


0
n


− H


−1
n


− n2


H


−1
n


− H


−2
n

 .
Replacing (23) and (24) in the expression above, we get

t
√

n

αn2−β
[H(0+) − H(0−) + O(1/n)] − n[H (1)(0−) + O(1/n)]

 .
Since β = 1 and in this case

α[H(0+) − H(0−)] = H (1)(0−),

it implies that the first integral in (19) is bounded by

t
√

n
|nO(1/n)| = O(t/

√
n).

The same holds for the second integral in (19).
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Hence, when β = 1, the expression rn,β
t is O(t/n), which vanishes as n → +∞.

• Case β ∈ (1, +∞].
By the definition of Sβ(R), since H (1)(0+) = H (1)(0−) = 0, we can rewrite

rn,β
t =

 t

0
αn3/2−β


H


0
n


− H


−1
n

 
η̄sn2(−1) − η̄sn2(0)


ds + O(t/

√
n).

Since for this range of the parameter β, H is not smooth at the point 0, in order to prove the
claim it is enough to show that:

lim
n→+∞

Eβ
ρ

 t

0
n3/2−β


η̄sn2(−1) − η̄sn2(0)


ds

2


= 0.

By Lemma 7.1 and by summing and subtracting ηℓ
sn2(−1) and ηℓ

sn2(0) as done above in the

case β ∈ [0, 1), we can bound the previous expectation by C(tαn1−β
+ tℓn1−2β

+ t2n3−2β/ℓ2),
where C is a constant. Choose ℓ := εn. Therefore, letting n → +∞ and then ε → 0, the claim
follows. �

Now, recall from (16) that M n
t (H) is a martingale. In the following section we prove

that the sequence {Y n
t ; t ∈ [0, T ]}n∈N is tight. Moreover, we prove that the sequences

{I n
t ; t ∈ [0, T ]}n∈N and {M n

t ; t ∈ [0, T ]}n∈N are tight. Assuming last results, let {kn}n∈N
be a subsequence such that all the sequences {Y kn

t ; t ∈ [0, T ]}n∈N, {I kn
t ; t ∈ [0, T ]}n∈N and

{M kn
t ; t ∈ [0, T ]}n∈N converge. Let {Yt ; t ∈ [0, T ]}, {It ; t ∈ [0, T ]} and {Mt ; t ∈ [0, T ]}

denote the limit of those sequences, respectively.
We want to prove that {Yt ; t ∈ [0, T ]} is in C ([0, T ], S ′

β(R)) and also that for H ∈ Sβ(R):

Mt (H) = Yt (H) − Y0(H) −

 t

0
Ys(∆β H) ds

is a martingale with quadratic variation given by 2χ(ρ)t∥∇β H∥
2
2,β . Fix H ∈ Sβ(R). Since we

have that for each n ∈ N, M kn
t (H) is a martingale, we want to show that passing to the limit in n

we obtain that Mt (H) is a martingale. We notice that the limit in distribution of a uniformly
integrable sequence of martingales is a martingale, see Proposition 4.6 of [8]. Therefore, it
is enough to show that {M kn

t (H)}n∈N is uniformly integrable. To this end we notice that by
Lemma 7.4 we have that

lim
n→+∞

Eβ
ρ [(M kn

t (H))2
] = 2χ(ρ) t∥∇β H∥

2
2,β , (25)

which is enough to ensure the uniform integrability.
We claim that the quadratic variation of the martingale {Mt (H) ; 0 ≤ t ≤ T } is given by

{2χ(ρ)t∥∇β H∥
2
2,β , 0 ≤ t ≤ T }. To this end, observe that

{(M kn
t (H))2

− ⟨M kn (H)⟩t ; 0 ≤ t ≤ T } (26)

is a martingale for each n ∈ N. Applying (25), the limit in distribution of (26) as n → +∞ is

{(Mt (H))2
− 2χ(ρ)t∥∇β H∥

2
2,β; 0 ≤ t ≤ T }.

Thus, it suffices to show that the expression above is a martingale. Again, let us use the fact that
the limit in distribution of a uniformly integrable sequence of martingales is a martingale, now
for the sequence (26).
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By (25), the sequence ⟨M kn (H)⟩t is uniformly integrable. Hence, we only have to prove that
(M kn

t (H))2 is uniformly integrable. For that purpose we prove that Eβ
ρ [(M kn

t (H))4
] is bounded

by a constant that does not depend on n. Now, we can employ, for example, Lemma 3 of [1]
which says that there exists a constant C such that

Eβ
ρ [(M kn

t (H))4
] ≤ C


Eβ

ρ [(M kn
t (H))2

] + Eβ
ρ


sup

0≤t≤T

M kn
t (H) − M kn

t− (H)

4.

By Lemma 7.4 the first term on the left hand side of the previous inequality is bounded. On the
other hand, since

sup
0≤t≤T

|M kn
t (H) − M kn

t− (H)| = sup
0≤t≤T

|Y kn
t (H) − Y kn

t− (H)| ≤
C(H)
√

kn
,

the second term on the right hand side of the previous inequality is also bounded; this finishes
the proof.

3.1.2. Convergence at initial time

Proposition 3.2. Y n
0 converges in distribution to Y0, where Y0 is a Gaussian field with mean

zero and covariance given by (10).

Proof. We first claim that, for every H ∈ Sβ(R) and every t > 0,

lim
n→+∞

log Eβ
ρ


exp{iθY n

0 (H)}


= −
θ2

2
χ(ρ)


R

H2(u)du.

Since νρ is a Bernoulli product measure,

log Eβ
ρ [exp{iθY n

0 (H)}] = log Eβ
ρ


exp


iθ
√

n


x∈Z

η̄0(x)H
 x

n


=


x∈Z

log Eβ
ρ


exp

 iθ
√

n
η̄0(x)H

 x

n


.

Since H is smooth except possibly at x = 0, using Taylor’s expansion the right hand side of the
last expression is equal to

−
θ2

2n


x∈Z

H2
 x

n


χ(ρ) + O(1/

√
n).

Taking the limit as n → +∞ and using the continuity of H , the proof of the claim ends.
Replacing H by a linear combination of functions and recalling the Crámer–Wold device, the
proof finishes. �

Remark 3.3. We notice that the result stated above holds true for Yt for any t ∈ [0, T ]. In
particular we conclude that the Gaussian white noise is a stationary solution of (12), for any
β ∈ [0, +∞].

3.2. Tightness

Here we prove tightness of the process {Y n
t ; t ∈ [0, T ]}n∈N. At first we notice that by

Mitoma’s criterion and Proposition 2.1, it is enough to prove tightness of the sequence of real-
valued processes {Y n

t (H); t ∈ [0, T ]}n∈N, for H ∈ Sβ(R).



4172 T. Franco et al. / Stochastic Processes and their Applications 123 (2013) 4156–4185

Proposition 3.4 (Mitoma’s Criterion [12]). A sequence {xt ; t ∈ [0, T ]}n∈N of processes in
D([0, T ], S ′

β(R)) is tight with respect to the Skorohod topology if and only if the sequence
{xt (H); t ∈ [0, T ]}n∈N of real-valued processes is tight with respect to the Skorohod topology of
D([0, T ], R), for any H ∈ Sβ(R).

Now, to show tightness of the real-valued process we use the following Aldous’ criterion.

Proposition 3.5. A sequence {xt ; t ∈ [0, T ]}n∈N of real-valued processes is tight with respect to
the Skorohod topology of D([0, T ], R) if:

(i) limA→+∞ lim supn→+∞ Pβ
ρ


sup0≤t≤T |xt | > A


= 0,

(ii) for any ε > 0 , limδ→0 lim supn→+∞ supλ≤δ supτ∈TT
Pβ

ρ (|xτ+λ − xτ | > ε) = 0,

where TT is the set of stopping times bounded by T .

Fix H ∈ Sβ(R). By (16), it is enough to prove tightness of {Y n
0 (H)}n∈N, {I n

t (H); t ∈

[0, T ]}n∈N, and {M n
t (H); t ∈ [0, T ]}n∈N. By Proposition 3.2 the sequence of initial fields

{Y n
0 (H)}n∈N is obviously tight. For the martingale term, the first claim of the Aldous’ criterion

is straightforwardly verified as an application of Doob’s inequality together with (40). By
Lemma 7.7, the first claim can be easily checked for the integral term. It remains to check the
second claim, which is more demanding. For that purpose, fix a stopping time τ ∈ TT . By
Chebyshev’s inequality together with Lemma 7.4 we have that

Pβ
ρ

M n
τ+λ(H) − M n

τ (H)
 > ε


≤

1

ε2 Eβ
ρ


M n

τ+λ(H) − M n
τ (H)

2
≤

1

ε2 2χ(ρ) λ∥∇β H∥
2
2,β

≤
1

ε2 2χ(ρ) δ∥∇β H∥
2
2,β ,

which vanishes as δ → 0. In order to check the second claim for the integral term, we use the
same argument as above together with Lemma 7.7 to have that

Pβ
ρ

I n
τ+λ(H) − I n

τ (H)
 > ε


≤

1

ε2 Eβ
ρ


I n

τ+λ(H) − I n
τ (H)

2
≤

80t

ε2 δ χ(ρ)∥∇β H∥
2
2,β ,

which vanishes as δ → 0. This finishes the proof of tightness.

4. Semigroup results

Here we present the deduction of the explicit formula for the semigroup T α
t associated to the

following heat equation with a boundary condition of Robin’s type∂t u(t, x) = ∂2
xx u(t, x), t ≥ 0, x ∈ R \ {0}

∂x u(t, 0+) = ∂x u(t, 0−) = α{u(t, 0+) − u(t, 0−)}, t ≥ 0
u(0, x) = g(x), x ∈ R.

(27)

Let Tt be the semigroup associated to the heat equation (3). Let T̃ α
t be the semigroup related to

the following partial differential equation on the half-line:
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xx u(t, x), t ≥ 0, x > 0

∂x u(t, 0+) = 2αu(t, 0+), t ≥ 0
u(0, x) = g(x), x > 0.

(28)

A direct verification shows that

T α
t g(x) =


Tt geven(x) + T̃ α

t godd(x), for x > 0,

Tt geven(x) − T̃ α
t godd(−x), for x < 0,

(29)

is solution of (27). Since the semigroup Tt has the classical expression given in (6), we are
therefore left to deduce an explicit expression for T̃ α

t . Denote by u the solution of (28) and
consider v = 2αu − ∂x u, which is the solution of the following equation∂tv(t, x) = ∂2

xxv(t, x), t ≥ 0, x > 0
v(t, 0+) = 0, t ≥ 0
v(0, x) = v0(x), x > 0,

with v0(x) = 2αg(x)− ∂x g(x). The last equation is the heat equation with a boundary condition
of Dirichlet’s type. The semigroup T Dir

t v0(x) associated to the last equation, is classical and is
given by

T Dir
t v0(x) =

1
√

4π t


+∞

0


e−

(x−y)2

4t − e−
(x+y)2

4t


v0(y)dy. (30)

Then, we get

v(t, x) =
1

√
4π t


+∞

0


e−

(x−y)2

4t − e−
(x+y)2

4t


{2αg(x) − ∂x g(x)}dy.

Solving the ordinary linear differential equation v = 2αu − ∂x u, we get

u(t, x) = e2αx


+∞

x
e−2αzv(t, z)dz.

From the last two formulas, we arrive at

T̃ α
t g(x) =

e2αx

√
4π t


+∞

x
e−2αz


+∞

0


e−

(z−x)2
4t − e−

(z+x)2
4t


2αg(y) − ∂y g(y)


dy dz.

Finally, an integration by parts on the term of the integral above involving ∂y g yields

T̃ α
t g(x) =

e2αx

√
4π t


+∞

x
e−2αz


+∞

0


z − y + 4αt

2t


e−

(z−y)2

4t

+


z + y − 4αt

2t


e−

(z+y)2

4t


g(y)dydz. (31)

Putting this formula together with (29) and (6) we get the statement of Proposition 2.3.
In possess of the expression of all the semigroups, we can proceed to the

Proof of Proposition 2.5. Recall (29). We claim that

lim
α→0

T̃ α
t godd(x) = T Neu

t godd(x) (32)
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and

lim
α→+∞

T̃ α
t godd(x) = T Dir

t godd(x) , (33)

where T Dir
t is given by (30). We observe that proving (32) and (33) is enough to conclude the

proof, since it is of easy verification that

Tt g(x) =


Tt geven(x) + T Dir

t godd(x), for x > 0,

Tt geven(x) − T Dir
t godd(−x), for x < 0,

and

T Neu
t g(x) =


Tt geven(x) + T Neu

t godd(x), for x > 0,

Tt geven(x) − T Neu
t godd(−x), for x < 0.

Since godd will have no special role in the convergences (32) and (33), we will write just g
instead. We start by showing (32). First, we rewrite (31) to get

T̃ α
t g(x) =

e2αx

√
4π t


+∞

x
e−2αz


+∞

0

 z − y

2t


e−

(z−y)2

4t +

 z + y

2t


e−

(z+y)2

4t


g(y) dy dz

+
2αe2αx

√
4π t


+∞

x
e−2αz


+∞

0


e−

(z−y)2

4t − e−
(z+y)2

4t


g(y) dy dz.

When α → 0, the second parcel on the right hand side of the previous equation vanishes. Thus,
we are concerned only with the first parcel. Its limit when α → 0 is

1
√

4π t


+∞

0


+∞

x

 z − y

2t


e−

(z−y)2

4t +

 z + y

2t


e−

(z+y)2

4t


g(y) dy dz.

Applying Fubini’s Theorem to the last expression above gives

1
√

4π t


+∞

0
g(y)


+∞

x

 z − y

2t


e−

(z−y)2

4t +

 z + y

2t


e−

(z+y)2

4t


dz dy.

Solving the integral in z, we get that the last expression equals T Neu
t g(x), as claimed.

Now we prove (33). We begin by splitting (31) as

T̃ α
t g(x) = 2αe2αx


+∞

x
e−2αz 1

2α


+∞

0

1
√

4π t

 z − y

2t


e−

(z−y)2

4t

+

 z + y

2t


e−

(z+y)2

4t


g(y) dy dz

+ 2αe2αx


+∞

x
e−2αz


+∞

0

1
√

4π t


e−

(z−y)2

4t − e−
(z+y)2

4t


g(y) dy dz. (34)

Since 
+∞

x
e−2αz dz =

e−2αx

2α
,

we can see that the first parcel on the right hand side of (34) is an average of the function

1
2α


+∞

0

1
√

4π t


z − y

2t


e−

(z−y)2

4t +


z + y

2t


e−

(z+y)2

4t


g(y) dy (35)
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over the finite measure 1[x,+∞)(z)e−2αz dz. Since (35) goes to zero when α → +∞, we are only
concerned with the second parcel in (34). By Fubini’s Theorem, it is equal to

e2αx

√
4π t


+∞

0
g(y)


+∞

x
2αe−2αz


e−

(z−y)2

4t − e−
(z+y)2

4t


dz dy.

Performing an integration by parts to the integral in z yields

e2αx

√
4π t


∞

0
g(y)


−e−2αz


e−

(z−y)2

4t − e−
(z+y)2

4t

 z=+∞

z=x

+


+∞

x
e−2αz


−

(y − z)

2t
e−

(z−y)2

4t −
(y + z)

2t
e−

(z+y)2

4t


dz


dy,

which is equal to

T Dir
t g(x) −

e2αx

√
4π t


+∞

0
g(y)


+∞

x
e−2αz


(y − z)

2t
e−

(z−y)2

4t +
(y + z)

2t
e−

(z+y)2

4t


dz


dy.

Multiplying and dividing the integral term above by 2α, and then applying the same argument on
the average previously used, we get that the limit when α → +∞ is given by T Dir

t g(x), finishing
the proof of the pointwise convergence.

In order to conclude the L p(R) convergence, we notice that the semigroups are written in
terms of the Gaussian kernel, from which it is not difficult to get a uniform bound in α. Invoking
the Dominated Convergence Theorem the proof finishes. �

5. Proof of Proposition 2.6

The existence of the Ornstein–Uhlenbeck process solution of (8) was already proved in
Section 3. In this section we guarantee that there exists at most one random element Y taking
values in C ([0, T ], S ′

β(R)) such that (i) and (ii) of Proposition 2.6 hold. The next lines follow

closely from [11, page 307]. The key result is the equality T β
t+ε H − T β

t H = ε∆β T β
t H + o(ε),

which is well-known for β ∈ [0, 1). Since the semigroups T α
t and T Neu

t are written in terms
of the Gaussian kernel, the same property holds for them, provided H is in the corresponding
domain. In what follows, the same arguments apply for all cases of β, and we will just write T β

t
for the corresponding semigroup.

Fix H ∈ Sβ(R) and s > 0. Recall from (11) that Mt (H)(2χ(ρ)∥∇β H∥
2
2,β)−1/2 is a standard

Brownian motion. Therefore, by Itô’s Formula, the process {X s
t (H) ; t ≥ s} defined by

X s
t (H) = exp


1
2
(t − s)∥∇β H∥

2
2,β + i


Yt (H) − Ys(H) −

 t

s
Yr (∆β H)dr


is a martingale. Fix S > 0. We affirm now that the process {Z t ; 0 ≤ t ≤ S} defined by

Z t = exp


1
2

 t

0
∥∇β T β

S−r H∥
2
2,βdr + iYt (T β

S−t H)


is also a martingale. To prove this, consider two times 0 ≤ t1 < t2 ≤ S and a partition of
the interval [t1, t2] in n intervals of equal size, or else, t1 = s0 < s1 < · · · < sn = t2 , with
s j+1 − s j = (t2 − t1)/n. Observe now that



4176 T. Franco et al. / Stochastic Processes and their Applications 123 (2013) 4156–4185

n−1
j=0

X
s j
s j+1(T β

S−s j
H) = exp


1

2n

n−1
j=0

∥∇β T β
S−s j

H∥
2
2,β

+ i
n−1
j=0


Ys j+1(T β

S−s j
H)

− Ys j (T β
S−s j

H) −

 s j+1

s j

Yr (∆β T β
S−s j

H) dr


.

As n → +∞, the first sum inside the exponential above converges to

1
2

 t2

t1
∥∇β T β

S−r H∥
2
2,β dr,

because it is a Riemann sum. The second sum inside the exponential can be rewritten as

Yt2(T β

S−t2+
1
n

H) − Yt1(T β
S−t1

H)

+

n−1
j=1


Ys j (T β

S−s j−1
H − T β

S−s j
H) −

 s j+1

s j

Yr (∆β T β
S−s j

H) dr


.

Since Y ∈ C ([0, T ], S ′
β(R)), since T β

t H is continuous in time and applying the expansion

T β
t+ε H − T β

t H = ε∆β T β
t H + o(ε), we conclude that the almost sure limit of the previous

expression is just Yt2(T β
S−t2

H) − Yt1(T β
S−t1

H) . Thus, we have obtained that

lim
n→+∞

n−1
j=0

X
s j
s j+1(T β

S−s j
H)

= exp


1
2

 t2

t1
∥∇β T β

S−r H∥
2
2,βdr + i


Yt2(T β

S−t2
H) − Yt1(T β

S−t1
H)


,

which equals to
Zt2
Zt1

almost surely. Since the complex exponential is bounded, the Dominated

Convergence Theorem ensures also the L1 convergence, which on the other hand implies that

Eβ
ρ


G

Z t2

Z t1


= lim

n→+∞
Eβ

ρ


G

n−1
j=0

X
s j
s j+1(T β

S−s j
H)


,

for any bounded function G. Take G bounded and Ft1 -measurable. Since for any H ∈ Sβ(R),
the process X s

t (H) is a martingale, by taking the conditional expectation with respect to Fsn−1

we can see that

Eβ
ρ


G

n−1
j=0

X
s j
s j+1(T β

S−s j
H)


= Eβ

ρ


G

n−2
j=0

X
s j
s j+1(T β

S−s j
H)


.

By induction, we conclude that

Eβ
ρ


G

Z t2

Z t1


= Eβ

ρ


G

,
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for any G bounded and Ft1 -measurable, which proves that {Z t ; t ≥ 0} is a martingale. From
Eβ

ρ [Z t |Fs] = Zs , we get

Eβ
ρ


exp


1
2

 t

0
∥∇β T β

S−r H∥
2
2,β dr + i Yt (T β

S−t H)

Fs


= exp


1
2

 s

0
∥∇β T β

S−r H∥
2
2,β dr + i Ys(T β

S−s H)


,

which in turn gives

Eβ
ρ


exp


iYt (T β

S−t H)

Fs


= exp


−

1
2

 t

s
∥∇β T β

S−r H∥
2
2,βdr + iYs(T β

S−s H)


.

Since T β
S−s H = T β

t−s T β
S−t H , performing a change of variables in H and then a change of

variables in time, we are lead to

Eβ
ρ


exp


i Yt (H)

Fs


= exp


−

1
2

 t−s

0
∥∇β T β

r H∥
2
2,β dr + i Ys(T β

t−s H)


.

Replacing H by x H , where x ∈ R, we get that conditionally to Fs , the random variable Yt (H)

has Gaussian distribution of mean Ys(T β
t−s H) and variance

 t−s
0 ∥∇β T β

r H∥
2
2,β dr . Successive

conditioning implies the uniqueness of the finite dimensional distributions of the process
{Yt (H) ; t ∈ [0, T ]}, which in turn gives uniqueness in law of the random element Y , finishing
the proof.

6. Central limit theorem for the current

In this section we follow [7,10,15]. Recall the definition of the current J n
x,x+1(t) given in

Section 2.6. Since the system starts from the equilibrium νρ and the dynamics is symmetric, then
Eβ

ρ [J n
x,x+1(t)] = 0, for any time t ≥ 0 and any site x ∈ Z.

For any x ∈ Z, if the number of particles in the configuration η is finite, we can write

J n
x,x+1(t) =


y≥x+1


ηtn2(y) − η0(y)


.

In such case, the current through the bond {⌊un⌋−1, ⌊un⌋} can be written in terms of the density
fluctuation field Y n

t as

J n
u (t)
√

n
= Y n

t (Hu) − Y n
0 (Hu),

where Hu is the Heaviside function, or else, Hu(x) = 1[u,+∞)(x). Our goal is to take the limit as
n → +∞ in the previous equality. At this point we face two problems. First, the equality itself
makes no sense unless the configuration η has a finite number of particles. Second, the Heaviside
function does not belong to the space Sβ(R). To overcome these difficulties, we notice that by
the conservation of the number of particles it holds that

J n
x−1,x (t) − J n

x,x+1(t) = ηt (x) − η0(x). (36)

Next, we define a sequence of functions {Gu
j } j∈N such that Gu

j (x) := (1 −
x−u

j )+ Hu(x),
approximating the Heaviside function Hu . For these functions, the process Y n

t (Gu
j ) makes sense,
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no matter the finiteness of the total number of particles. A discrete integration by parts together
with (36) gives

Y n
t (Gu

j ) − Y n
0 (Gu

j ) =
1

√
n


x∈Z


Gu

j


x + 1

n


− Gu

j

 x

n


J n

x,x+1(t).

As j → +∞, the derivative of Gu
j becomes zero except at the discontinuity point x = u. This

motivates the next lemma.

Lemma 6.1. For every t ≥ 0 and for every β ∈ [0, +∞],

lim
j→+∞

Eβ
ρ


J n

u (t)
√

n
− (Y n

t (Gu
j ) − Y n

0 (Gu
j ))

2
= 0,

uniformly over n.

Proof. Recall (16) and (17). A simple computation together with (36) shows that

J n
u (t)
√

n
− (Y n

t (Gu
j ) − Y n

0 (Gu
j )) = M n

t (Hu − Gu
j ) + I n

t (Hu − Gu
j ).

By the inequality (x + y)2
≤ 2x2

+ 2y2, in order to prove the lemma, it is enough to show that
the second moment of the two terms on the right hand side of the previous equality vanishes as
j → +∞, uniformly over n.

Taking f = Hu − Gu
j in Lemma 7.4 we have that

Eβ
ρ [(M n

t ( f ))2
]

≤ t


2χ(ρ)


1
n


x≠−1


∇n f

 x

n

2
+ n1−β


f


0
n


− f


−1
n

2


+ O f (1/j)


.

Hence, by the definition of f we can bound the previous expression by 2χ(ρ)/j , which vanishes
as j → +∞. On the other hand, taking f = Hu − Gu

j in Lemma 7.7, we get

Eβ
ρ [(I n

t ( f ))2
]

≤ 80t


χ(ρ)


1
n


x≠−1


∇n f

 x

n

2
+ n1−β


f


0
n


− f


−1
n

2


+ O f (1/j)


,

which can be bounded from above by 80tχ(ρ)/j and vanishes as j → +∞, finishing the proof
of this lemma. �

Proof of Theorem 2.8. The proof follows from the previous lemma and Theorem 2.7. We start
with some considerations that work for all β ∈ [0, +∞].

First we observe that the functions Gu
j do not belong to Sβ(R). So, we fix j ∈ N and

approximate each Gu
j , in the L2(R)-norm with respect to the Lebesgue measure, by a sequence

of smooth functions of compact support, say Hu
k, j . Moreover, we choose Hu

k, j constant in
a neighborhood of zero, which ensures that Hu

k, j ∈ Sβ(R). For these functions we have
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convergence of the density fields. Moreover, for fixed t ≥ 0 we have that

Eβ
ρ


Y n

t (Hu
k, j ) − Y n

t (Gu
j )
2


= Eβ
ρ


Y n

t (Hu
k, j − Gu

j )
2


= Eβ
ρ

 1
√

n


x∈Z

(Hu
k, j − Gu

j )
 x

n


η̄tn2(x)

2


≤ χ(ρ)∥Hu
k, j − Gu

j ∥
2
2,

which vanishes as k → +∞, by hypothesis. Hence Y n
t (Hu

k, j ) converges to Y n
t (Gu

j ) in L2(Pβ
ρ ),

as k → +∞. By Theorem 2.7, we have that Y n
t (Hu

k, j ) converges to Yt (Hu
k, j ) in distribution, as

n → +∞. On the other hand, since for all H, G ∈ Sβ(R),

Eβ
ρ [Yt (H)Ys(G)] = χ(ρ)


R

T β
t−s H(v)G(v)dv, (37)

and since Yt is linear, we have

Eβ
ρ [(Yt (Hu

k, j ) − Yt (G
u
j ))

2
] = Eβ

ρ [(Yt (Hu
k, j − Gu

j ))
2
]

= χ(ρ)∥Hu
k, j − Gu

j ∥
2
2.

Therefore Yt (Hu
k, j ) converges to Yt (Gu

j ) in L2, as k → +∞. As a consequence of the
previous results, Y n

t (Gu
j ) converges to Yt (Gu

j ) in distribution, as n → +∞. By the previous
lemma, {Y n

t (Gu
j ) − Y n

0 (Gu
j )} j∈N is a Cauchy sequence uniformly in n. Then, {Yt (Gu

j ) −

Y0(Gu
j )} j∈N is also a Cauchy sequence and converges, as j → +∞, to some random

variable with Gaussian distribution. We denote such limit by Yt (Hu) − Y0(Hu). Therefore, the
normalized current J n

u (t)/
√

n converges to a Gaussian random variable, which formally reads as
Yt (Hu) − Y0(Hu), where Yt is the solution of the Ornstein–Uhlenbeck equation (12). Since the
distributions of Yt (Hu) are Gaussian, this implies the limit current to be Gaussian distributed.

The same argument can be applied to show the same result for any vector
(J n

u (t1), . . . , J n
u (tk)).

We claim that to compute the covariance, it is enough to compute the variance. Reversibility
plus a simple computation together with (37) yields

Eβ
ρ [(Ju(t))2

] = 2Eβ
ρ [Y0(Hu)(Y0(Hu) − Yt (Hu))]

= 2χ(ρ)⟨Hu, Hu − T β
t Hu⟩, (38)

where ⟨·, ·⟩ denotes the inner product in L2(R). Above we used (37) despite Hu is not in Sβ(R).
Nevertheless, by approximating arguments as above one can get the equality for Hu . Then,
linearity shows that the covariance can be written as

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)


⟨Hu, Hu − T β

t Hu⟩ + ⟨Hu, Hu − T β
s Hu⟩ − ⟨Hu, Hu − T β

t−s Hu⟩


=

1
2


Eβ

ρ [(Ju(t))2
] + Eβ

ρ [(Ju(s))2
] − Eβ

ρ [(Ju(t − s))2
]


.

Therefore, we only need to compute the variance for each one of the regimes of β.
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• Case β ∈ [0, 1).
Recalling (6), we have that

⟨Hu, Hu − T β
t Hu⟩ =


+∞

u


1 −


+∞

u

1
√

4π t
e−

(x−y)2

4t dy


dx =


t

π
.

From (38) we get

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)


t

π
+


s

π
−


t − s

π


.

• Case β = 1.
Recalling Proposition 2.3, we have that ⟨Hu, Hu − T β

t Hu⟩ is equal to
+∞

u


1 −


−u

−∞

1

2
√

4π t
e−

(x−y)2

4t dy −


+∞

u

1

2
√

4π t
e−

(x−y)2

4t dy

− e2αx


+∞

x

e−2αz

2


+∞

u


z − y + 4αt

2t
√

4π t
e−

(z−y)2

4t +
z + y − 4αt

2t
√

4π t
e−

(z+y)2

4t


dy dz


dx,

which can be rewritten as
+∞

u


1
2

+


−u

−u

1

2
√

4π t
e−

(x−y)2

4t dy

− e2αx


+∞

x

e−2αz

2


−

 z+u

z−u

v

2t
√

4π t
e−

v2
4t dv + 2α − 2αΦ2t (z − u)

− 2αΦ2t (z + u)


dz


dx .

A long but elementary computation shows that

⟨Hu, Hu − T β
t Hu⟩ =


t

π
+

Φ2t (2u + 4αt)e4αue4α2t

2α
−

Φ2t (2u)

2α
,

which from (38) is enough to conclude.
• Case β ∈ (1, +∞].
Recalling (7), we have that

⟨Hu, Hu − T β
t Hu⟩ =


+∞

u


1 −


+∞

u

1
√

4π t
e−

(x−y)2

4t dy −


+∞

u

1
√

4π t
e−

(x+y)2

4t dy


dx

=


t

π


1 − e−u2/t


+ 2uΦ2t (2u),

which from (38) concludes the proof. �

Proof of Corollary 2.9. In order to prove the result notice that Gaussian processes are
characterized by its covariance, and the limit of the covariance guarantees the convergence of
the processes in the sense of finite dimensional distributions. Thus, it is sufficient to show that

lim
α→0

Φ2t (2u + 4αt)e4αu+4α2t

2α
−

Φ2t (2u)

2α
= 2uΦ2t (2u) −


t

π
e−u2/t
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and

lim
α→+∞

Φ2t (2u + 4αt)e4αu+4α2t

2α
−

Φ2t (2u)

2α
= 0.

The first limit comes out by L’Hôpital’s Rule and the second one is a consequence of the estimate
+∞

a e−x2/2dx ≤
1
a e−a2/2, for a ∈ R. �

7. Some useful L2 estimates

In this section we prove what we call Local Replacement which is fundamental in
characterizing the limit points of the density fluctuation field.

For a function g ∈ L2(νρ), we denote by Dn(g) the Dirichlet form of the function g, defined
as Dn(g) = −


g(η)Lng(η) νρ(dη). An elementary computation shows that

Dn(g) =


x∈Z

ξn
x,x+1

2

 
g(ηx,x+1) − g(η)

2
νρ(dη). (39)

Recall from (21) that

η̄ℓ(x) =
1
ℓ

x+ℓ−1
y=x

η̄(y).

Lemma 7.1 (Local Replacement). For β ∈ [0, +∞], for ℓ ≥ 1 and for x = −1 it holds that

Eβ
ρ

 t

0
{η̄sn2(x) − η̄ℓ

sn2(x)}ds

2
≤

80t

n2 χ(ρ)

αnβ

+ ℓ

.

In order to prove the last lemma, we use the following result.

Lemma 7.2. For β ∈ [0, +∞], for g ∈ L2(νρ), for a constant A > 0 and for x = −1, it holds
that 

{η̄(x) − η̄ℓ(x)}g(η)νρ(dη) ≤ Aχ(ρ)(αnβ
+ ℓ) +

1
A

Dn(g),

where Dn(g) is the Dirichlet form, see (39).

Proof. In order to prove the previous lemma, we notice that by the definition of the empirical
average given in (21), we are able to write the integral in the statement of the lemma as

1
ℓ

x+ℓ−1
y=x

y−1
z=x


{η(z) − η(z + 1)}g(η)νρ(dη).

Writing the previous expression as twice its half and performing the change of variables
η → ηz,z+1, for which the measure νρ is invariant, we get

1
2ℓ

x+ℓ−1
y=x

y−1
z=x


(η(z) − η(z + 1))(g(η) − g(ηz,z+1))νρ(dη).
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Now, by the Cauchy–Schwarz inequality we bound the last expression by

1
2ℓ

x+ℓ−1
y=x

y−1
z=x

A

ξn
z,z+1


(η(z) − η(z + 1))2νρ(dη)

+
1
2ℓ

x+ℓ−1
y=x

y−1
z=x

ξn
z,z+1

A


(g(η) − g(ηz,z+1))2νρ(dη).

To finish the proof it is enough to recall (39). �

Proof of Lemma 7.1. By Proposition A1.6.1 of [11] we have that

Eβ
ρ

 t

0
{η̄sn2(x) − η̄ℓ

sn2(x)}ds

2
≤ 20 t∥η̄(x) − η̄ℓ(x)∥2

−1

= 20t sup
g∈L2(νρ )


2


{η̄(x) − η̄ℓ(x)}g(η)νρ(dη) − n2Dn(g)



≤ 20t sup
g∈L2(νρ )


2Aχ(ρ)(αnβ

+ ℓ) +
2
A

Dn(g) − n2Dn(g)


.

In the last inequality we used the Schwarz inequality together with the previous lemma. Taking
2/A = n2 the claim follows. �

Remark 7.3. Using the same arguments as above, we obtain the statement of Lemmas 7.1 and
7.2 for x = 0 exactly with the same bounds as for x = −1 but removing the term αnβ . This is a
consequence of the fact that in this case we do not cross the slow bond.

Lemma 7.4. Fix H ∈ Sβ(R). For β ∈ [0, +∞] and for any t ≥ 0

Eβ
ρ


(M n

t (H))2
= t


2χ(ρ)


1
n


x≠−1


∇n H

 x

n

2

+ αn1−β


H


0
n


− H


−1
n

2
+ OH


1
n


(40)

and

lim
n→+∞

Eβ
ρ [(M n

t (H))2
] = 2χ(ρ) t∥∇β H∥

2
2,β ,

where M n
t (H) is the martingale defined in (16).

Proof. The quadratic variation of M n
t (H) is given by

⟨M n(H)⟩t =

 t

0
n2

LnY n

s (H)2
− 2Y n

s (H)LnY n
s (H)


ds.

A simple computation shows that

⟨M n(H)⟩t =

 t

0

1
n


x≠−1

(ηsn2(x) − ηsn2(x + 1))2


n


H


x + 1

n


− H

 x

n

2

ds

+

 t

0
αn1−β(ηsn2(−1) − ηsn2(0))2


H


0
n


− H


−1
n

2

ds. (41)
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To finish the first claim of the lemma it is enough to take expectation with respect to νρ in the
last expression.

Now, we prove the second claim. Since for all β ∈ [0, +∞], H ∈ S (R \ {0}), the first term
on the right side of (40) converges to 2χ(ρ) t∥∇β H∥

2
2, as n → +∞. To finish the proof, it is

enough to analyze the second term on the right side of (40). For β ∈ [0, 1) since H ∈ S (R),
by Taylor’s expansion it is easy to check that the second term above is of order OH (n−β), which
also vanishes as n → +∞. For β ∈ (1, +∞], the second term on the right side of (40) is
bounded from above by tn1−β4∥H∥

2
∞, which vanishes as n → +∞. Finally, for β = 1, we use

Taylor’s expansion and the fact that α{H(0+) − H(0−)} = H (1)(0−) = H (1)(0+) to show that
it converges, as n → +∞, to 2χ(ρ) t


H (1)(0+)

2. This concludes the proof. �

Corollary 7.5. Fix H ∈ Sβ(R). For β ∈ [0, +∞] and for any t ≥ 0

|⟨M n(H)⟩t |

≤ t


1
n


x≠−1


H (1)

 x

n

2
+ n1−β


H


0
n


− H


−1
n

2

+ OH


1
n


. (42)

Proof. It is enough to use the triangular inequality in Eq. (41), together with the fact that
(ηsn2(x) − ηsn2(x + 1))2

≤ 1, for all x ∈ Z and s ≥ 0. �

Lemma 7.6. Let g ∈ L2(νρ) and {Fn}n∈N be a sequence of functions Fn : R → R. For any
constant A > 0, 

x∈Z
Fn

 x

n


{η(x) − η(x + 1)}g(η)νρ(dη)

≤ Aχ(ρ)

x∈Z

1
ξn

x,x+1


Fn

 x

n

2
+

1
A

Dn(g),

where Dn(g) is the Dirichlet form given in (39).

Proof. Rewriting the expression above as twice the half and making the transformation η →

ηz,z+1 (for which the probability νρ is invariant), we have 
x∈Z

Fn

 x

n


{η(x) − η(x + 1)}g(η)νρ(dη)

=
1
2

 
x∈Z

Fn

 x

n


{η(x) − η(x + 1)}{g(η) − g(ηx,x+1)}νρ(dη).

By the Cauchy–Schwarz inequality, for any A > 0, we bound the previous expression from
above by

1
2


x∈Z

A

ξn
x,x+1


Fn

 x

n

2


{η(x) − η(x + 1)}2 νρ(dη)

+
1
2


x∈Z

ξn
x,x+1

A


{g(η) − g(ηx,x+1)}2 νρ(dη).

Recalling (39), the proof finishes.
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Lemma 7.7. Fix H ∈ Sβ(R). For β ∈ [0, +∞] and for any t ≥ 0

Eβ
ρ


I n

t (H)
2

≤ 80 t χ(ρ)


1
n


x≠−1


∇n H

 x

n

2
+ n1−β


H


0
n


− H


−1
n

2


, (43)

where ∇n H
 x

n


= n


H
 x+1

n


− H

 x
n


and

lim sup
n→+∞

Eβ
ρ


I n

t (H)
2

≤ 80 t χ(ρ)∥∇β H∥
2
2,β ,

where I n
t (H) was defined in (17).

Proof. Recall the definition of I n
t (H) given in (17). A simple computation shows that

I n
t (H) =

 t

0

√
n


x≠−1,0


∇n H

 x

n


− ∇n H


x − 1

n


ηsn2(x) ds

+

 t

0

√
n


∇n H


0
n


ηsn2(0) − ∇n H


−2
n


ηsn2(−1)


ds

+

 t

0
n3/2−β


H


0
n


− H


−1
n


{ηsn2(−1) − ηsn2(0)}ds.

The last expression can be rewritten as t

0


x∈Z

Fn

 x

n


{ηsn2(x) − ηsn2(x + 1)},

where

Fn


x

n


=


n3/2−β


H


0
n


− H


−1
n


, if x = −1,

√
n∇n H

 x

n


, otherwise.

By Proposition A1.6.1 of [11], we have that

Eβ
ρ


I n

t (H)
2

≤ 20t sup
g∈L2(νρ )


2
 

x∈Z
Fn

 x

n


{η(x) − η(x + 1)}g(η)νρ(dη) − n2Dn(g)


.

By Lemma 7.6, the last expression is bounded from above by

20t sup
g∈L2(νρ )


2Aχ(ρ)


x∈Z

1
ξn

x,x+1


Fn

 x

n

2
+

2
A

Dn(g) − n2Dn(g)


.

Taking A =
2

n2 and by the definition of Fn the proof of the first claim ends.
To prove the second one, we notice the following. The first term on the right hand side of (43)

converges to 80t χ(ρ)∥∇β H∥
2
2. The second term on the right hand side of (43) can be analyzed

as in the proof of Lemma 7.4. �
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