Dynamical phase transition in slowed
exclusion processes

Tertuliano Franco, Patricia Gongalves and Adriana Neumann

Abstract In this work, we present symmetric simple exclusion processes with
a finite number of bonds whose dynamics is slowed down in order to difficult
the passage of particles at those bonds. We study the influence of the rate of
passage of mass at those bonds in the macroscopic hydrodynamic equation.
As a consequence, we exhibit a dynamical phase transition that goes from
smooth profiles to the development of discontinuities.

1 Introduction

A central question in Statistical Mechanics consists in obtaining the scaling
limits of interacting particle systems: given a microscopical interaction in a
time-evolving particle system, properly rescaled, what is the limiting behav-
ior of the system? Here, we are concerned about a one-dimensional particle
system with a random evolution where the interaction dynamics is given by
the exclusion rule, namely, at most one particle can occupy a fixed state (the
so-called fermions in Physics) and all the bonds have a constant rate of pas-
sage of particles, except a finite number of bonds, whose rate is slowed down
in order to difficult the passage across them.

The exclusion rule (Exclusion Process) is a standard model in Probabil-
ity and Statistical Physics, with wide literature about it. The special bonds
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slowing down the passage of particles, denominated by slow bonds, have been
considered in [3] and have origin in the works [5], [2] and [4].

The scaling limit considered here is the hydrodynamical limit (see [8] for
a reference on the subject) for a one-dimensional particle system, where the
spatial mesh of the discrete lattice is taken as N ' and particles can evolve
at a scaling time given by N2. We further assume that at the initial time,
the density of particles is approximated by a continuous profile ~(:). The
parameter characterizing the intensity of the rate of passage at the slow bonds
is taken as N~ where 3 € [0, 00]. It is understood here that N=>° = 0. In
order to keep notation simple we suppose the presence of a single slow bond.
The extension to a finite number of slow bonds is straightforward, see [3] for
details.

The main result of this paper consists on establishing a dynamical phase
transition that depends on the parameter 8 € [0, o], for the hydrodynamic
limit of exclusion processes with a finite number of slow bonds. In other words,
we prove that, when N — oo, the time trajectory of the spatial density of
particles converges to a space-time function p(¢,x) that is the weak solution
of a certain partial differential equation, depending on the chosen regime of
B. More precisely, if 5 € [0,1), then p(t, z) is the unique weak solution of the
well known heat equation on the torus T:

{ Op = 3§p,
p(0,:) = ().
meaning that, although the rate of passage of particles across the slow bond
goes to zero, its microscopical effect is not strong enough in order to have
any consequence in the continuum.

On the other hand, at the critical value 8 = 1, p(t,z) is the unique weak
solution of the heat equation on the torus T, with Robin’s boundary conditions
at the origin:

Op = 5§P
9upt(1) = Oupt(0) = pe(0) — pe(1).

We suppose that the slow bond is close to the origin, otherwise if it is close to
some point u/N in the one-dimensional discrete torus T, then the boundary
condition is given at u € T. It is possible to recognize above the Fick’s Law (or
the Fourier’s Law for the heat conduction), which states that the passage of
mass across an interface is proportional to the difference of the concentration
(or the temperature in the Fourier’s Law).

Now, if the rate of passage is slowed down in such a way that 5 € (1, o],
then p(t, x) is the solution of the heat equation on the torus T, with Neumann’s
boundary conditions:
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Orp = 820
p(0,:) = (")
Oupt(1) = 0ype(0) = 0.

In the case § € (1,00), the intensity of the slow bond is big enough in order
to prevent the passage of mass in the continuum. In the microscopic scenario,
for each fixed IV, it is possible to observe particles crossing the slow bond,
nevertheless in the macroscopic limit, the corresponding boundary is isolated,
as predicted by the Neumann’s boundary conditions. Microscopically, the case
8 = oo denotes a forbidden passage of particles across the slow bond and the
same behavior is reflected at the continuum, but in this case the system will
evolve in a finite box instead of the discrete torus T .

The paper is organized as follows. In Section 2, we define our microscopic
dynamics as an exclusion type model with a finite number of slow bonds
whose rate of passage is given by N=# with 8 € [0,00]. In Section 3, we
present the partial differential equations that we obtain for the different
regimes of § and we define what we mean by weak solutions of each one
of those equations. In Section 4, we formally define the concept of hydrody-
namic limit and in Section 5 we state the main result of this paper, namely,
the dynamical phase transition at the level of the hydrodynamic limit. We fin-
ish the paper, presenting in Section 6, some extensions to higher dimensions
and some future open problems.

2 Microscopic dynamics

Let Ty =Z/NZ = {1,..., N} be the one-dimensional discrete torus with N
points. We consider a microscopic dynamics of exclusion type, at each site
x € Ty there can be at most one particle. As a consequence of this exclusion
rule, our Markov process has state space {0,1}T~ its configurations being
denoted by the Greek letter € {0, 1}T~. The occupation variable at the site
x is defined in such a way that n(z) = 1, if the site x is occupied, otherwise
n(z) =0.

Now, we define the dynamics of our interacting particle system. For that
purpose, suppose that initially we have particles distributed in Ty as:

OO0, O O O OO, ,

Fig. 1 One possible initial configuration.

Let p : Ty x Ty — [0,1] be a probability measure such that for all
x,y € Ty it holds that p(z,y) := p(y — ).
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At each site x € Ty, there exists a random clock with exponential law of
parameter A(z) (usually this parameter is equal to one), which is independent
of the random clocks at the other sites. When one clock rings, if there is a
particle at that site, then it jumps to a site y with probability p(y — ). By
the exclusion rule, particles can only jump to empty sites. For instance, this
jump is allowed by the dynamics:

< IOIOI [ IOI | IOI IOI | IOIOI |

Fig. 2 Since the destination site is empty the particle can jump.
while this other jump is forbidden:
< IOIOI | | IOI | IOI IOI | IOIOI | -

Fig. 3 Since the destination site is occupied the particle does not move.

We suppose that jumps are performed to the nearest-neighbors, namely,
two sites z,y € T are nearest-neighbors, that we denote by x ~ y, if [z —y| =
1.

We also assume that there are a finite number of slow bonds whose rate of
passage of particles is decreased in such a way that those bonds act somehow
as a barrier to the movement of particles, see the picture below:

< IOIOI Lo IOI | IOI - IOI | IOIOI -

Slow bond Slow bond Slow bond

Fig. 4 Exclusion process with three slow bonds acting as a barrier. The rate at the slow
bonds is defined in such a way that the passage of particles across them is more difficult
than in the other bonds.

To each pair of sites z,y € Ty such that z ~ y, we associate a number
fiv y = fév . > 0, usually called conductance. At the slow bonds the conduc-
tance is a smaller in comparison with the value of the conductance at other
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bonds. The conductances are related to the parameter of the exponential
clock as follows: for each site z € Tn, AM(z) = 32, ., A

We consider a finite number of slow bonds, each one associated to a point
b1,...,br € T. Having a bond associated to the macroscopic point a € T,
means that this bond contains the point a in the natural embedding of the

discrete torus Ty in the continuous torus T, %']I‘N C T, see the figure below:

Fig. 5 Discrete torus %TN embedded in continuous torus T. The slow bond is the green
one, containing the macroscopical point a € T.

Given by,...,b; € T, we consider the following conductances:
N [ NBf {bl,...,bk}ﬂ(%,'”]tl];é@,
o+l 1, otherwise.

The rate of the conductances are chosen in such a way that particles cross
bonds at rate one, except k particular bonds in which the dynamics is slowed
down by a factor N~7, with 8 € (0, 00]. Each one of these particular bonds
contains the macroscopic point b; € T; or b; coincides with some vertex
and the slow bond is chosen as the bond to the left of .

Denote by {n; := mn2 : t > 0} the Markov process on {0,1}~ whose
interacting dynamics is described above, speeded up by N?2. Although 7; de-
pends on N and 3, we are not indexing it on that, in order not to overload
notation. Formally, this Markov process has generator given on local func-
tions f : {0,1}™ — R by

Lnfm)y = > &, (f0™) = fm),

z,y€TN
Ty
where ¥ is the configuration obtained from 7 by exchanging the variables

n(x) and n(y).
Let D(Ry,{0,1}T~) be the path space of cadlag trajectories with values

in {0,1}T~. For a measure p¥ on {0,1}~, denote by ]P’ﬁN the probability
measure on D(R4, {0,1}") induced by the initial state u and the Markov
process {n; : t > 0}.
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3 Macroscopic hydrodynamic equations

In this section we present the partial differential equations governing the
evolution of the density profile for the different regimes of 8 and we define
the notion of weak solutions of each one of these equations.

Denote by p; a function p(t, -) and for an integer n denote by C™(T) the set
of continuous functions from T to R and with continuous derivatives of order
up to n. For J an interval of T, here and in the sequel we use the notation
C™™([0,T] x J) for the set of functions defined on the domain [0, 7] x J, that
are of class C™ in time and C"" in space, for n, m integers.

Fix a bounded density profile v : T — R.

Definition 1. A bounded function p : [0,7] x T — R is said to be a weak
solution of the parabolic differential equation:

dip = Op
1

{p(O, ) =0 o
if, for t € [0,T] and H € CY2([0,T] x T), p(t, -) satisfies the integral equation

/p(t,u) H(t,u)du—/'y(u)H(O,u) du
T

T

—/ /p(s,u) {02H (s,u) + 0.H(s,u)}duds = 0.
o Jr

We repeat here the definition of the Sobolev Space from [1].

Definition 2 (Sobolev space). For a,b € T, the Sobolev space H'(a,b)
consists of all locally summable functions ¢ : (a,b) — R such that there
exists ¢ € L?(a,b) satisfying

/ 0. C(u)C(u) du = — / Gu)OC(u) du,
T T

for all G € C*°(a,b) with compact support. For ¢ € H'(a,b), we define the
norm

ICllact @by = 10€H L2 (ap) -

Definition 3. The space L2(0,T;3*(a,b)) consists of all measurable func-
tions € : [0,T] — H*(a,b) with

T ) 1/2
lellsroowon = ([ el i) < oo.

Definition 4. Let {b1,...,bx} C T. A bounded function p: [0,7] x T — R
is said to be a weak solution of the following parabolic differential equation
with Robin’s boundary conditions at the points {b1,...,bx} C T:
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Op = 812“0
p(0,)) = () (2)
Bupr(b) = Bupe(by ) = pe(bF) — pe(b7), VE € [0,T),Vi=1,....k

if the following two conditions are fulfilled:

(1) p e L2(0,T; HY(T\{b1, ..., bx})) ;

(2) For all functions H € C*2([0,T]x T\{b1,...,bx}) and for all ¢t € [0, T},
p(t,-) satisfies the integral equation

/p(t,u) H(t,u)du—/'y(u) H(0,u)du
T T
—/ /p(s,u) {02H (s,u) + 05 H (s,u)} duds

_Z/{p V0, H (5,bF) — p(s,b7)0u H (s,b7) b ds
+Z/ {p(s,b7) = p(s,b; )} {H(s,b]) — H(s,b; ) }ds = 0

Definition 5. Let {b1,...,b;} C T. A bounded function p: [0,7] x T — R
is said to be a weak solution of the following parabolic differential equation

with Neumann’s boundary conditions at the points {b1,...,b;} C T:
Op = 8ZP
p(0,-) = () (4)

Oup(t,by) = Oup(t,b7) =0, vVt €[0,T],Vi=1,...,k

if the following two conditions are fulfilled:

(1) p e L2(0,T; HY(T\{b1, ..., bx})) ;

(2) For all functions H € C*2([0,T] x T\{by, ..., by}) and for all t € [0,T],
p(t,-) satisfies the integral equation

/p(t,u) H(t,u)du—/'y(u)H(O,u) du
T

T

_/ /p(s,u) {02H (s,u) + 05 H (s,u)} du ds (5)
—Z/{p D)0uH (s,b) — p(s,b; )0, H(s,b; )} ds = 0

For classical results about Sobolev spaces, we refer the reader to [1] and
[9]. Since in Definition 4 and 5 we imposed p € L?(0,T; H*(T\{b1,...,bx})),
the integrals above are well-defined at the boundary points.

Heuristically, in order to establish an integral equation for the weak so-
lution of the heat equation with Robin’s or Neumann’s boundary conditions



8 Tertuliano Franco, Patricia Gongalves and Adriana Neumann

as above, one should multiply both sides of (2) or (4) (respectively) by a
test function H, integrate in space and time and then perform twice a formal
integration by parts, obtaining the equation

/p(t,u) H(t,u)du—/'y(u)H(O,u) du
T

T

—/ /p(s,u) {02H (s,u) + 0.H (s,u)} duds
o Jr

kot
—Z/{p(s,b?)auH(s,bj)— p(s,b;)0uH (5,b;)} ds

+Z/ {0up(s,b7)H(s,b]) — up(s,b; )H(s,b; )} ds = 0

Applying the formal boundary conditions on p, one gets to (3) or (5), respec-
tively. Besides that, any strong solution of (2) or (4) is a weak solution of (2)
or (4), respectively.

4 Hydrodynamic Limit

In this section we define formally the hydrodynamic limit for the processes
we described above. For that purpose, we define the empirical measure by:

o (du) = 7 (e du) = = 3 m)5 (du),

z€Tn

where §,, denotes the Dirac measure at u € T. As mentioned in the introduc-
tion we assume that at the initial time the density of particles is approximated
by a given profile. Now we define exactly what is the assumption we need on
the initial distribution of the system.

Fix a continuous density profile v : T — [0,1] and denote by (u
sequence of probability measures on {0, 1}T~.

N)N a

Definition 6. A sequence (1Y) y is associated to an initial profile (-), if for

every continuous function H : T — R and for every § > 0
i i 32 #(F)to - [t 5 <0 @

We can translate the definition above by saying that a sequence of measures
(™) is associated to a profile () if a Law of Large Number (in the weak
sense) holds for the empirical measure at time ¢ = 0 under the probability
pN. We can rewrite (6) as
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NLHJIFIOO/J, }/H W (du) /H du>5}

The goal in hydrodynamic limit consists in showing that if at time ¢t =0
the empirical measures are associated to some initial profile v(-), then at
time ¢ they are associated to a profile p;, where p; is the solution of the
corresponding hydrodynamic equation. So, the goal is to show that if a Law
of Large Numbers holds for the empirical measure at time t = 0 then it holds
at any time t.

In order to prove this result, we follow the Entropy Method which was
introduced by Guo, Papanicolau and Varadhan in [7]. This method requires
the uniqueness of weak solutions of the hydrodynamic equation. We notice
that all the partial differential equations (1), (2) and (4), have a unique weak
solution. For details we refer the reader to [3].

5 The main result

Here, we state the main result of the article in which we establish the hydro-
dynamic limit for the exclusion process with slow bonds depending on the
regime of (3:

Theorem 1. (Franco, Gongalves and Neumann [3])

Fiz 8 € [0,00]. Consider the exclusion process with k slow bonds corre-
sponding to macroscopic points by, ..., by € T and with conductance N—° at
each one of these bonds. Fiz a continuous profile v : T — [0,1]. Let (u™¥)n
be a sequence of probability measures on {0,1}T~ associated to ¥(-).

Then, for any t € [0,T], for every 6 > 0 and every H € C(T), it holds that

ngnoopu{ }NZH /H tudu‘>5} 0,

where :

e if3€10,1), p(t,-) is the unique weak solution of (1);
o if B=1, p(t,-) is the unique weak solution of (2);
o if B€(1,00], p(t,-) is the unique weak solution of (4).

6 Future problems

We finish the paper by presenting some extensions to higher dimensions and
some future problems.

The extension of the results presented here to higher dimensional cases can
be obtained as in [5]. In that paper the slow bonds have a spatial position
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associated to a smooth closed surface, modeling a membrane slowing down
the passage of particles. There, the authors study the case § = 1 and it is
an interesting problem to obtain the dynamical phase transition as in [3],
for any d-dimensional exclusion process with slow bonds. Also, it would be a
challenging problem to extend the result to particle systems without exclusion
constrains, as for example, the generalized exclusion or the zero-range process.

One interesting problem that we are studying is related to the dynamical
phase transition at the level of the fluctuations or at the limit distributions
of a tagged particle. In the former case, we fix a profile v(-) and we suppose
the system to start from the Bernoulli product measure v, with parameter
~v(x/N) at the site € T. We consider the density fluctuation field defined

as:
1
WY = o= 3 e {mle) — B @)}
z€T N

The goal is to obtain the limit Y. of the density field as defined above and
to characterize it as a solution to some stochastic partial differential equa-
tion. As in the hydrodynamic limit scenario, this equation will depend on the
regime of 3. For 8 = 0, it was proved in [10] that Y. is an Ornstein-Uhlenbeck
process with certain characteristics depending on the non-equilibrium ther-
modynamical quantities of the underlying system. The goal is to characterize
the limit process for 5 # 0. In the case of the tagged particle, at the initial
time we fix one of the particles that are distributed according to v,y and
we follow its trajectory. We want to establish a dynamical phase transition
at the level of the limiting distributions of this particle. For g = 0, it is
proved in [6] that the limit distributions are given by a fractional Brownian
motion. We want to characterize the limit when 5 # 0. This is a step towards
characterizing the limit behavior of exclusion processes with slow bonds.
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