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“It is remarkable that a science which be-
gan with the consideration of games of
chance should have become the most im-
portant object of human knowledge.”

–Pierre-Simon Laplace



Resumo

O objetivo desta dissertação de mestrado é estudar alguns resulta-
dos relativos ao buraco espectral de cadeias de Markov reversíveis; a
principal ferramenta serão as formas de Dirichlet. Para cadeias finitas,
nós apresentamos algumas técnicas que fornecem cotas para os auto-
valores a fim de estimar o burazo espectral. Para processos simétricos
de alcance zero satisfazendo algumas condições, nós obtemos um bu-
raco espectral de ordem n−2 para um cubo de volume nd.
Palavras-chave: Cadeias de Markov, buraco espectral e formas de
Dirichlet.



Abstract

The aim of this master’s thesis is to study some results with re-
spect to the spectral gap of reversible Markov chains; the main tool will
be the Dirichlet forms. For finite chains, we present some techniques
that give bounds on the eigenvalues in order to estimate the spectral
gap. For symmetric zero-range processes satisfying some conditions,
we achieve a spectral gap of order n−2 on a cube of volume nd.
Keywords: Markov chains, spectral gap and Dirichlet forms.
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Chapter 1

Introduction

We begin illustrating the main concepts involved in this master’s
thesis with a simple example. Consider that you live in a big house,
with two bedrooms just for you: namely, bedrooms A and B. Since you
do not prefer a particular one, you decide where you will sleep in the
next night with a random experiment. Regardless of where did you
spend the last night, every morning you toss a coin which is always
kept in the bedroom where you wake up (meaning there are two coins,
one for each bedroom). If the coin lands heads up, you will remain
sleeping in the same place. If the coin lands tails up, you will change
your bedroom.

Since the coins are different, we expect the probabilities for each
coin to lands tails up to be different. Let us denote the probabilities
for the coins kept in bedrooms A and B to lands tails up by pA and pB,
respectively. Trivially, the probabilities for the coins kept in bedrooms
A and B to lands heads up are 1−pA and 1−pB. Since we want the tran-
sitions between different bedrooms to have positive probability (you do
not want to be stuck in the same bed forever), we assume pA, pB > 0.

This setting is a example of a Markov chain, which sample space is
the set X = {A,B}. Indeed, the probability of you going to wake up in
a specific bedroom tomorrow (future) does not depend of whether room
you woke up yesterday (past), given the bedroom you are waking up
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today (present). Let’s denote the bedroom where you will sleep in day
k by Xk, with k ∈ {0, 1, . . .}. Also, we will say Xk is the k-th state of
the chain. Notice that in this terminology, the possible states are the
elements of X.

The informations given in the beginning of this example are condi-
tional probabilities: P(Xk+1 = A|Xk = A) = 1 − pA, P(Xk+1 = B|Xk =

A) = pA, P(Xk+1 = A|Xk = B) = pB and P(Xk+1 = B|Xk = B) = 1 − pB.
The standard representation of Markov chains with a finite sample
space is the transition matrix, whose entries are the transition proba-
bilities between states. Denoting this matrix by P , we can write

P =

[
1− pA pA

pB 1− pB

]
.

The first and second rows are the probability distributions of the
next state, given the current one is A and B, respectively, therefore the
sum of the elements of each row of a Markov chain is equal to 1. It does
not hold for columns: each element of the first and second column is
the probability of the next state is A and B, given a different current
state; that means we are fixing the future state, and not the present
one. If pA 6= pB, we get

(1− pA) + pB 6= 1; pA + (1− pB) 6= 1.

We will denote the probability distribution of Xk by the vector µk, i.e.,

µk = [µk(A) µk(B)] = [P(Xk = A) P(Xk = B)].

There is a close relation between µk and µk+1:

P(Xk+1 = A) = P(Xk = A)P(Xk+1 = A|Xk = A)

+ P(Xk = B)P(Xk+1 = A|Xk = B),
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P(Xk+1 = B) = P(Xk = A)P(Xk+1 = B|Xk = A)

+ P(Xk = B)P(Xk+1 = B|Xk = B).

The equalities above are equivalent to the matrix equality
µk+1 = µk · P , which illustrates why is very convenient to write the
chain as a matrix . Therefore, µ1 = µ0 · P ; more generally, an inductive
argument leads to µk = µ0 · P k,∀k ≥ 0.

In order to calculate the probabilities which are not conditional
(such as P(X1 = A)), we need the probability distribution of the ini-
tial state X0. Since our scheme can’t evaluate µ0, we will add a initial
step in our random experiment. In the day 0, we shall toss a third
coin: the probabilities of it lands heads up and lands tails up are qA

and qB = 1 − qA, respectively. If it lands heads up or tails, X0 = A or
X0 = B, respectively. Therefore, µ0 = [qA qB].

There is a special probability distribution π =
[

pB
pA+pB

pA
pA+pB

]
such

that π = π · P ; we say π is a stationary distribution of the Markov
chain P . If µ0 = π, then µ1 = µ0 · P = π · P = π; more generally, an
inductive argument leads to µk = π,∀k ≥ 0. In the same way, if µm = π

for some m, then µk = π,∀k ≥ m. Because of this, we say that if µm = π

for some m, then the chain will have achieved the equilibrium.
Denote pB

pA+pB
and pA

pA+pB
by π(A) and π(B), respectively. Note that

π(A)P(Xk + 1 = B|Xk = A) =
pApB
pA + pB

= π(B)P(Xk + 1 = A|Xk = B).

Then, we have

π(x)P(Xk + 1 = y|Xk = x) = π(y)P(Xk + 1 = x|Xk = y), ∀x, y ∈ X. (1.1)

Our Markov chain satisfies (1.1), which is known as reversibility
with respect to the measure π. Besides, if x0, x1, . . . , xk−1, xk ∈ X, an
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inductive argument leads to

π(x0)P(X1 = x1|X0 = x0) . . .P(Xk = xk|Xk−1 = xk−1)

=π(xk)P(X1 = xk−1|X0 = xk) . . .P(Xk = x0|Xk−1 = x1).

Intuitively, if we choose the initial state according to the distribution π,
the probability of achieving a sequence x0, x1, . . . , xk−1, xk is equal to
the probability of achieving the reversal sequence xk, xk−1, . . . , x1, x0.
For instance, if the initial distribution is π, the probability of achieving
the sequence A,B,B is

π(A)P(X1 = B|X0 = A)P(X2 = B|X1 = B)

=
pB

pA + pB
pA(1− pB) =

pApB(1− pB)

pA + pB
,

and the probability of achieving the reversal sequence B,B,A is

π(B)P(X1 = B|X0 = B)P(X2 = A|X1 = B)

=
pA

pA + pB
(1− pB)pB =

pApB(1− pB)

pA + pB
.

We are specially interested in evaluating how close the Markov chain
is of the equilibrium in the day k. In order to answer this question,
we will make use of a distance between µk and π. The total varia-
tion distance between two probability distributions α and β in X is
maxE⊂X |α(E) − β(E)|. If E = ∅, α(E) = β(E) = 0 and if E = X,
α(E) = β(E) = 1. Since in our example X = {A,B}, the event E ⊂ X

which maximizes |α(E)− β(E)| is either E = A or E = B. Indeed,

|α(A)− β(A)| = |(1− α(B))− (1− β(B))| = |α(B)− β(B)|.
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Denote µk − π by ∆k. Then

∆k+1(A) = µk+1 − π(A) = P(Xk+1 = A)− π(A)

=P(XK+1 = A|Xk = A)P(Xk = A)

+P(XK+1 = A|Xk = B)P(Xk = B)− π(A)

=(1− pA)(µk(A)) + pB(1− µk(A))− π(A)

=(1− pA − pB)(µk(A)) + (pA + pB)π(A)− π(A)

=(1− pA − pB)(µk(A)− π(A))

=(1− pA − pB)∆k(A).

An inductive argument leads to ∆k(A) = (1 − pA − pB)k∆0(A),∀k ≥ 0.
Since |µk(A)− π(A)| = |µk(B)− π(B)|,

‖µk − π‖TV = |µk(A)− π(A)| = |∆k(A)|

=|(1− pA − pB)k∆0(A)| = |(1− pA − pB)|k‖µ0 − π‖TV , ∀k ≥ 0

Since 0 < pA < 1, 0 < pB < 1, we get 0 < pA+pB < 2 and |(1−pA−pB)| < 1.
Therefore, we conclude that the distance between the chain and the
equilibrium decays exponentially with rate |(1− pA − pB)|.

Since we may (and we will) write the exponential convergence rate
to the equilibrium in terms of the spectral representation of the transi-
tion matrix, the rate is called the spectral gap (which will be defined
later) of the chain. In our example, the eigenvalues of the matrix P are
1 and 1− pA − pB; its spectral gap is 1− |1− pA − pB|.

In this master’s thesis, we will develop some tools in order to esti-
mate the spectral gap of reversible Markov chains, which is useful to
bound the distance between the distribution of Xk and the equilibrium.

We will start Chapter 2 with some basic definitions with respect to
Markov chains, which are essential to the remainder of this work. Then
we define the spectral gap of discrete-time and continuous-time finite
state Markov chains. Afterwards, we introduce Dirichlet forms and use
some results from Linear Algebra in order to bound the eigenvalues of
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a transition matrix, by comparison of two different chains on the same
finite set. This produces a estimate for the spectral gap.

The setting is totally different in Chapter 3: now we deal with
infinite-volume interacting particle systems, meaning the state space
is infinite and uncountable. We will study a particular but very im-
portant case: the symmetric zero-range processes on Zd. After making
some hypothesis and proving some initial results for this model, we
achieve a spectral gap of order n−2 on a cube of volume nd making use
of an inductive argument.



Chapter 2

Spectral gap of finite state
Markov chains

2.1 Introduction and Results

In this chapter, X denotes a finite set. We define the spectral gap of
a finite state Markov chain and connect it with the Dirichlet forms. Af-
terwards, we detail the paper [1], which develops a geometric bound
between a Markov chain of interest and another chain with known
eigenvalues on the same state space. In this way, we can bound the
eigenvalues of the first chain and estimate its spectral gap.

In this section, we will follow closely the book [5]. Before we start
to discuss Markov chains, we will define a distance between two prob-
ability distributions.

Definition 2.1. The total variation distance between two probability
distributions α and β in X is defined by

‖α− β‖TV = max
E⊂X
|α(E)− β(E)|. (2.1)

Now we will prove a very useful result with respect to this distance:

Proposition 2.1. Let α and β be two probability distributions on X.

7
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Then,
2‖α− β‖TV =

∑
x∈X

|α(x)− β(x)|. (2.2)

Proof. Let f = α − β, A = {x ∈ X : f(x) ≥ 0} and B ⊂ X. Then,
∀x ∈ AC , f(x) < 0, and∑

x∈B

f(x) =
∑

x∈A∩B

f(x) +
∑

x∈AC∩B

f(x) ≤
∑

x∈A∩B

f(x).

Since we may have AC ∩ B = ∅, the inequality above is not strict.
Moreover, ∑

x∈A∩B

f(x) ≤
∑

x∈A∩B

f(x) +
∑

x∈A∩BC
f(x) =

∑
x∈A

f(x)

and we get ∑
x∈B

f(x) ≤
∑
x∈A

f(x). (2.3)

Replacing A by AC , the inequalities are reversed. Indeed,∑
x∈B

f(x) =
∑

x∈A∩B

f(x) +
∑

x∈AC∩B

f(x) ≥
∑

x∈AC∩B

f(x).

Besides, ∑
x∈AC∩B

f(x) ≥
∑

x∈AC∩B

f(x) +
∑

x∈AC∩BC
f(x) =

∑
x∈AC

f(x)

Since we may have AC ∩ BC = ∅, the inequality above is not strict.
Then, ∑

x∈B

f(x) ≥
∑
x∈AC

f(x),

which is the same as

−
∑
x∈B

f(x) ≤ −
∑
x∈AC

f(x). (2.4)
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An useful remark is

Remark 2.1. The right-hand sides of (2.3) and (2.4) are equal.

Indeed, subtracting these right-hand sides leads to∑
x∈A

f(x)−
(
−
∑
x∈AC

f(x)
)

=
∑
x∈A

f(x) +
∑
x∈AC

f(x) =
∑
x∈X

f(x).

Recalling that f = α− β,∑
x∈X

f(x) =
∑
x∈X

α(x)−
∑
x∈X

β(x) = 1− 1 = 0,

which proves the remark. Besides, if we take B = A, the right-hand
side of (2.3) is achieved. Then,

max
B⊂X

∣∣∣∑
x∈B

f(x)
∣∣∣ =

∑
x∈A

f(x) = −
∑
x∈AC

f(x).

By the definition of total variation distance, we have

‖α− β‖TV = max
B⊂X
|α(B)− β(B)| = max

B⊂X

∣∣∣∑
x∈B

f(x)
∣∣∣,

which leads to

‖α− β‖TV =
∑
x∈A

f(x) =
∑
x∈A

|α(x)− β(x)| (2.5)

and
‖α− β‖TV = −

∑
x∈AC

f(x) =
∑
x∈AC

|α(x)− β(x)|. (2.6)

Finally, adding (2.5) and (2.6) produces

‖α− β‖TV + ‖α− β‖TV =
∑
x∈A

|α(x)− β(x)|+
∑
x∈AC

|α(x)− β(x)|,
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which is the same as

2‖α− β‖TV =
∑
x∈X

|α(x)− β(x)|.

A finite state Markov chain is a process which moves among the
elements of the finite set X in the following way: when at x ∈ X,
the next state is chosen according to a fixed probability distribution
P (x, ·). More precisely, a sequence of random variables (X0, X1, . . .)

is a Markov chain with state space X and transition matrix P

if ∀x, y ∈ X, ∀k ≥ 1, and all events Hk−1 = ∩k−1
j=0 [Xj = xj] satisfying

P(Hk−1 ∩ [Xk = x]) > 0, we have

P(Xk+1 = y|Hk−1 ∩ [Xk = x]) = P(Xk+1 = y|Xk = x) = P (x, y). (2.7)

Equation (2.7) is often called the Markov property and means that
the conditional probability of going from state x to state y does not de-
pend on the sequence x0, x1, . . . , xk−1 of states that precede the current
state x. Intuitively, given the present, the future is independent of the
past.

Therefore, P (which is a matrix of order |X|×|X|) suffices to describe
all the probability transitions and we will identify a Markov chain with
its transition matrix. The x-th row of P is the distribution P (x, ·); it has
non-negative real entries such that∑

y∈X

P (x, y) = 1 , ∀x ∈ X . (2.8)

We will denote the distribution of Xk by the row vector µk:

µk(x) = P(Xk = x),∀x ∈ X.
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Conditioning on all the predecessors of the (k + 1)-st state, we get

µk+1(y) =P(XK+1 = y) =
∑
x∈X

P(Xk = x)P(XK+1 = y|Xk = x)

=
∑
x∈X

µk(x)P (x, y).

In matrix notation, we have

µk+1 = µk · P, ∀k ≥ 0. (2.9)

We can extend this result by the following:

Proposition 2.2.
µk = µ0 · P k,∀k ≥ 0.

Proof. The proof is by induction. By hypothesis, the property already
holds for the initial case k = 0. Assume that it holds for some k ≥ 0; by
(2.9), it remains valid for k + 1.

An corolary of the last result is

Corollary 2.1. If µ is a probability distribution on a finite set X and
P is the transition matrix of a Markov chain on X, then µ · P k is a
probability distribution on X, ∀k ≥ 0.

A chain P is called irreducible if for any two states x, y ∈ X,
there exists a positive integer k(x, y) such that P k(x,y)(x, y) > 0. This
means that is possible to move from any state to any other state us-
ing only transitions of positive probability. Consider the chain of the
introduction: if pA = pB = 0, P = I2 (identity matrix of order 2) and
P k(1, 2) = P k(2, 1) = 0,∀k ≥ 0; this chain is not irreducible. Moreover,
this chain is irreducible if and only if pA · pB > 0.

In the following, we will assume that we are always dealing with
irreducible chains, which have a very important property: they always
have exactly one stationary distribution. Before we prove this result,
let’s define this last notion more precisely and discuss it.
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Definition 2.2. A stationary distribution π of a Markov chain P is
a probability distribution distribution satisfying

π = π · P,

which is the same as

π(x) =
∑
y∈X

π(y)P (y, x),∀x ∈ X.

If the chain is not irreducible, there may be an infinite number of
stationary distributions; for instance, if P is the identity matrix, every
distribution is stationary. That is why we will be focusing at irreducible
chains. As we will prove in the following, there is a stationary distri-
bution for every finite state Markov chain.

Proposition 2.3. Let P be the transition matrix of a Markov chain on
a finite state space X. Then there is at least one stationary distribution
π for the chain P .

Proof. Let µ be an arbitrary initial distribution onX. For every positive
integer n define the distribution πn by

πn =
1

n

n−1∑
j=0

µ · P j.

In order to prove the result, we will state three claims. The first one is

Claim 2.1. For every n > 0, πn is a probability distribution, i.e.,
πn(x) ≥ 0, ∀x ∈ X and

∑
x∈X πn(x) = 1.

By Corollary 2.1, µ · P j is a probability distribution ∀j ≥ 0, i.e.,

(µ · P j)(x) ≥ 0,∀x ∈ X,
∑
x∈X

(µ · P j)(x) = 1, ∀j ≥ 0. (2.10)
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Fix n > 0. Summing 2.10 from j = 0 to n− 1 and dividing by n, we get

πn(x) =
1

n

n−1∑
j=0

(µ · P j)(x) ≥ 0,∀x ∈ X

and

∑
x∈X

πn(x) =
∑
x∈X

( 1

n

n−1∑
j=0

(µ · P j)(x)
)

=
1

n

n−1∑
j=0

∑
x∈X

(µ · P j)(x) =
1

n

n−1∑
j=0

1 = 1.

Also, we can state the following:

Claim 2.2. For any x ∈ X and positive integer n,

|(πn · P )(x)− πn(x)| ≤ 2

n
.

Indeed, for every positive integer n, we have

|πn · P − πn| =
∣∣∣( 1

n

n−1∑
j=0

µ · P j
)
· P − 1

n

n−1∑
j=0

µ · P j
∣∣∣

=
1

n

∣∣∣ n−1∑
j=0

µ · P j+1 −
n−1∑
j=0

µ · P j
∣∣∣.

The last expression is a telescopic sum, which leads to

|πn · P − πn| =
1

n
|µ · P n+1 − µ|.

|(πn · P )(x)− πn(x)| = 1

n
|(µ · P n+1)(x)− µ(x)| ≤ 1

n
(1 + 1) =

2

n
,

proving Claim 2.2.
From Claim 2.1, 0 ≤ πn(x) ≤ 1,∀n > 0, ∀x ∈ X, then (πn)n≥1 is a

bounded sequence in R|X|. Therefore, the Bolzano-Weierstrass Theo-
rem leads to

Claim 2.3. There exists a subsequence (πnk)k≥0 such that limk→∞ πnk(x)

exists for every x ∈ X.
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For x ∈ X, define π(x) := limk→∞ πnk(x). From Claim 2.1, we get

π(x) = lim
k→∞

πnk(x) ≥ 0,∀x ∈ X

and ∑
x∈X

π(x) =
∑
x∈X

lim
k→∞

πnk(x) = lim
k→∞

∑
x∈X

πnk(x) = lim
k→∞

1 = 1,

with π(x) being a probability distribution on X. Denote M := max{x ∈
X : |(π · P )(x) − π(x)|}. Finally, if we assume that π is not stationary,
then π 6= π · P and M > 0. Let x0 be the state which maximizes |(π ·
P )(x) − π(x)|. Choosing k0 large enough such that 2/nk0 < M/2, Claim
2.2 leads to

|(πnk · P )(x0)− πnk(x0)| ≤ 2

nk
≤ 2

nk0

<
M

2
,∀k > k0.

Therefore,

M = |(π · P )(x0)− π(x0)| = lim
k→∞
|(πnk · P )(x0)− πnk(x0)| ≤ M

2
< M,

which is a contradiction. Therefore, π is a stationary distribution for
P .

The finiteness ofX is necessary to prove the result above; one counter-
example to the result above is the random walk on Z, described below.

Example 2.1 (Random walk on Z). In this chain, at each step you toss
a fair coin. Given you are in the integer number x, you jump to x + 1 if
the coin lands heads up and you jump to x− 1 if it lands tails up. Then,
we can describe the transitions by a function P : Z× Z→ [0, 1] such as

P (x, y) =

1
2
, if |y − x| = 1,

0 , otherwise.
(2.11)

Let us prove that it is indeed a counter-example for Proposition 2.3:
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Proposition 2.4. There is not a stationary distribution for the chain
described in Example 2.1.

Proof. Assume there is a stationary distribution π for this chain. Then
0 ≤ π(x) ≤ 1, ∀x ∈ Z,

∑
x∈Z π(x) = 1 and

π(x) =
∑
y∈X

π(y)P (y, x),∀x ∈ Z,

From (2.11), we get

2π(x) = π(x− 1) + π(x+ 1),∀x ∈ Z,

which is the same as

π(x+ 1)− π(x) = π(x)− π(x− 1),∀x ∈ Z.

We note that the entries of π are numbers of a arithmetic progression
with common difference d. Assume d = 0. If π(0) = 0, then ∀x ∈
Z, π(x) = 0 and

∑
x∈Z π(x) = 0 (contradiction). If π(0) = p > 0, then

∀x ∈ Z, π(x) = p and
∑

x∈Z π(x) = +∞ (contradiction).
Now assume d > 0. Choosing x such that x > 1/d, we get

π(x) = π(0) + x · d ≥ 0 + x · d = x · d > 1,

which is a contradiction. Finally, assume d < 0. Choosing x such that
x > 1/(−d), we get

π(−x) = π(0) + (−x) · d ≥ 0 + x · (−d) = x · (−d) > 1,

which is a contradiction. Therefore, there is not a stationary distribu-
tion for this Markov chain.

An intuitive result with respect to stationary distributions is

Proposition 2.5. Let P be a Markov chain with stationary distribution
π. Then π = π · P k,∀k ≥ 0.
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Proof. The proof is by induction. The result is trivial for k = 0 and
by hypothesis, the property already holds for the initial case k = 1.
Assume that it holds for some k ≥ 1; we will prove that it remains
valid for k + 1. Fix x ∈ X. Then

(π · P k+1)(x) =
∑
y∈X

(π · P k)(y)P (y, x) =
∑
y∈X

π(y)P (y, x) = π(x).

Next, we will prove that a stationary distribution π of a irreducible
Markov chain assigns a positive weight for each state:

Proposition 2.6. Let P be an irreducible Markov chain with stationary
distribution π. Then π(x) > 0,∀x ∈ X.

Proof. Assume there is x0 ∈ X such that π(x0) = 0. From Proposi-
tion 2.5, we get

(π · P k)(x0) = 0,∀k ≥ 0,

which is the same as∑
y∈X

π(y) · P k(y, x0) = 0,∀k ≥ 0. (2.12)

Let y0 be any state of X. Since P is an irreducible Markov chain, there
is a positive integer r(y0, x0) such that P r(y0,x0)(y0, x0) > 0. Applying
(2.12) for k = r(y0, x0),∑

y∈X

π(y) · P r(y0,x0)(y, x0) = 0.

Since all the terms of the sum in the left side are non-negative,

π(y) · P r(y0,x0)(y, x0) = 0,∀y ∈ X.

In particular, taking y = y0, we have π(y0) ·P r(y0,x0)(y0, x0) = 0. Dividing
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by P r(y0,x0)(y0, x0) > 0 leads to π(y0) = 0. Since it holds for any y0 ∈ X,∑
y∈X

π(y) =
∑
y∈X

0 = 0,

which is a contradiction. Therefore, π(x) > 0,∀x ∈ X.

If the chain is not irreducible, the stationary distribution does not
need to be positive. For instance, if P = I, each canonical vector of R|X|

is stationary but assigns a positive weight for only one state.
Finally, we will prove the uniqueness of the stationary distribution

of an irreducible Markov chain.

Proposition 2.7. Let P be an irreducible Markov chain. Then P has
only one stationary distribution π.

Proof. From Proposition 2.3, there is at least one stationary distribu-
tion for P . Let π1, π2 be two stationary distributions for P . Proposi-
tion 2.6 says that π1, π2 are positives. Define f := π1/π2. Let x0 ∈ X the
state which minimizes f and let k = f(x0) > 0 be the minimum. Then

π1(y) =
π1(y)

π2(y)
π2(y) = f(y)π2(y) ≥ kπ2(y), ∀y ∈ X. (2.13)

Let y0 be any state of X. Since P is an irreducible Markov chain,
there is a positive integer r(y0, x0) such that P r(y0,x0)(y0, x0) > 0. Apply-
ing Proposition 2.5 for π = π1 and k = r(y0, x0) at the entry y = x0 leads
to

π1(x0) = (π1 · P r(y0,x0))(x0) =
∑
y∈X

π1(y)P r(y0,x0)(y, x0).

Taking the term corresponding to y = y0 out of the sum,

π1(x0) = π1(y0)P r(y0,x0)(y0, x0) +
∑
y∈X
y 6=y0

π1(y)P r(y0,x0)(y, x0).
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Assume f(y0) > k. Then

π1(y0) =
π1(y0)

π2(y0)
π2(y0) = f(y0)π2(y0) > kπ2(y0)

and
π1(y0)P r(y0,x0)(y0, x0) > kπ2(y0)P r(y0,x0)(y0, x0). (2.14)

Also, (2.13) leads to∑
y∈X
y 6=y0

π1(y)P r(y0,x0))(y, x0) ≥
∑
y∈X
y 6=y0

kπ2(y)P r(y0,x0)(y, x0). (2.15)

Adding (2.14) and (2.15),

π1(x0) = π1(y0)P r(y0,x0)(y0, x0) +
∑
y∈X
y 6=y0

π1(y)P r(y0,x0)(y, x0)

> kπ2(y0)P r(y0,x0)(y0, x0) +
∑
y∈X
y 6=y0

kπ2(y)P r(y0,x0)(y, x0)

= k
(
π2(y0)P r(y0,x0)(y0, x0) +

∑
y∈X
y 6=y0

π2(y)P r(y0,x0))(y, x0)
)

= k
∑
y∈X

π2(y)P r(y0,x0)(y, x0).

Applying Proposition 2.5 for π = π2 and k = r(y0, x0) at the entry y = x0

leads to
k
∑
y∈X

π2(y)P r(y0,x0)(y, x0) = kπ2(x0).

Then we have,
π1(x0) > kπ2(x0),

which is the same as

k = f(x0) =
π1(x0)

π2(x0)
> k,
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and that is a contradiction. Therefore, f(y0) = k. Since it holds for
any y0 ∈ X, f(y) = k, ∀y ∈ X. Summing over all the entries of π1 and
recalling that π1, π2 are probability distributions,

1 =
∑
y∈X

π1(y) =
∑
y∈X

π1(y)

π2(y)
π2(y) =

∑
y∈X

f(y)π2(y) =
∑
y∈X

kπ2(y) = k · 1 = k.

Then,

π1(y) =
π1(y)

π2(y)
π2(y) = f(y)π2(y) = kπ2(y) = 1 · π2(y) = π2(y), ∀y ∈ X.

(2.16)
Therefore, if π1, π2 are stationary distributions for P , then π1 = π2.

A fundamental concept in this master’s thesis is the reversibility of
Markov chains. Given a Markov chain P , suppose there is a probability
distribution π on X which satisfies

π(x)P (x, y) = π(y)P (y, x) , ∀x, y ∈ X . (2.17)

The equations above are called the detailed balance equations. If
there is a probability distribution π which satisfies (2.17), we say P is
reversible (with respect to π). An important result connecting station-
ary distributions and reversibility is

Proposition 2.8. If P is a Markov chain which is reversible with re-
spect to π, then π is a stationary distribution of P .

Proof. Summing (2.17) over x ∈ X,∑
x∈X

π(x)P (x, y) =
∑
x∈X

π(y)P (y, x) .

From (2.8), we get that for every y ∈ X,∑
x∈X

π(y)P (y, x) = π(y)
∑
x∈X

P (y, x) = π(y).
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In particular, if P is irreducible, there is at most one distribution
π satisfying (2.17), which is the unique stationary distribution. We
remark that not all the reversible chains are irreducible. For instance,
if P is the identity matrix and π is any probability distribution, P is
reversible with respect to π. Indeed, if x = y ∈ X, we trivially have

π(x)P (x, y) = π(y)P (y, x),

and if x 6= y,

π(x)P (x, y) = π(x) · 0 = 0 = π(y) · 0 = π(y)P (y, x).

On the other hand, not all the irreducible chains are reversible. One
instance is the biased random walk on the n− cycle (n ≥ 3), described
below.

Example 2.2 (Biased random walk on the n− cycle). In this chain,
X = Zn = {0, 1, . . . , n− 1}. At each step you toss a coin with probability
p of landing heads up and probability q = 1 − p of landing tails up,
p 6= 1/2. Given you are in the integer number x, you jump to x+ 1 if the
coin lands heads up and you jump to x− 1 if it lands tails up. Then, we
can describe the transitions by a function P : Zn × Zn → [0, 1] such as

P (x, y) =


p , if y − x = 1(mod n),

q , if y − x = −1(mod n),

0 , otherwise.

(2.18)

Proposition 2.9. The chain described in Example 2.2 is irreducible but
it is not reversible.

Proof. Let x, y ∈ Zn. If p > 0, we know that with n+ x− y > 0 jumps to
the right, we may go from x to y; in this case, P n+x−y(x, y) ≥ pn+x−y > 0.
If p = 0, we know that with n + y − x > 0 jumps to the left, we may go
from x to y; in this case, P n−x−y(x, y) = 1n+x−y = 1 > 0. Therefore, for
any x, y ∈ X, there is a positive integer r(x, y) such that P r(x,y) > 0 and



21

the chain is irreducible. The stationary distribution π is the uniform
one, i.e., π(x) := 1/n,∀x ∈ X. Indeed,

∑
y∈X

π(y)P (y, x) =
∑
y∈X

1

n
P (y, x) =

p+ q

n
=

1

n
= π(x),∀x ∈ X.

On the other hand, since p 6= 1/2, then p 6= q and

π(x)P (x, x+ 1) =
1

n
p 6= 1

n
q = π(x+ 1)P (x+ 1, x),∀x ∈ X.

Thefore, the chain is not reversible.

If a Markov chain P is reversible with respect to π, the probability of
any finite sequence of states is equal to the probability of the reversed
sequence, given the initial distribution is π. More precisely, we say that

Proposition 2.10. Let P be a Markov chain, reversible with respect
to π. If the initial distribution is π, given a finite sequence of states
(y0, y1, . . . , yn−1, yn), we have

P(X0 = y0, X1 = y1, . . . , Xn−1 = yn−1, Xn = yn)

=P(X0 = yn, X1 = yn−1, . . . , Xn−1 = y1, Xn = y0).

Proof. Let (y0, y1, . . . , yn−1, yn) be a finite sequence of states. Then

P(X0 = y0, X1 = y1, . . . , Xn−1 = yn−1, Xn = yn)

=P(X0 = y0)P(X1 = y1|X0 = y0) · · ·P(Xn = yn|Xn−1 = yn−1)

=π(y0)P (y0, y1)P (y1, y2) · · ·P (yn−1, yn).

Applying (2.17), we can "shift the term corresponding to the distribu-
tion π to the right":

π(y0)P (y0, y1)P (y1, y2) · · ·P (yn−1, yn)

=P (y1, y0)π(y1)P (y1, y2) · · ·P (yn−1, yn).
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Applying (2.17) again,

P (y1, y0)π(y1)P (y1, y2) · · ·P (yn−1, yn)

=P (y1, y0)P (y2, y1)π(y2) · · ·P (yn−1, yn).

After applying (2.17) n times, we get

π(y0)P (y0, y1) · · ·P (yn−1, yn) = π(yn)P (yn, yn−1) · · ·P (y1, y0).

Besides,

π(yn)P (yn, yn−1) · · ·P (y1, y0)

=P(X0 = yn)P(X1 = yn−1|X0 = yn) · · ·P(Xn = y0|Xn−1 = y0)

=P(X0 = yn, X1 = yn−1, . . . , Xn−1 = y1, Xn = y0).

Now, we will exhibit a spectral characterization of Markov chains;
this will be useful later in order to estimate the convergence rate to the
equilibrium. We will start with the following result:

Proposition 2.11. If β is a eigenvalue of a finite state Markov chain,
then |β| ≤ 1.

Proof. Let P be a Markov chain on a finite set X with eigenvalue β.
Let v be a eigenvector of P different from 0 corresponding to β. Then
P · v = βv. We write v = [v1, . . . , v|X|]

T . Let vj0 the entry which
maximizes |vj|, i.e, |vj| ≤ |vj0|,∀j = 1, . . . , |X|. In particular, |vj0| > 0.
From the triangular inequality,

|βvj0| = |(P · v)(j0, 1)| =
∣∣∣ |X|∑
k=1

P (j0, k) · v(k, 1)
∣∣∣ ≤ |X|∑

k=1

|P (j0, k) · vk|.
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Since vj0 maximizes |vj|, we get

|βvj0| ≤
|X|∑
k=1

|P (j0, k)| · |vk| ≤ |vj0 |
|X|∑
k=1

|P (j0, k)| = |vj0| · 1 = |vj0|.

Dividing both sides by |vj0 | leads to |β| ≤ 1.

Another general result of Markov chains is

Proposition 2.12. v0 = [1, . . . , 1]T is a eigenvector of every finite state
Markov chain, corresponding to the eigenvector β0 = 1.

Proof. Let P be a Markov chain on a finite set X. For every j =

1, . . . , |X|, the j-entry of v0 is

(P · v0)(j, 1) =

|X|∑
k=1

P (j, k) · v0(k, 1) =

|X|∑
k=1

P (j, k) · 1 = 1 = 1 · v0(j, 1).

Then, P · v0 = 1 · v0.

Therefore, for every Markov chain the geometric multiplicity of the
eigenvalue β0 is at least 1. Now we will show that it is exactly 1 for
irreducible chains.

Proposition 2.13. Let P be an irreducible Markov chain, and v an
eigenvector of P corresponding to β0 = 1. Then all the entries of v are
equal.

Proof. By hypothesis, P · v = v. By induction, P k · v = v,∀k > 0. Let
vx0 be the entry which maximizes vj, i.e, vx0 ≥ vj, ∀j = 1, . . . , |X|. Let
y0 ∈ {1, . . . , |X|}. Since P is an irreducible Markov chain, there is a
positive integer r(y0, x0) such that P r(y0,x0)(y0, x0) > 0. Then v = P r(y0,x0) ·
v. Taking the x0-entry in both sides, we get

vx0 = (P r(y0,x0) · v)x0 =

|X|∑
j=1

P r(y0,x0)(x0, j)vj.
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Taking the term corresponding to j = y0 out of the sum,

vx0 = P r(y0,x0)(x0, y0)vy0 +

|X|∑
j=1

j 6=y0

P r(y0,x0)(x0, j)vj

≤ P r(y0,x0)(x0, y0)vy0 +

|X|∑
j=1

j 6=y0

P r(y0,x0)(x0, j)vx0 .

Since vx0 is the entry which maximizes vj, the inequality above holds.
Assume vy0 < vx0 . Since P r(y0,x0)(y0, x0) > 0,

vx0 ≤ P r(y0,x0)(x0, y0)vy0 +

|X|∑
j=1

j 6=y0

P r(y0,x0)(x0, j)vx0

< P r(y0,x0)vx0 +

|X|∑
j=1

j 6=y0

P r(y0,x0)(x0, j)vx0

=
(
P r(y0,x0)(x0, y0) +

|X|∑
j=1

j 6=y0

P r(y0,x0)(x0, j)
)
vx0 ,

which leads to

vx0 < vx0

|X|∑
j=1

P r(y0,x0)(x0, j) = vx0 · 1 = vx0 ,

and that is a contradiction. Therefore, vy0 = vx0. Since it holds for
any j = 1, . . . , |X|, vj = vx0 , ∀j = 1, . . . , |X| and all the entries of v are
equal.

An immediate corollary is

Corollary 2.2. Let P be an irreducible Markov chain. Then the geo-
metric multiplicity of the eigenvalue β0 = 1 is 1.

The corollary does not hold for chains which are not irreducible. For
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instance, if the transition matrix P is the identity matrix of order n > 1,
then P · v = v,∀v, i.e., the geometric multiplicity of 1 is n > 1.

If we deal only with irreducible chains, it does not hold all the eigen-
values are real. For instance, if the transition matrix P is

P =


1
2

1
16

7
16

7
16

1
2

1
16

1
16

7
16

1
2

 ,
the eigenvalues are 1 and (4 ± 3

√
3i)/16. Nevertheless, since all the

entries of P are positive, the chain is irreducible.
In the same way, the transition matrix of an irreducible Markov

chain does not need to be diagonalizable. For instance, if the transition
matrix P is

P =


2
5

1
5

2
5

2
5

2
5

1
5

1
5

1
5

3
5

 ,
the eigenvalues are 1, 1/5 and 1/5. However, if v is a eigenvector cor-
responding to the eigenvalue 1/5, v = [x − 3x x]T , where x is a real
number. Therefore, the eigenvalue 1/5 has algebraic multiplicity 2 and
geometric multiplicity 1, meaning P is not diagonalizable.

Therefore, the irreducibility of a Markov chain is not a sufficient
condition to produce a diagonalizable operator with only real eigenval-
ues; we will prove that the reversibility is necessary to get it. First, we
need a convenient vector space; we define `2

π(X) as the vector space RX

with inner product with respect to the measure π, which means, given
vectors f, g : X → R,

〈f, g〉π =
∑
x∈X

f(x)g(x)π(x) .

We identify P with the linear operator P : `2
π(X)→ `2

π(X) whose matrix
with respect to standard basis is P (here we have a slight abuse of
notation). Recalling the definition from Linear Algebra, we say that



26

the linear operator P is self-adjoint with respect to the inner product
〈·, ·〉π if

〈Pf, g〉π = 〈f, Pg〉π , ∀f, g ∈ RX .

The last proposition of this section is

Proposition 2.14. Let P be a transition matrix of a Markov chain. The
linear operator P : `2

π(X) → `2
π(X) is self-adjoint with respect to the

inner product 〈·, ·〉π if, and only if, P is reversible with respect to π.

Proof. Assume that f 7→ Pf is reversible with respect to π. Then,

π(x)P (x, y) = π(y)P (y, x) , ∀x, y ∈ X . (2.19)

We will prove that the operator P is self-adjoint with respect to the
inner product 〈·, ·〉π. Let f, g ∈ RX . We have that

〈Pf, g〉π =
∑
x∈X

(Pf)(x)g(x)π(x) =
∑
x∈X

(∑
y∈X

f(y)P (x, y)
)
g(x)π(x).

The second equality comes from the definition of Pf . Interchanging
the sums,∑

x∈X

(∑
y∈X

f(y)P (x, y)
)
g(x)π(x) =

∑
y∈X

∑
x∈X

f(y)g(x)P (x, y)π(x).

Applying (2.19), we get∑
y∈X

∑
x∈X

f(y)g(x)P (x, y)π(x) =
∑
y∈X

∑
x∈X

f(y)g(x)P (y, x)π(y).

From the definition of Pg,∑
y∈X

f(y)
(∑
x∈X

g(x)P (y, x)
)
π(y) =

∑
y∈X

f(y)(Pg)(y)π(y) = 〈f, Pg〉π.

Assume now that P is self-adjoint with respect to the inner product
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〈·, ·〉π. Therefore,

〈Pf, g〉π = 〈f, Pg〉π , ∀f, g ∈ RX . (2.20)

We will prove that the operator P is reversible with respect to π. Fix
x, y ∈ X . Define f, g ∈ RX by

f(z) =

1 , if z = y,

0 , if z 6= y.
(2.21)

and

g(z) =

1 , if z = x,

0 , if z 6= x.
(2.22)

From (2.21), we get

(Pf)(x) =
∑
z∈X

f(z)P (x, z) = f(y)P (x, y) = P (x, y).

Equation (2.22) leads to

〈Pf, g〉π =
∑
z∈X

Pf(z)g(z)π(z) = Pf(x)g(x)π(x) = P (x, y)π(x),

and
(Pg)(y) =

∑
z∈X

g(z)P (y, z) = g(x)P (y, x) = P (y, x).

Besides, from (2.21) we get

〈f, Pg〉π =
∑
z∈X

f(z)Pg(z)π(z) = f(y)Pg(y)π(y) = P (y, x)π(y).

Finally, (2.20) leads to

〈Pf, g〉π = 〈f, Pg〉π ⇒ P (x, y)π(x) = P (y, x)π(y).
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An immediate corollary is

Corollary 2.3. Let P be an irreducible and reversible Markov chain.
Then the algebraic multiplicity of the eigenvalue β0 = 1 is 1.

Proof. Since P is irreducible, Corollary 2.2 says that the geometric mul-
tiplicity of the eigenvalue β0 is 1. Besides, P is reversible, then by
Proposition 2.14, it is diagonalizable. Therefore, the geometric and the
algebraic multiplicities of every eigenvalue are equal. In particular, the
algebraic multiplicity of the eigenvalue β0 is 1.

Another corollary (very useful to the next sections) is

Corollary 2.4. Let P be an irreducible, reversible Markov chain. Then

a) There is an orthonormal basis of real-valued eigenfunctions to `2
π(X).

b) Denote the eigenvalues of the matrix P by βi, 0 ≤ i ≤ |X| − 1. Then
they may be written in descending order, such that

1 = β0 > β1 ≥ . . . ≥ β|X|−1 ≥ −1.

c) Denote the eigenfunctions of the matrix P by ϕi, 0 ≤ i ≤ |X| − 1,
and the constant function equal to 1 by 1. Then ϕ0 ≡ 1.

Proof. a) By Proposition 2.14, since P is reversible, P is self-adjoint
with respect to the inner product 〈·, ·〉π. Then the Spectral Theorem
from Linear Algebra assures the existence of an orthonormal basis
of real-valued eigenfunctions to the vector space `2

π(X).

b) Since P is self-adjoint with respect to 〈·, ·〉π, the Spectral Theorem
assures every eigenvalue βi, 0 ≤ i ≤ |X| − 1 is a real number.
Since R is a ordered field, they can be written in descending order.
By Proposition 2.11, we have

1 ≥ β0 > β1 ≥ . . . ≥ β|X|−1 ≥ −1.
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Besides, by Corollary 2.3, 1 = β0 > β1, which leads to

1 = β0 > β1 ≥ . . . ≥ β|X|−1 ≥ −1.

c) By Proposition 2.12, 1 is a eigenvector corresponding to the eigen-
value β0 = 1. It only remains to prove that the norm of 1 with respect
to the inner product 〈·, ·〉π is equal to 1. Evaluating 〈1,1〉π,

〈1,1〉π =
∑
x∈X

1(x)1(x)π(x) =
∑
x∈X

1 · 1 · π(x) = 1.

2.2 Spectral Gap of Discrete-Time Markov
Chains

In the remainder of this chapter, we always assume that we are
dealing with an irreducible Markov chain with a finite state space X
and transition matrix P , which is reversible with respect to the station-
ary distribution π. In this way, we are in the (very convenient) hypothe-
ses of Corollary 2.4. Moreover, hereafter we will adopt the notation of
Corollary 2.4, i.e., there is an orthonormal basis of eigenfunctions to
the vector space `2

π(X), where the eigenfunctions and eigenvalues will
be denoted by ϕi and βi, 0 ≤ i ≤ |X|−1, respectively. Besides that, the
eigenvalues are in descending order, i.e., 1 = β0 > β1 ≥ . . . ≥ β|X|−1.

Our goal here is to estimate the required time for P being “close”
to the equilibrium. In order to make this notion more precise, it is
customary to make use of the total variation distance. Recall it is a
distance between two probability distributions µ and ν on the same
sample space X and is defined by

‖µ− ν‖TV := max
A⊂X
{|µ(A)− ν(A)|}.
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This distance is the biggest difference between the probabilities as-
signed to a unitary event by the two distributions. According to Propo-
sition 2.1, we write it as

2‖µ− ν‖TV =
∑
y∈X

|µ(y)− ν(y)|.

Recall that P (x, y) = P([X0 = x] ∩ [X1 = y]). More generally, P k(x, y) =

P([X0 = x] ∩ [Xk = y]), ∀k ∈ N. Therefore, if we enumerate the elements
ofX, the x-th row of P k is the probability distribution P k(x, ·) = P([X0 =

x] ∩ [Xk = ·]), which will be denoted by P k
x .

We will say that the chain P is close to equilibrium in the time k if

max{||P k
x − π|| : x ∈ X} ≤ 1/4,

where the choice of 1/4 is arbitrary and most frequently used in the
literature. Note that this notion of being close does not depend on Xk.

The relation between the total variation distance and the eigenval-
ues of P is explained in the following result:

Proposition 2.15. Since π(y) > 0,∀y ∈ X, let pk(x, y) := P k(x, y)/π(y).
Denote the vector pk(x, ·) by pkx. Then, in the notations defined above:

a) pk(x, y) =

|X|−1∑
j=0

βkj ϕj(x)ϕj(y).

b)
|X|−1∑
j=0

ϕj(x)2 =
1

π(x)
.

c) Let β∗ = max{|β|X|−1|, β1}. Then,

〈pkx − 1, pkx − 1〉π =

|X|−1∑
j=1

ϕ2
j(x)β2k

j ≤ 1− π(x)

π(x)
β2k
∗ .
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d) Let π∗ = minx∈X{π(x)}. Then,

2‖P k
x − π‖TV ≤ π−1/2

∗ βk∗ .

Proof. a) Since ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis of `2
π(X),

pkx =

|X|−1∑
j=0

〈pkx, ϕj〉πϕj.

Expanding the expression of 〈pkx, ϕj〉π,

〈pkx, ϕj〉π =

|X|−1∑
y=0

pk(x, y)ϕj(y)π(y)

=

|X|−1∑
y=0

P k(x, y)ϕj(y) = 〈P k
x , ϕj〉 = βkj ϕj(x).

In the third equality, 〈·, ·〉 denotes the usual inner product. The first,
second and third equalities come from the definitions of 〈·, ·〉π, pk(·, ·)
and 〈·, ·〉, respectively. To obtain the last one, we recall that P kϕj =

βkj ϕj, since ϕj is a eigenfunction of P . Then, 〈P k
x , ϕj〉 is the inner

product of the x-th row of P k by ϕj, which is βkj ϕj(x). Comparing
both expressions obtained above, we get:

pkx =

|X|−1∑
j=0

βkj ϕj(x)ϕj.

The expression above is a equality between two vectors. Then, look-
ing at the entry y in each side, we conclude that

pk(x, y) =

|X|−1∑
j=0

βkj ϕj(x)ϕj(y).

b) For each x with 0 ≤ x ≤ |X| − 1, we define the operator
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fx(y) = δxy(π(y))−1 on `2
π(X), i.e.,

fx(y) =

(π(y))−1 , if y = x,

0 , if y 6= x.

Since ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis of `2
π(X),

|X|−1∑
j=0

〈fx, ϕj〉2π = 〈fx, fx〉π. (2.23)

Expanding the expression of 〈fx, ϕj〉π,

〈fx, ϕj〉π =

|X|−1∑
y=0

fx(y)ϕj(y)π(y) =
1

π(x)
ϕj(x)π(x) = ϕj(x). (2.24)

The first and the second equalities come from the definitions of 〈·, ·〉π
and fx, respectively. In a similar way, we may expand the expression
of 〈fx, fx〉π:

〈fx, fx〉π =

|X|−1∑
y=0

fx(y)fx(y)π(y) =
1

π(x)

1

π(x)
π(x) =

1

π(x)
. (2.25)

From (2.24), (2.23) and (2.25), we conclude that

|X|−1∑
j=0

ϕj(x)2 =

|X|−1∑
j=0

〈fx, ϕj〉2π = 〈fx, fx〉π =
1

π(x)
.

c) Ranging y over X in the result of the first item, we get the vectorial
equality

pkx =

|X|−1∑
j=0

βkj ϕj(x)ϕj.
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Isolating the term correspondent to j = 0 of the sum,

pkx = βk0ϕ0(x)ϕ0 +

|X|−1∑
j=1

βkj ϕj(x)ϕj = 1 +

|X|−1∑
j=1

βkj ϕj(x)ϕj.

To explain the second equality, we recall that β0 = 1 and ϕ0 = 1.
Subtracting 1 in both sides, we have

pkx − 1 =

|X|−1∑
j=1

βkj ϕj(x)ϕj.

Computing the inner product 〈·, ·〉π of each side of the equation above
with itself results in

〈pkx − 1, pkx − 1〉π =
〈 |X|−1∑

j=1

βkj ϕj(x)ϕj,

|X|−1∑
m=1

βkmϕm(x)ϕm

〉
π

=

|X|−1∑
j=1

|X|−1∑
m=1

βkj β
k
mϕj(x)ϕm(x)〈ϕj, ϕm〉π.

Since ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis of `2
π(X), we get

〈ϕj, ϕm〉π = δjm. Then:

〈pkx − 1, pkx − 1〉π =

|X|−1∑
j=1

βkj β
k
j ϕj(x)ϕj(x) =

|X|−1∑
j=1

ϕ2
j(x)β2k

j .

Recall that the eigenvalues are in descending order. Since
β∗ = max{|β|X|−1|, β1}, we obtain

β∗ = max{|βj|, 1 ≤ j ≤ |X| − 1},

which leads to

|X|−1∑
j=1

ϕ2
j(x)β2k

j ≤
|X|−1∑
j=1

ϕ2
j(x)β2k

∗ = β2k
∗

|X|−1∑
j=1

ϕ2
j(x)2.
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The inequality holds since β2k
∗ = max{β2k

j , 1 ≤ j ≤ |X| − 1}. Sub-
tracting and adding ϕ2

0(x) in the rightmost sum:

|X|−1∑
j=1

ϕ2
j(x)β2k

j ≤ β2k
∗

(
− ϕ2

0(x) + ϕ2
0(x) +

|X|−1∑
j=1

ϕ2
j(x)

)
.

Recalling that −ϕ2
0(x) = −1 and letting +ϕ2

0(x) be absorbed in the
summation:

|X|−1∑
j=1

ϕ2
j(x)β2k

j ≤ β2k
∗

(
− 1 +

|X|−1∑
j=0

ϕ2
j(x)

)
= β2k

∗

(
− 1

1
+

1

π(x)

)
.

In the equality above, we applied the result obtained in the second
item. Reducing the fractions to the same denominator, we get

|X|−1∑
j=1

ϕ2
j(x)β2k

j ≤ β2k
∗

(
− π(x)

π(x)
+

1

π(x)

)
=

1− π(x)

π(x)
β2k
∗ .

Therefore, we conclude that

〈pkx − 1, pkx − 1〉π =

|X|−1∑
j=1

ϕ2
j(x)β2k

j ≤ 1− π(x)

π(x)
β2k
∗ .

d) Proposition 2.1 leads to

2‖P k
x − π‖TV =

∑
y∈X

|P k(x, y)− π(y)| =
∑
y∈X

|pk(x, y)− 1|π(y).

The last equality holds since P k(x, y) = pk(x, y)π(y). Recalling that π
is a probability distribution, the last summation is the expectation
of |pxk − 1| with respect to π, i.e.,

∑
y∈X

|pk(x, y)− 1|π(y) = Eπ[|pkx − 1|].

From Jensen inequality, if Y is a random variable, we know that
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(E[Y ])2 ≤ E[Y 2]. Since both sides of this inequality are non-negative,
taking the square root,

E[Y ] ≤ (E[Y 2])1/2. (2.26)

Applying the result above to Y = |pkx − 1|, we get

Eπ[|pkx − 1|] ≤ (Eπ[|pkx − 1|2])1/2.

Writing the last expectation as a sum,

(Eπ[|pkx− 1|2])1/2 = (
∑
y∈X

(pk(x, y)− 1)2π(y))1/2 = (〈pkx− 1, pkx− 1〉π)1/2.

Comparing the expression obtained with the result of the previous
item:

2‖P k
x − π‖TV ≤ (〈pkx − 1, pkx − 1〉π)1/2 ≤

(1− π(x)

π(x)
β2k
∗

)1/2

.

Since π(x) > 0,∀x ∈ X,

1− π(x)

π(x)
≤ 1

π(x)
≤ max

x∈X
{π(x)−1}.

Moreover, π∗ = minx∈X{π(x)}, then maxx∈X{π(x)−1} = π−1
∗ . There-

fore, (1− π(x)

π(x)
β2k
∗

)1/2

≤ (π−1
∗ β2k

∗ )1/2 = π−1/2
∗ βk∗ .

Finally, we conclude that 2‖P k
x − π‖TV ≤ π

−1/2
∗ βk∗ .

The result obtained in item d) of Proposition 2.15 only takes into
account the values of π∗ and β∗. However, if ‖P x

k − π‖TV does not de-
pend much on x, it may be interesting to make use of an alternative
inequality:
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Proposition 2.16.

∑
x∈X

∑
y∈X

|P k(x, y)− π(y)|π(x) ≤
( |X|−1∑

j=1

β2k
j

)1/2

.

Proof. Let f(x) = 2‖P k
x − π‖TV . Then,∑

x∈X

∑
y∈X

|P k(x, y)− π(y)|π(x) =
∑
x∈X

(∑
y∈X

|P k(x, y)− π(y)|
)
π(x)

=
∑
x∈X

(2‖P k
x − π‖TV )π(x). =

∑
x∈X

f(x)π(x).

The second equality comes from Proposition 2.1. The last summation
may be written as the expectation of f with respect to π, i.e.,∑

x∈X

f(x)π(x) = Eπ[f ].

Applying (2.26) to Y = f(x), we get

Eπ[f ] ≤ (Eπ[f 2])1/2.

Expanding the expression of (f(x))2 and applying Proposition 2.1,

(f(x))2 = (2‖P x
k − π‖TV )2 =

(∑
y∈X

|Pk(x, y)− π(y)|
)2

.

Recall that P k(x, y) = pk(x, y)π(y). In the same way as we did in the pre-
vious proposition, we may write the last summation as the expectation
of |pkx − 1| with respect to π, i.e.,(∑

y∈X

|P k(x, y)− π(y)|
)2

=
(∑
y∈X

|pk(x, y)− 1|π(y)
)2

= (Eπ[|pkx − 1|])2.
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Jensen’s inequality leads to

(Eπ[|pkx − 1|])2 ≤ Eπ[|pkx − 1|2] =
∑
y∈X

(pk(x, y)− 1)2π(y).

From item c) of Proposition 2.15, we get

∑
y∈X

(pk(x, y)− 1)2π(y) = 〈pkx − 1, pkx − 1〉π =

|X|−1∑
j=1

ϕ2
j(x)β2k

j .

Therefore,

(f(x))2 ≤
|X|−1∑
j=1

ϕ2
j(x)β2k

j .

Since the expectation is monotone, we get

(Eπ[f 2])1/2 ≤
(
Eπ
[ |X|−1∑

j=1

ϕ2
jβ

2k
j

])1/2

.

Writing the expectation of the last term as a summation:

(
Eπ
[ |X|−1∑

j=1

ϕ2
jβ

2k
j

])1/2

=
( |X|−1∑

x=0

( |X|−1∑
j=1

ϕ2
j(x)β2k

j

)
π(x)

)1/2

.

Interchanging the sums and taking β2k
j out of the sum over x,

( |X|−1∑
x=0

( |X|−1∑
j=1

ϕ2
j(x)β2k

j

)
π(x)

)1/2

=
( |X|−1∑

j=1

β2k
j

|X|−1∑
x=0

(ϕj(x))2π(x)
)1/2

=
( |X|−1∑

j=1

β2k
j 〈ϕj, ϕj〉π

)1/2

=
( |X|−1∑

j=1

β2k
j · 1

)1/2

.

The second equality comes from the definition of 〈·, ·〉π. To obtain the
last equality, recall that ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis
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of `2
π(X). Finally, we conclude that

∑
x∈X

∑
y∈X

|P k(x, y)− π(y)|π(x) ≤
( |X|−1∑

j=1

β2k
j

)1/2

.

The final result of Proposition 2.15 means that the distance between
the chain distribution at the time k and the equilibrium is bounded by
a constant times βk∗ . For this reason, we define the spectral gap of the
Markov chain P in this setting as γ∗ = 1− β∗.

2.3 Spectral Gap of Continuous-Time
Markov Chains

In this section, we introduce continuous-time Markov chains, and
for a paticular case, we will obtain analogous results to Propositions
2.15 and 2.16. We now construct, given a transition matrix P and a
set X, a process (Xt)t∈[0,∞) which we call the continuous-time chain
with state space X and transition matrix P . The random times be-
tween transitions for this process are i.i.d. exponential random vari-
ables of unit rate, and at these transition times, movements are made
according to P . Continuous-time chains are often natural models in
applications, since they do not require transitions to occur at regularly
specified intervals. Indeed, it is possible to deal with continuous-time
chains in a more general setting, allowing that the rates of the transi-
tion times to be any positive number. However, in our particular case
of unit rate we will achieve equivalent conclusions to Propositions 2.15
and 2.16 in a natural way.

More precisely, let T1, T2, . . . be i.i.d. exponential random variables
of unit rate. That is, each Ti takes values in [0,∞) and has distribution
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function

P(Ti ≤ t) =

1− e−t , if t ≥ 0,

0 , if t < 0.

Let (Φk)
∞
k=0 be a Markov chain with transition matrix P , independent of

the random variables (Tk)
∞
k=1. Let S0 = 0 and Sk :=

∑k
j=1 Tj, for k ≥ 1.

Define Xt := Φk, if Sk ≤ t ≤ Sk+1.
Change of states occur only at the transition times S1, S2, . . .

(note, however, that if P (x, x) ≥ 0 for at least one state x ∈ X, then
it is possible that the chain does not change state at a transition time).

Define Nt := max{k : Sk ≤ t} to be the number of transition
times up to and including time t. Observe that Nt = k if and only if
Sk ≤ t < Sk+1. From the definition of Xt,

P([X0 = x] ∩ [Xt = y|Nt = k]) = P([X0 = x] ∩ [Φk = y]) = P k(x, y).

(2.27)
Moreover, the distribution of Nt is a Poisson random variable with
mean t:

P(Nt = k) =
e−ttk

k!
. (2.28)

The heat kernel H t is defined by H t(x, y) := P([X0 = x] ∩ [Xt = y]).
From (2.27) and (2.28), it follows that

H t(x, y) =
∞∑
k=0

P([X0 = x]∩[Xt = y|Nt = k])P(Nt = k) =
∞∑
k=0

e−ttk

k!
P k(x, y).

For an m ×m matrix M , define the m ×m matrix eM :=
∑∞

j=0
Mj

j!
. In

matrix representation,

H t = e−t
∞∑
k=0

(tP )k

k!
= e−tIetP = et(P−I).

Therefore, if we enumerate the elements of X, the x-th row of H t is the
probability distribution H t(x, ·) = P([X0 = x] ∩ [Xt = ·]), which will be
denoted by H t

x. An analogous result to Proposition 2.15 is
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Proposition 2.17. Since π(y) > 0,∀y ∈ X, let ht(x, y) := H t(x, y)/π(y).
Denote the vector ht(x, ·) by htx. Then, in the notations defined above:

a) ht(x, y) =

|X|−1∑
j=0

e−t(1−βj)ϕj(x)ϕj(y).

b) 〈htx − 1, htx − 1〉π =

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj) ≤ 1− π(x)

π(x)
e−2t(1−β1).

c) Let π∗ = minx∈X{π(x)}. Then 2‖H t
x − π‖TV ≤ π−1/2

∗ e−(1−β1)t.

Proof. a) Expanding the expression of ht(x, y),

ht(x, y) =
1

π(y)
H t(x, y) =

1

π(y)

∞∑
k=0

e−ttk

k!
P k(x, y)

=
∞∑
k=0

e−ttk

k!

P k(x, y)

π(y)
=

∞∑
k=0

e−ttk

k!
pk(x, y). (2.29)

From Proposition 2.15, we get that for every non-negative integer k:

pk(x, y) =

|X|−1∑
j=0

βkj ϕj(x)ϕj(y). (2.30)

Replacing the expression of (2.30) in (2.29),

∞∑
k=0

e−ttk

k!
pk(x, y) =

∞∑
k=0

e−ttk

k!

( |X|−1∑
j=0

βkj ϕj(x)ϕj(y)
)
.

Interchanging the sums,

∞∑
k=0

e−ttk

k!

( |X|−1∑
j=0

βkj ϕj(x)ϕj(y)
)

=

|X|−1∑
j=0

e−tϕj(x)ϕj(y)
∞∑
k=0

tkβkj
k!

=

|X|−1∑
j=0

e−tϕj(x)ϕj(y)
∞∑
k=0

(βjt)
k

k!
.
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From the Taylor series of the exponential function, the last expres-
sion is equal to

|X|−1∑
j=0

e−tϕj(x)ϕj(y)eβjt =

|X|−1∑
j=0

e−t(1−βj)ϕj(x)ϕj(y).

Therefore,

ht(x, y) =

|X|−1∑
j=0

e−t(1−βj)ϕj(x)ϕj(y).

b) Ranging y over X in the result of the previous item, we get the vec-
torial equality

htx =

|X|−1∑
j=0

e−t(1−βj)ϕj(x)ϕj.

Taking the term correspondent to j = 0 out of the sum,

htx = e−t(1−β0)ϕ0(x)ϕ0 +

|X|−1∑
j=1

e−t(1−βj)ϕj(x)ϕj

= 1 +

|X|−1∑
j=1

e−t(1−βj)ϕj(x)ϕj.

To explain the second equality, we recall that β0 = 0 and ϕ0 = 1.
Subtracting 1 in both sides, we have

htx − 1 =

|X|−1∑
j=1

e−t(1−βj)ϕj(x)ϕj.

Computing the inner product 〈·, ·〉π of each side of the equation above
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with itself results in

〈htx − 1, htx − 1〉π =
〈 |X|−1∑

j=1

e−t(1−βj)ϕj(x)ϕj,

|X|−1∑
m=1

e−t(1−βm)ϕm(x)ϕm

〉
π

=

|X|−1∑
j=1

|X|−1∑
m=1

e−t(1−βj)e−t(1−βm)ϕj(x)ϕm(x)〈ϕj, ϕm〉π.

Since ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis of `2
π(X), we get

〈ϕj, ϕm〉π = δjm. Then,

〈htx − 1, htx − 1〉π =

|X|−1∑
j=1

e−t(1−βj)e−t(1−βj)ϕj(x)ϕj(x)

=

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj).

Recall that the eigenvalues are in descending order. Since
β1 ≥ βj, 1 ≤ j ≤ |X| − 1, we obtain

e−2t(1−β1) = max
1≤j≤|X|−1

{e−2t(1−βj)},

which leads to

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj) ≤

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−β1) = e−2t(1−β1)

|X|−1∑
j=1

ϕ2
j(x).

Subtracting and adding ϕ2
0(x) in the rightmost sum:

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj) ≤ e−2t(1−β1)

(
− ϕ2

0(x) + ϕ2
0(x) +

|X|−1∑
j=1

ϕ2
j(x)

)
.

Recalling that −ϕ2
0(x) = −1 and letting +ϕ2

0(x) be absorbed in the
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summation:

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj) ≤ e−2t(1−β1)

(
− 1 +

|X|−1∑
j=0

ϕ2
j(x)

)
= e−2t(1−β1)

(
− 1

1
+

1

π(x)

)
.

In the equality above, we applied the result obtained in the second
item of Proposition 2.15. Reducting the fractions to the same de-
nominator, we get

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj) ≤ e−2t(1−β1)

(
− π(x)

π(x)
+

1

π(x)

)
=

1− π(x)

π(x)
e−2t(1−β1).

Therefore, we conclude that

〈htx − 1, htx − 1〉π =

|X|−1∑
j=1

ϕ2
j(x)e−2t(1−βj) ≤ 1− π(x)

π(x)
e−2t(1−β1).

c) Proposition 2.1 leads to

2‖H t
x − π‖TV =

∑
y∈X

|H t(x, y)− π(y)| =
∑
y∈X

|ht(x, y)− 1|π(y).

The last equality holds since H t(x, y) = ht(x, y)π(y). Recalling that π
is a probability distribution, the last summation is the expectation
of |htx − 1| with respect to π, i.e.,

∑
y∈X

|ht(x, y)− 1|π(y) = Eπ[|htx − 1|].

Applying (2.26) to Y = |htx − 1|, we get

Eπ[|htx − 1|] ≤ (Eπ[|htx − 1|2])1/2.
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Writing the last expectation as a sum,

(Eπ[|htx−1|2])1/2 = (
∑
y∈X

(ht(x, y)− 1)2π(y))1/2 = (〈htx−1, htx−1〉π)1/2.

Comparing the expression obtained with the result of the previous
item:

2‖H t
x − π‖TV ≤ (〈htx − 1, htx − 1〉π)1/2 ≤

(1− π(x)

π(x)
e−2t(1−β1)

)1/2

.

Since π(x) > 0,∀x ∈ X,

1− π(x)

π(x)
≤ 1

π(x)
≤ max

x∈X
{π(x)−1}.

Also, π∗ = minx∈X{π(x)}, then maxx∈X{π(x)−1} = π−1
∗ . Therefore,

(1− π(x)

π(x)
e−2t(1−β1)

)1/2

≤ (π−1
∗ e−2t(1−β1))1/2 = π−1/2

∗ e−t(1−β1).

Finally, we conclude that 2‖H t
x − π‖TV ≤ π

−1/2
∗ e−(1−β1)t.

An analogous result to Proposition 2.16 for continuous-time pro-
cesses is the following:

Proposition 2.18.

∑
x∈X

∑
y∈X

|H t(x, y)− π(y)|π(x) ≤
( |X|−1∑

j=1

e−2(1−βj)t
)1/2

.

Proof. Let f(x) = 2‖H t
x − π‖TV . Then,∑

x∈X

∑
y∈X

|H t(x, y)− π(y)|π(x) =
∑
x∈X

(∑
y∈X

|H t(x, y)− π(y)|
)
π(x)

=
∑
x∈X

(2‖H t
x − π‖TV )π(x) =

∑
x∈X

f(x)π(x).
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The second equality comes from Proposition 2.1. The last summation
may be written as the expectation of f with respect to π, i.e.,∑

x∈X

f(x)π(x) = Eπ[f ].

Applying (2.26) to Y = f(x), we get

Eπ[f ] ≤ (Eπ[f 2])1/2.

Expanding the expression of (f(x))2 and applying Proposition 2.1,

(f(x))2 = (2‖H t
x − π‖TV )2 =

(∑
y∈X

|H t(x, y)− π(y)|
)2

.

Recall that H t(x, y) = ht(x, y)π(y). In the same way as we did in the pre-
vious proposition, we may write the last summation as the expectation
of |htx − 1| with respect to π, i.e.,(∑

y∈X

|H t(x, y)− π(y)|
)2

=
(∑
y∈X

|ht(x, y)− 1|π(y)
)2

= (Eπ[|htx − 1|])2.

Jensen’s inequality leads to

(Eπ[|htx − 1|])2 ≤ Eπ[|htx − 1|2] =
∑
y∈X

(ht(x, y)− 1)2π(y).

From item b) of Proposition 2.17, we get

∑
y∈X

(ht(x, y)− 1)2π(y) = 〈htx − 1, htx − 1〉π =

|X|−1∑
j=1

ϕ2
j(x)e−2(1−βj)t.

Therefore,

(f(x))2 ≤
|X|−1∑
j=1

ϕ2
j(x)e−2(1−βj)t.
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Since the expectation is monotone, we get

(Eπ[f 2])1/2 ≤
(
Eπ
[ |X|−1∑

j=1

ϕ2
je
−2(1−βj)t

])1/2

.

Writing the expectation of the last term as a summation:

(
Eπ
[ |X|−1∑

j=1

ϕ2
je
−2(1−βj)t

])1/2

=
( |X|−1∑

x=0

( |X|−1∑
j=1

ϕ2
j(x)e−2(1−βj)t

)
π(x)

)1/2

.

Interchanging the sums and taking e−2(1−βj)t out of the sum over x,

|X|−1∑
x=0

( |X|−1∑
j=1

ϕ2
j(x)e−2(1−βj)t

)
π(x) =

|X|−1∑
j=1

e−2(1−βj)t
|X|−1∑
x=0

(ϕj(x))2π(x)

=

|X|−1∑
j=1

e−2(1−βj)t〈ϕj, ϕj〉π =

|X|−1∑
j=1

e−2(1−βj)t · 1

The second equality comes from the definition of 〈·, ·〉π. To obtain the
last equality, recall that ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis
of `2

π(X). Taking the square root, we get

( |X|−1∑
x=0

|X|−1∑
j=1

ϕ2
j(x)e−2(1−βj)tπ(x)

)1/2

=
( |X|−1∑

j=1

e−2(1−βj)t · 1
)1/2

.

Finally, we conclude that

∑
x∈X

∑
y∈X

|H t(x, y)− π(y)|π(x) ≤
( |X|−1∑

j=1

e−2(1−βj)t
)1/2

.

The final result of Proposition 2.17 means that the distance between
the chain distribution at the time t and the equilibrium is bounded by
a constant times e−(1−β1)t. For this reason, we define the spectral gap of
the Markov chain P in this setting as γ∗ = 1− β1 > 0.
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2.4 First and Second Dirichlet Forms

Now we will define the first and second Dirichlet forms, which will
be handy later in order to bound the unknown eigenvalues of P , making
use of a auxiliar Markov chain. The following definition will be useful
to achieve the upper bounds:

Definition 2.3. Let f ∈ RX . We define the first Dirichlet form E : RX →
R as

E (f, f) := 〈(I − P )f, f〉π.

Proposition 2.19. The first Dirichlet form E can be also written as

E (f, f) =
1

2

∑
x∈X

∑
y∈X

(
f(x)− f(y)

)2
π(x)P (x, y).

Proof. Expanding the expression of E (f, f),

E (f, f) =
∑
x∈X

(
(I − P )f

)
(x)f(x)π(x)

=
∑
x∈X

[
f(x)− Pf(x)

]
f(x)π(x)

=
∑
x∈X

[
f(x) · 1−

∑
y∈X

f(y)P (x, y)
]
f(x)π(x).

From (2.8), we rewrite the constant 1 above as a sum and we have

∑
x∈X

[f(x) · 1−
∑
y∈X

f(y)P (x, y)]f(x)π(x)

=
∑
x∈X

[∑
y∈X

f(x)P (x, y)−
∑
y∈X

f(y)P (x, y)
]
f(x)π(x)

=
∑
x∈X

∑
y∈X

[f(x)− f(y)]P (x, y)f(x)π(x)

=
∑
x∈X

∑
y∈X

[f(x)− f(y)]f(x)π(x)P (x, y). (2.31)
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Since P is reversible with respect to π, (2.17), leads to

∑
x∈X

∑
y∈X

[f(x)− f(y)]f(x)π(x)P (x, y) =
∑
x∈X

∑
y∈X

[f(x)− f(y)]f(x)π(y)P (y, x).

Exchanging the indices x and y in the double summation above, we get

∑
x∈X

∑
y∈X

[f(x)− f(y)]f(x)π(y)P (y, x)

=
∑
x∈X

∑
y∈X

[f(y)− f(x)]f(y)π(x)P (x, y)

=
∑
x∈X

∑
y∈X

[f(x)− f(y)][−f(y)]π(x)P (x, y) =: S.

Then, we may write the double summation S in two ways. One was
obtained above and is

S =
∑
x∈X

∑
y∈X

[f(y)− f(x)][−f(y)]π(x)P (x, y). (2.32)

The another one comes from (2.31) and is

S =
∑
x∈X

∑
y∈X

[f(x)− f(y)]f(x)π(x)P (x, y). (2.33)

Summing (2.32) with (2.33) and dividing by 2,

S = E (f, f) =
1

2

∑
x∈X

∑
y∈X

[f(x)− f(y)][f(x)− f(y)]π(x)P (x, y),

which is the same as

E (f, f) =
1

2

∑
x∈X

∑
y∈X

(
f(x)− f(y)

)2

π(x)P (x, y).

The following definition will be useful to achieve the lower bounds:
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Definition 2.4. Let f ∈ RX . We define the second Dirichlet form F :

RX → R as
F (f, f) := 〈(I + P )f, f〉π.

Proposition 2.20. The second Dirichlet form F can be also written as

F (f, f) =
1

2

∑
x∈X

∑
y∈X

(
f(x) + f(y)

)2

π(x)P (x, y).

Proof. Expanding the expression of F (f, f),

F (f, f) =
∑
x∈X

(
(I + P )f

)
(x)f(x)π(x)

=
∑
x∈X

[
f(x) + Pf(x)

]
f(x)π(x)

=
∑
x∈X

[
f(x) · 1 +

∑
y∈X

f(y)P (x, y)
]
f(x)π(x).

Fr (2.8), we rewrite the constant 1 above as a sum and we have

∑
x∈X

[
f(x) · 1 +

∑
y∈X

f(y)P (x, y)
]
f(x)π(x)

=
∑
x∈X

[∑
y∈X

f(x)P (x, y) +
∑
y∈X

f(y)P (x, y)
]
f(x)π(x)

=
∑
x∈X

∑
y∈X

[
f(x) + f(y)

]
P (x, y)f(x)π(x)

=
∑
x∈X

∑
y∈X

[
f(x) + f(y)

]
f(x)π(x)P (x, y). (2.34)

Since P is reversible with respect to π, (2.17), leads to

∑
x∈X

∑
y∈X

[f(x) + f(y)]f(x)π(x)P (x, y)

=
∑
x∈X

∑
y∈X

[f(x) + f(y)]f(x)π(y)P (y, x).
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Exchanging the indices x and y in the double summation above, we get

∑
x∈X

∑
y∈X

[f(x) + f(y)]f(x)π(y)P (y, x)

=
∑
x∈X

∑
y∈X

[f(y) + f(x)]f(y)π(x)P (x, y) =: S.

Then, we may write the double summation S in two ways. One was
obtained above and is

S =
∑
x∈X

∑
y∈X

[f(y) + f(x)]f(y)π(x)P (x, y). (2.35)

The another one comes from (2.34) and is

S =
∑
x∈X

∑
y∈X

[f(x) + f(y)]f(x)π(x)P (x, y). (2.36)

Summing (2.35) with (2.36) and dividing by 2,

S = F (f, f) =
1

2

∑
x∈X

∑
y∈X

[f(x) + f(y)][f(x) + f(y)]π(x)P (x, y),

which is the same as

F (f, f) =
1

2

∑
x∈X

∑
y∈X

(
f(x) + f(y)

)2

π(x)P (x, y).

In order to connect the eigenvalues of a transition matrix with the
Dirichlet forms, we will make use of Rayleigh Theorem. We adapt its
proof from the book [3].

Theorem 2.1 (Rayleigh). Let A be a Hermitian matrix of size n × n

with eigenvalues λmin = λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn = λmax . Let
i1, . . . , ik be integers such that 1 ≤ i1 < . . . < ik ≤ n. Let xi1 , . . . , xik be
orthonormal eigenvectors such that Axip = λipxip, for each p ∈ {1, . . . , k}.
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Let S = span{xi1 , . . . , xik}. Then

λi1 = min
{x∈S : ||x||2=1}

〈x,Ax〉 ≤ max
{x∈S : ||x||2=1}

〈x,Ax〉 = λik ,

where || · ||2 is the Euclidean norm.

Proof. If x ∈ S and ||x||2 = 1, there are scalars α1, . . . , αk such that
x = α1xi1 + . . . + αkxik . Since the eigenvalues are orthonormal,
1 = 〈x, x〉 = |α1|2 + . . . + |αk|2. Then

〈x,Ax〉 = 〈(α1xi1 + . . . + αkxik), A(α1xi1 + . . . + αkxik)〉

= 〈(α1xi1 + . . . + αkxik), (α1Axi1 + . . . + αkAxik)〉

= 〈(α1xi1 + . . . + αkxik), (α1λi1xi1 + . . . + αkλikxik)〉

= |α1|2λi1 + . . . + |αk|2λik ,

which is a convex combination of the real numbers λi1 , . . . , λik . This
leads to λi1 ≤ 〈x,Ax〉 ≤ λik . We have that

〈x,Ax〉 = |α1|2λi1 + . . . + |αk|2λik = λi1

⇔ αp = 0 , ∀p ∈ {2, . . . , k} ⇔ x = ± xi1 .

Thus, λi1 = min{x∈S : ||x||2=1}〈x,Ax〉. Analogously,

〈x,Ax〉 = |α1|2λi1 + . . . + |αk|2λik = λik

⇔ αp = 0 , ∀p ∈ {1, . . . , k − 1} ⇔ x = ± xik .

Therefore, λik = max
{x∈S : ||x||2=1}

〈x,Ax〉.

A simple (and useful) remark is

Remark 2.2. Let f be a bounded real-valued function on a set A. If B
and C are sets such that B is non-empty and B ⊂ C ⊂ S, then

inf
{x∈C}

f(x) ≤ inf
{x∈B}

f(x) ≤ sup
{x∈B}

f(x) ≤ sup
{x∈C}

f(x) .
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Now we adapt the Courant-Fisher Theorem in order to compare the
Dirichlet forms of two Markov chains. The adaptation is simply a nor-
malization, and we follow the book [3].

Theorem 2.2 (Courant-Fisher). Let A be a Hermitian matrix of size
n× n with eigenvalues

λmin = λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn = λmax .

Let k ∈ {1, . . . , n} and let S denote a vector subspace of Cn. Then

λk = min
{S : dimS = k}

max
{x∈S : ||x||2 = 1}

〈x,Ax〉 (2.37)

= max
{S : dimS = n−k+1}

min
{x∈S : ||x||2 = 1}

〈x,Ax〉. (2.38)

Proof. Let x1, . . . , xn be orthonormal eigenvalues such that

Axi = λixi, ∀p ∈ {1, . . . , n}.

Let S be a subspace of Cn such that dimS = k, and let S ′ =

span{xk, . . . , xn}. Since dimS + dimS ′ = k + (n − k + 1) = n + 1,
dimS ∩ S ′ ≥ 1, which means {x ∈ S ∩ S ′ : ||x||2 = 1} 6= ∅. From
Rayleigh Theorem, we get

λk = min
{x∈S′:||x||2 = 1}

〈x,Ax〉 = inf
{x∈S′:||x||2 = 1}

〈x,Ax〉.

Remark 2.2 leads to

λk = inf
{x∈S′:||x||2 = 1}

〈x,Ax〉 ≤ inf
{x∈S∩S′:||x||2 = 1}

〈x,Ax〉

≤ sup
{x∈S∩S′:||x||2 = 1}

〈x,Ax〉 ≤ sup
{x∈S:||x||2 = 1}

〈x,Ax〉.

Optimizing over all subspaces S of dimension k, we conclude that λk ≤
inf

{S:dimS = k}
sup

{x∈S:||x||2 = 1}
〈x,Ax〉. It remains to prove there is equality for

some subspace S of dimension k. Choose S = span{x1, . . . , xk}. In that
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case, 〈xk, Axk〉 = λk, and we obtain the equality and that leads to

λk = inf
{S:dimS = k}

sup
{x∈S:||x||2 = 1}

〈x,Ax〉 = min
{S:dimS = k}

max
{x∈S:||x||2 = 1}

〈x,Ax〉.

(2.39)
Let B = −A. Then B is a Hermitian matrix of size n× n with eigenval-
ues

λmin = − λn ≤ − λn−1 ≤ . . . ≤ − λ2 ≤ − λ1 = λmax.

Applying (2.39) to the matrix B,

−λk = min
{S:dimS = n−k+1}

max
{x∈S:||x||2 = 1}

〈x, (−A)x〉

= − max
{S:dimS = n−k+1}

min
{x∈S:||x||2 = 1}

〈x,Ax〉,

which is the same as

λk = max
{S:dimS = n−k+1}

min
{x:x∈S:||x||2 = 1}

〈x,Ax〉.

A remark from Linear Algebra is

Remark 2.3. If βi is a eigenvalue of P , then 1 − βi is a eigenvalue of
A = I − P and 1 + βi is a eigenvalue of B = I + P , with the same
eigenvectors.

In this chapter, we will denote the |X| eigenvalues of P by

β0 > β1 ≥ ... ≥ β|X|−2 ≥ β|X|−1.

In view of the remark above, the corresponding eigenvalues of I−P are

1− β0 < 1− β1 ≤ · · · ≤ 1− β|X|−2 ≤ 1− β|X|−1,
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and the corresponding eigenvalues of I + P are

1 + β|X|−1 ≤ 1 + β|X|−2 ≤ · · · ≤ 1 + β1 < 1 + β0.

The next result connects the eigenvalues of transition matrices with
Dirichlet forms via the Courant-Fisher Theorem (Theorem 2.2).

The next result connects the Dirichlet forms directly with the spec-
tral gap.

Proposition 2.21. The spectral gap γ = 1 − β1 > 0 satisfies

γ = min
f∈RX

Varπ(f)6=0

E (f, f)

Varπ(f)
,

where Varπ(f) = Eπ
[(
f − Eπ[f ]

)2]
= 〈f − Eπ[f ]1, f − Eπ[f ]1〉π.

Proof. Recall that the vector space `2
π(X) defined in the beginning of

this chapter contains an orthonormal basis of eigenfunctions ϕi, 0 ≤
i ≤ |X| − 1. Therefore,

f =

|X|−1∑
j=0

〈f, ϕj〉πϕj. (2.40)

From Proposition 2.15, ϕ0 = 1, and we have

Eπ[f ]1 =
∑
x∈X

f(x) · 1 · π(x) = 〈f, ϕ0〉π. (2.41)

Subtracting (2.41) from (2.40),

f − Eπ[f ]1 =

|X|−1∑
j=1

〈f, ϕj〉πϕj.

Computing the inner product 〈·, ·〉π of each side of the equation above
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with itself results in

〈f − Eπ[f ]1, f − Eπ[f ]1〉π =
〈 |X|−1∑

j=1

〈f, ϕj〉πϕj,
|X|−1∑
m=1

〈f, ϕm〉πϕm
〉
π

=

|X|−1∑
j=1

|X|−1∑
m=1

〈f, ϕj〉π〈f, ϕm〉π〈ϕj, ϕm〉π.

Since ϕj, 0 ≤ j ≤ |X| − 1 is an orthonormal basis of `2
π(X), we get

〈ϕj, ϕm〉π = δjm. Recalling Varπ(f) = 〈f − Eπ[f ], f − Eπ[f ]〉π, then

Varπ(f) =

|X|−1∑
j=1

〈f, ϕj〉π〈f, ϕj〉π =

|X|−1∑
j=1

(〈f, ϕj〉π)2.

Moreover, from Definiton 2.3 and (2.40),

E (f, f) = 〈(I − P )f, f〉π

=
〈 |X|−1∑

j=0

〈f, ϕj〉π(I − P )ϕj,

|X|−1∑
m=0

〈f, ϕm〉πϕm
〉
π

=
〈 |X|−1∑

j=0

〈f, ϕj〉π(1− βj)ϕj,
|X|−1∑
m=0

〈f, ϕm〉πϕm
〉
π

=

|X|−1∑
j=0

|X|−1∑
m=0

(1− βj)〈f, ϕj〉π〈f, ϕm〉π〈ϕj, ϕm〉π.

Again, from the orthonormality of the eigenfunctions,

E (f, f) =

|X|−1∑
j=0

(1− βj)〈f, ϕj〉π〈f, ϕj〉π =

|X|−1∑
j=0

(1− βj)(〈f, ϕj〉π)2.

Since β0 = 1 and the eigenvalues are in descending order,

E (f, f) =

|X|−1∑
j=1

(1− βj)(〈f, ϕj〉π)2
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≥
|X|−1∑
j=1

(1− β1)(〈f, ϕj〉π)2

= (1− β1)

|X|−1∑
j=1

(〈f, ϕj〉π)2

= γVarπ(f),

which is the same as
γ ≤ E (f, f)

Varπ(f)
.

It remains to prove there is equality for some non-constant function
f ∈ RX . Choosing f = ϕ1,

Varπ(f) =

|X|−1∑
j=1

(〈f, ϕj〉)2 =

|X|−1∑
j=1

(〈ϕ1, ϕj〉)2 = 1,

and

E (f, f) =

|X|−1∑
j=0

(1−βj)(〈f, ϕj〉π)2 =

|X|−1∑
j=0

(1−βj)(〈ϕ1, ϕj〉π)2 = 1−β1 = γ.

In other words, the minimum of E (f, f)/Varπ(f) is attained if f = ϕ1.

2.5 Comparing Dirichlet Forms of
two Markov Chains

This section develops a geometric bound between Dirichlet forms
of two Markov chains. Let P, P̃ to be reversible Markov chains on the
finite set X, which stationary distributions are π, π̃, respectively. In the
following applications, (P, π) is the chain of interest and P̃ is a auxiliar
chain with known eigenvalues. For each pair x 6= y with P̃ (x, y) > 0,
fix a sequence of steps x0 = x, x1, x2, . . . , xk = y with P (xi, xi+1) > 0.
This sequence of steps will be called a path γxy of length |γxy| = k. Set
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E = {(x, y) : P (x, y) > 0}, Ẽ = {(x, y) : P̃ (x, y) > 0} and Ẽ(e) = {(x, y) ∈
Ẽ : e ∈ γxy}, where e ∈ E. In other words, E is the set of “directed
edges” for P , Ẽ is the set of “directed edges” for P̃ and E(ẽ) is the set of
paths that contain e.

x y

x1

x2 x3

x4

P̃ (x, y) > 0

P (x, x1) > 0

e

Figure 2.1: Illustration of a path γxy. Positive probability by P and P̃

are indicated by dashed and continuous segments, respectively.

Theorem 2.3. Let P, P̃ be reversible irreducible Markov chains on a fi-
nite setX, which stationary distributions are π, π̃, respectively. Then, for
any
f ∈ RX , Ẽ (f, f) ≤ AE (f, f), with

A = max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
(x,y)∈Ẽ(z,w)

|γxy|π̃(x)P̃ (x, y)
}
> 0, (2.42)

where E (f, f) and Ẽ (f, f) are the first Dirichlet forms with respect to P
and P̃ , respectively.

Proof. Proposition 2.19 leads to

Ẽ (f, f) =
1

2

∑
x,y ∈X

(f(x)− f(y))2π̃(x)P̃ (x, y).

For each pair x 6= y with P̃ (x, y) > 0, fix a sequence of steps
x0 = x, x1, x2, . . . , xk = y, with P (xi, xi+1) > 0. Let γxy be this path.
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For an edge ej = (xj, xj+1) ∈ E, let f(ej) = f(xj)− f(xj+1). We make the
following remark:

Remark 2.4.
f(x)− f(y) =

∑
e ∈ γxy

f(e).

Note that if some path γxy contain a loop, the sum of the values
of f in the edges of the loop will be zero. Therefore, we may assume
without loss of generality that there is no path containing loops. From
the Cauchy-Schwarz inequality, we get( ∑

e ∈ γxy

1 · f(e)
)2

≤
( ∑
e ∈ γxy

12
)( ∑

e ∈ γxy

f(e)2
)

= |γxy|
∑
e ∈ γxy

|f(e)|2.

Plugging this with Remark 2.4,

(
f(x)− f(y)

)2 ≤ |γxy|
∑
e ∈ γxy

|f(e)|2. (2.43)

Replacing (2.43) in the expression of Ẽ (f, f), we get

Ẽ (f, f) ≤ 1

2

∑
x,y ∈X

|γxy|π̃(x)P̃ (x, y)
∑
e ∈ γxy

|f(e)|2.

Applying Fubini’s Theorem,∑
x,y ∈X

|γxy|π̃(x)P̃ (x, y)
∑
e ∈ γxy

|f(e)|2 =
∑

e=(z,w)∈E

|f(e)|2
∑
γxy 3 e

|γxy|π̃(x)P̃ (x, y),

which leads to

Ẽ (f, f) ≤ 1

2

∑
e=(z,w)∈E

|f(e)|2
∑
γxy 3 e

|γxy|π̃(x)P̃ (x, y)

=
1

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)

π(z)P (z, w)

∑
γxy 3 e

|γxy|π̃(x)P̃ (x, y).

In the equality above, we multiplied and divided each term by the pos-
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itive number π(z)P (z, w), where e = (z, w). Therefore,

Ẽ (f, f) ≤ 1

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)
1

π(z)P (z, w)

∑
γxy 3 e

|γxy|π̃(x)P̃ (x, y)

≤ 1

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)

× max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
(x,y)∈Ẽ(z,w)

|γxy|π̃(x)P̃ (x, y)
}

=
A

2

∑
e=(z,w)∈E

(f(z)− f(w))2π(z)P (z, w)

(∗)
=
A

2

∑
z,w∈X

(
f(z)− f(w)

)2
π(z)P (z, w)

= AE (f, f).

The equality (∗) holds because if (z, w) 6∈ E, then P (z, w) = 0 and the
pair (z, w) does not contribute to the sum.

There are some subtleties in the analogous result for F . While E

deals with a difference (see Proposition 2.19), F deals with a sum (see
Proposition 2.20). That changes the scheme which leads to a telescopic
sum along a path: it is required an odd number of edges in each path.

Indeed, for x, y ∈ X with P̃ (x, y) > 0, let γ∗xy be a path with |γ∗xy| odd.
For e ∈ E, set E∗(e) = {(x, y) ∈ Ẽ : e ∈ γ∗xy}. Now, we cannot rule out
the possibility of repeated edges along γ∗xy. Indeed, if γ∗xy contains a loop
with a odd number of edges, the removal of the loop would change the
parity of |γ∗xy|. Thus, we set

rxy(e) = |{(bi, bi+1) ∈ γ∗xy : (bi, bi+1) = e}|.

In this way, rxy(e) is the number of loops in γ∗xy which contain the edge
e. See Figure 2.2 for a illustration.



60

x y
e

Figure 2.2: Illustration of a loop. Note that rxy(e) = 2, since the path
passes twice by the edge e.

Theorem 2.4. Let P, P̃ be reversible irreducible Markov chains on a fi-
nite setX, which stationary distributions are π, π̃, respectively. Then, for
any
f ∈ RX , F̃ (f, f) ≤ A∗F (f, f), with

A∗ = max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
(x,y)∈Ẽ∗(z,w)

rxy(z, w) |γ∗xy| π̃(x)P̃ (x, y)
}
> 0,

(2.44)
where F (f, f) and F̃ (f, f) are the second Dirichlet forms with respect
to P and P̃ , respectively.

Proof. Proposition 2.20 leads to

F̃ (f, f) =
1

2

∑
x,y ∈X

(f(x) + f(y))2π̃(x)P̃ (x, y).

For each pair x 6= y with P̃ (x, y) > 0, fix a sequence of steps
x0 = x, x1, x2, . . . , xk = y, with P (xi, xi+1) > 0 and k odd. Let γ∗xy be
this path. For an edge ej = (xj, xj+1) ∈ E, let f(ej) = f(xj) + f(xj+1). We
make the following remark:

Remark 2.5.
f(x) + f(y) =

∑
ej ∈γ∗xy

(−1)jf(ej).
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From the Cauchy-Schwarz inequality, we get( ∑
ej ∈γ∗xy

(−1)jf(ej)
)2

≤
( ∑
ej ∈γ∗xy

(
(−1)j

)2
)( ∑

ej ∈γ∗xy

f(ej)
2
)

= |γ∗xy|
∑
e ∈γ∗xy

|f(e)|2.

Plugging this with Remark 2.5,

F̃ (f, f) =
1

2

∑
x,y ∈X

( ∑
ej ∈γ∗xy

(−1)jf(ej)
)2

π̃(x)P̃ (x, y). (2.45)

Replacing (2.45) in the expression of F̃ (f, f), we get

F̃ (f, f) ≤ 1

2

∑
x,y ∈X

|γ∗xy|π̃(x)P̃ (x, y)
∑
e ∈γ∗xy

|f(e)|2.

Recall that rxy(e) = |{(bi, bi+1) ∈ γ∗xy : (bi, bi+1) = e}|, for each edge
e = (z, w) ∈ E, . This term is important in order to count the number of
loops in γ∗xy which contain (z, w). Applying Fubini’s Theorem,∑

x,y ∈X

|γ∗xy|π̃(x)P̃ (x, y)
∑
e ∈ γ∗xy

|f(e)|2

=
∑

e=(z,w)∈E

|f(e)|2
∑
γ∗xy 3 e

rxy(z, w)|γ∗xy|π̃(x)P̃ (x, y).

Then,

F̃ (f, f) ≤ 1

2

∑
e=(z,w)∈E

|f(e)|2
∑
γ∗xy 3 e

rxy(z, w)|γ∗xy|π̃(x)P̃ (x, y)

=
1

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)

π(z)P (z, w)

∑
γ∗xy 3 e

rxy(z, w)|γ∗xy|π̃(x)P̃ (x, y) .

In the equality above, we multiplied and divided each term by the pos-
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itive number π(z)P (z, w), where e = (z, w). Therefore,

F̃ (f, f) ≤ 1

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)
1

π(z)P (z, w)

×
∑
γ∗xy 3 e

rxy(z, w)|γ∗xy|π̃(x)P̃ (x, y)

≤ 1

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)

× max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
(x,y)∈Ẽ(z,w)

rxy(z, w)|γ∗xy|π̃(x)P̃ (x, y)
}

=
A∗

2

∑
e=(z,w)∈E

|f(e)|2π(z)P (z, w)

(∗)
=
A∗

2

∑
z,w∈X

(
f(z) + f(w)

)2
π(z)P (z, w)

= A∗F (f, f).

The equality (∗) holds because if (z, w) 6∈ E, then P (z, w) = 0 and the
pair (z, w) does not contribute to the sum.

As an example, we will apply Theorems 2.3 and 2.4 to the case
where P and P̃ are simple random walks associated to two undirected
graphs G = (X,E) and G̃ = (X, Ẽ) on the same finite set X. Then, if
d(x) and d̃(x) are the degrees of x ∈ X, we have π(x) = d(x)/|E| and
P (x, y) = 1/d(x) if (x, y) ∈ E, P (x, y) = 0 otherwise. Analogously, we
have π̃(x) = d̃(x)/|Ẽ| and P̃ (x, y) = 1/d̃(x) if (x, y) ∈ Ẽ, P̃ (x, y) = 0

otherwise. Besides,

E (f, f) =
1

2

∑
x∈X

∑
y∈X

(
f(x)− f(y)

)2
π(x)P (x, y)

=
1

2

∑
(x,y)∈E

(
f(x)− f(y)

)2d(x)

|E|
1

d(x)

=
1

|E|
∑

(x,y)∈E

∣∣f(x)− f(y)
∣∣2
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It follows that the constant A in Theorem 2.3 is

A = max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
(x,y)∈Ẽ(z,w)

|γxy|π̃(x)P̃ (x, y)
}

= max
(z,w)∈E

{ |E|d(x)

d(x)

∑
(x,y)∈Ẽ(z,w)

|γxy|
d̃(x)

|Ẽ|d̃(x)

}
=
|E|
|Ẽ|

max
e∈E

{∑
Ẽ(e)

|γxy|
}
.

Therefore, if we define ∆ = ∆(P, P̃ ) = maxe∈E

{∑
Ẽ(e) |γxy|

}
, we get

A = (|E|/|Ẽ|)∆. More generally, this is a reasonable way to bound A

whenever P (z, w)π(z) does not depend too strongly on (z, w). A similar
analysis can be used for the constant A∗ in Theorem 2.4:

A∗ = max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
(x,y)∈Ẽ∗(z,w)

rxy(z, w) |γ∗xy| π̃(x)P̃ (x, y)
}

= max
(z,w)∈E

{ |E|d(x)

d(x)

∑
(x,y)∈Ẽ∗(z,w)

rxy(z, w) |γ∗xy|
d̃(x)

|Ẽ|d̃(x)

}
=
|E|
|Ẽ|

max
e∈E

{ ∑
Ẽ∗(e)

rxy(e)|γ∗xy|
}
.

Then, if we define ∆∗ = ∆∗(P, P̃ ) = maxe∈E

{∑
Ẽ∗(e) rxy(e)|γ∗xy|

}
, we have

A∗ = (|E|/|Ẽ|)∆∗.

Proposition 2.22. Let P, P̃ be reversible irreducible Markov chains in
X. Denote the eigenvalues of the matrices P and P̃ by βi and β̃i, 0 ≤
i ≤ |X| − 1. Then they may be written in descending order, such that

1 = β0 > β1 ≥ . . . ≥ β|X|−1 ≥ −1.

1 = β̃0 > β̃1 ≥ . . . ≥ β̃|X|−1 ≥ −1.

The following assertions hold:
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a) If there is a positive constant A such that Ẽ ≤ AE , then

βi ≤ 1− 1

A
(1− β̃i), 1 ≤ i ≤ |X| − 1,

where E and Ẽ are the first Dirichlet forms with respect to P and P̃ ,
respectively.

b) If there is a positive constant A∗ such that F̃ ≤ AF , then

βi ≥ −1 +
1

A∗
(1 + β̃i), 1 ≤ i ≤ |X| − 1,

where F and F̃ are the second Dirichlet forms with respect to P and
P̃ , respectively.

Proof. a) Let i ∈ {1, 2, ..., |X| − 1}. Let S be a vector subspace of dimen-
sion i+ 1. Ẽ ≤ AE leads to

〈x, (I − P̃ )x〉 ≤ A〈x, (I − P )x〉,∀x ∈ S : ||x||2 = 1.

Taking the maximum in both sides of the inequality over the set
{x ∈ S : ||x||2 = 1}, we get

max
{x∈S : ||x||2 = 1}

〈x, (I − P̃ )x〉 ≤ A max
{x∈S : ||x||2 = 1}

〈x, (I − P )x〉.

Since S is an arbitrary subspace with dimension i + 1, taking the
minimum over all the subspaces S with dimension i+ 1,

min
{S : dimS = i+1}

max
{x∈S : ||x||2 = 1}

〈x, (I − P̃ )x〉,

≤ A min
{S : dimS = i+1}

max
{x∈S : ||x||2 = 1}

〈x, (I − P )x〉.

From Theorem 2.2, we conclude that 1− β̃i ≤ A(1−βi). Rearranging
the inequality, we have

βi ≤ 1− 1

A
(1− β̃i).
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b) Let i ∈ {1, 2, ..., |X| − 1}. Let S be a vector subspace of dimension
i+ 1. F̃ ≤ A∗F leads to

〈x, (I + P̃ )x〉 ≤ A∗〈x, (I + P )x〉,∀x ∈ S : ||x||2 = 1.

Taking the minimum in both sides of the inequality over the set
{x ∈ S : ||x||2 = 1}, we get

min
{x∈S : ||x||2 = 1}

〈x, (I + P̃ )x〉 ≤ A∗ min
{x∈S : ||x||2 = 1}

〈x, (I + P )x〉.

Since S is an arbitrary subspace with dimension i + 1, taking the
maximum over all the subspaces S with dimension i+ 1,

max
{S : dimS = i+1}

min
{x∈S : ||x||2 = 1}

〈x, (I + P̃ )x〉,

≤ A∗ max
{S : dimS = i+1}

min
{x∈S : ||x||2 = 1}

〈x, (I + P )x〉.

From Theorem 2.2, we conclude that 1+ β̃i ≤ A∗(1+βi). Rearranging
the inequality, we have

βi ≥ −1 +
1

A∗
(1 + β̃i).

Proposition 2.23. Let δ = minx ∈ X{d̃(x)/d(x)}. On the Markov chains
defined above, it holds that

−1 +
δ

∆∗
(1 + β̃i) ≤ βi ≤ 1− δ

∆
(1− β̃i), 1 ≤ i ≤ |X| − 1.

Proof. We may express |E| and |Ẽ| in function of d(x) and d̃(x), respec-
tively:

|E| = 1

2

∑
x∈X

d(x), (2.46)
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and
|Ẽ| = 1

2

∑
x∈X

d̃(x). (2.47)

Since δ = minx ∈ X{d̃(x)/d(x)}, we get

d̃(x) ≥ δ · d(x),∀x ∈ X.

Applying this inequality in (2.47),

|Ẽ| = 1

2

∑
x∈X

d̃(x) ≥ 1

2

∑
x∈X

δ · d(x). (2.48)

Dividing (2.48) by (2.46), we get

|Ẽ|
|E|
≥

1
2

∑
x∈X δ · d(x)

1
2

∑
x∈X d(x)

= δ.

Since A = (|E|/|Ẽ|)∆, if i ≤ |X| − 1, Proposition 2.22 leads to:

βi ≤ 1− 1

A
(1− β̃i) = 1− |Ẽ|

|E|
1

∆
(1− β̃i) ≤ 1− δ

∆
(1− β̃i).

Since A∗ = (|E|/|Ẽ|)∆∗, if i ≤ |X| − 1, Proposition 2.22 leads to:

βi ≥ −1 +
1

A∗
(1 + β̃i) = −1 +

|Ẽ|
|E|

1

∆∗
(1 + β̃i) ≥ −1 +

δ

∆∗
(1 + β̃i).

Proposition 2.24. Let P̃ ≡ 1/|X|, each entry of P̃ is equal to 1/|X|.
Then, the |X| eigenvalues of P̃ are

β̃0 = 1; β̃1 = β̃2 = . . . = β̃|X|−1 = 0.

Proof. Let w be the vector given by w(x) = 1, ∀x = 1 . . . , |X|. We
obtain P̃w = 1.w, then β0 = 1 is eigenvalue of P̃ . Let W = span{w}.



67

since dimW = 1, dimW⊥ = |X| − 1. Let v ∈ W⊥. Then,

0 = 〈v, w〉 =
∑
x∈X

v(x)w(x) =
∑
x∈X

v(x).1 = |X| · P̃ v .

Therefore, W⊥ is the eigenspace associated with the null eigenvalue.
This implies P̃ has n− 1 eigenvalues equal to 0.

Proposition 2.25. Let P̃ be the matrix of the simple random walk in
a complete graph (without loops), that is, each entry of the principal
diagonal of P̃ is null and the rest of the entries are equal to 1

|X|−1
. Then,

the |X| eigenvalues of P̃ are

β̃0 = 1; β̃1 = β̃2 = . . . = β̃|X|−1 =
−1

|X| − 1
.

Proof. Let w be the vector given by w(x) = 1, ∀x = 1 . . . , |X|. We
obtain P̃w = 1.w, then β0 = 1 is a eigenvalue of P̃ . Let I be the identity
matrix of size |X|× |X| and A = P̃ + 1

|X|−1
I. This leads to A ≡ 1

|X|−1
, that

is, each entry of A is equal to 1
|X|−1

.

0 = 〈v, w〉 =
∑
x∈X

v(x)w(x) =
∑
x∈X

v(x).1 = (|X| − 1) · Av .

Therefore, W⊥ is the eigenspace associated with the null eigenvalue
and A has 0 as a eigenvalue of multiplicity n − 1. This implies P̃ has
n− 1 eigenvalues equal to −1

|X|−1
.

Proposition 2.26. Let G = (X,E) be a undirected connected graph.
The non-trivial eigenvalues of a random walk over (X,E) satisfy:

−1 +
|X|
d∆∗

≤ βi ≤ 1− |X|
d∆

,

where

∆∗ = max
e∈E

{ ∑
γ∗xy3e

rxy(e)|γ∗xy|
}
, ∆ = max

e∈E

{ ∑
γxy3e

|γxy|
}
,
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with

rxy(e) = |{(bi, bi+1) ∈ γ∗xy : (bi, bi+1) = e}|, d = max
x∈X

d(x)

and the paths γxy, γ∗xy are defined considering the complete graph with
vertices in X, with a loop in each vertex.

Proof. Let G̃ = (X, Ẽ) be the corresponding graph to P̃ ≡ 1/|X|. Note
that from the definition of P̃ , G̃ is the complete graph, with a loop in
each vertex.

Therefore, the number of edges Ẽ in G̃ is

|Ẽ| = |X|(|X|+ 1)

2
. (2.49)

For |E| we have the expression

|E| = 1

2

∑
x∈X

d(x) ≤ 1

2

∑
x∈X

d =
d|X|

2
. (2.50)

Dividing (2.51) by (2.52),

|Ẽ|
|E|
≥ |X|(|X|+ 1)

2

2

d|X|
=
|X|+ 1

d
≥ |X|

d
.

Proposition 2.24 leads to β̃i = −1
|X|−1

, ∀i ≥ 1. From Proposition 2.22,
since A = (|E|/|Ẽ|)∆, if 1 ≤ i ≤ |X| − 1 we get

βi ≤ 1− 1

A
(1− β̃i) = 1− |Ẽ|

|E|
1

∆
(1− 0) ≤ 1− |X|

d∆
.

From Proposition 2.22, since A∗ = (|E|/|Ẽ|)∆∗, if 1 ≤ i ≤ |X| − 1 we
have

βi ≥ −1 +
1

A∗
(1 + β̃i) = −1 +

|Ẽ|
|E|

1

∆∗
(1 + 0) ≥ −1 +

|X|
d∆∗

.



69

Proposition 2.27. Let G = (X,E) be a undirected connected graph.
The non-trivial eigenvalues of a random walk over (X,E) satisfy:

−1 +
|X| − 2

d∆∗
≤ βi ≤ 1− |X|

d∆
,

where

∆∗ = max
e∈E

{ ∑
γ∗xy3e

rxy(e)|γ∗xy|
}
, ∆ = max

e∈E

{ ∑
γxy3e

|γxy|
}
,

with

rxy(e) = |{(bi, bi+1) ∈ γ∗xy : (bi, bi+1) = e}|, d = max
x∈X

d(x).

and the paths γxy, γ∗xy are defined considering the complete graph with
vertices in X, without loops in the vertices.

Proof. Let G̃ = (X, Ẽ) be the complete graph (without loops).
Therefore, the number of edges Ẽ in G̃ is

|Ẽ| = |X|(|X| − 1)

2
. (2.51)

For |E| we have the expression

|E| = 1

2

∑
x∈X

d(x) ≤ 1

2

∑
x∈X

d =
d|X|

2
. (2.52)

Dividing (2.51) by (2.52),

|Ẽ|
|E|
≥ |X|(|X| − 1)

2

2

d|X|
=
|X| − 1

d
.

Proposition 2.25 leads to β̃i = −1
|X|−1

, ∀i ≥ 1. From Proposition 2.22,
since A = (|E|/|Ẽ|)∆, if 1 ≤ i ≤ |X| − 1 we get

βi ≤ 1− 1

A
(1− β̃i) = 1− |Ẽ|

|E|
1

∆

(
1− −1

|X| − 1

)
≤ 1− |X|

d∆
.
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From Proposition 2.22, since A∗ = (|E|/|Ẽ|)∆∗, if 1 ≤ i ≤ |X| − 1 we
have

βi ≥ −1 +
1

A∗
(1 + β̃i) = −1 +

|Ẽ|
|E|

1

∆∗

(
1 +

−1

|X| − 1

)
≥ −1 +

|X| − 2

d∆∗
.

These previous results are important to estimate the non-trivial
eigenvalues of a Markov chain, by comparing a given Markov chain
with the random walk in the complete graph. Now we will compute
exactly the eigenvalues of a known example: the simple random walk
on the n-cycle. Let |X| = Zn = {0, 1, · · · , n− 1}, the set of the remainder
modulus n. Consider the transition matrix

P (j, k) =


1/2 , if k ≡ j + 1(mod n),

1/2 , if k ≡ j − 1(mod n),

0 , otherwise .

Explaining this chain in words: the n states of the chain are equally
spaced dots arranged in a circle. At each step, a coin is tossed. If the
coin lands heads up, the walk moves one step clockwise. If the coin
lands tails up, the walk moves one step counterclockwise.

Proposition 2.28. The n eigenvalues of the simple random walk on the
n-cycle are cos(2πj

n
), where 0 ≤ j ≤ n− 1.

Proof. In order to compute the eigenvalues of P , we see this chain in the
complex plane. Let ω = e2π/n. Then, the set Wn := {1, ω, ω2, · · · , ωn−1}
of the n-th roots of unity forms a regular n-gon inscribed in the unit
circle. Since ωn = 1, we have

ωkωj = ωk+j = ω(k+j) mod n.

Hence, (Wn, ·) is a cyclic group of order n, generated by ω. Let z =

[z0, · · · , zn−1]T ∈ C|X|: that column is associated to a function f of Wn on
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C, with zj = f(ωj),∀ 0 ≤ k ≤ n− 1. Fix 0 ≤ k ≤ n− 1. Computing
the k-th entry of the product of the matrix P by the column z:

(Pz)k = (P [f(ω0), · · · , f(ωn−1)]T )k =
f(ωk+1) + f(ωk−1)

2
.

In particular, if z is an eigenvector of P and β is the corresponding
eigenvalue, we have

(Pz)k = (βz)k = (β[f(ω0), · · · , f(ωn−1)]T )k = βf(ωk).

For each 0 ≤ j ≤ n− 1, define

fj(ω
k) = ωkj. (2.53)

The associated column to fj is zj = [fj(ω
0), fj(ω

1), · · · , fj(ω(n−1))]T =

[ω0.j, ω1.j, · · · , ω(n−1)j]T . Seja 0 ≤ k ≤ n − 1. Computing the k-th
entry of the product of the matrix P by the column zj:

(Pzj)k = (P [fj(ω
0), · · · , fj(ωn−1)]T )k =

fj(ω
k+1) + fj(ω

k−1)

2
.

Applying (2.53), we get

(Pzj)k =
ωkj+j + ωkj−j

2
= ωkj

ωj + ω−j

2
= cos

(2πj

n

)
fj(ω

k).

Therefore, the n eigenvalues of P are cos(2πj
n

), where 0 ≤ j ≤ n−1.

For an illustration of the results obtained, we shall apply Propo-
sition 2.27 and Proposition 2.26 in a particular example: the simple
random walk on the triangle. In this case, since n = 3, from Propo-
sition 2.28, the eigenvalues of P are cos(2π0

3
) = 1, cos(2π1

3
) = −1

2
and

cos(2π2
3

) = −1
2
.
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0 1

2

Figure 2.3: Simple random walk on the triangle. Each transition occurs
with probability 1/2.

In the notation of Proposition 2.25, we have |X| = 3 and d = 2. Also,
{(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)} is the set E of the directed edges.
In order to compute ∆ and ∆∗, we define respectively γxy and γ∗xy, for
each pair (x, y). Our aim is to achieve the sharpest bounds for the
eigenvalues βi, then we must minimize ∆ and ∆∗, which is the same as
minimize |γxy| e |γ∗xy|. Recall |γ∗xy| is always an odd number. In this way,
with the following additions modulus 3:

γxy =

{(x, y)} , if x 6= y,

{(x, x+ 1), (x+ 1, x)} , if x = y.

γ∗xy =

{(x, y)} , if x 6= y,

{(x, x+ 1), (x+ 1, x+ 2), (x+ 2, x)} , if x = y.

Note that rxy(e) = 1, for every edge e in E, that is, no path γ∗xy walks
for some edge more than once. Depending of the auxiliar graph P̃ , we
obtain different expressions which estimate the eigenvalues of P .

Case 1: we consider P̃ as the complete graph with three vertices,
without loops. In this case, we define γxy if x 6= y and γ∗xy if x 6= y. Then,
∆ = 1 and ∆∗ = 1. Proposition 2.27 leads to

−1 +
|X| − 2

d∆∗
= −1 +

3− 2

2.1
= −1

2
≤ βi ≤ 1− |X|

d∆
= 1− 3

2.1
= −1

2
.

Case 2: we consider P̃ as the complete graph with three vertices,
with a loop in each vertex. In this case, we define γxy if x 6= y and γ∗xy
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for every x, y. Then, ∆ = 1 and ∆∗ = 3. Proposition 2.26 leads to

−1 +
|X|
d∆∗

= −1 +
3

2.3
= −1

2
≤ βi ≤ 1− |X|

d∆
= 1− 3

2.1
= −1

2
.

Note that in our particular example, the estimates provides exactly the
eigenvalues of P .

2.6 Comparing Dirichlet Forms via Flows

Many variations on Theorems 2.3 and 2.4 are possible; we now de-
scribe one of them. Suppose we are in the situation of Theorem 2.3
and want to compare the Dirichlet forms E and Ẽ of two reversible
Markov chains on the finite set X, which stationary distributions are
π, π̃, respectively. It often happens that there is more than one path
x0 = x, x1, x2, . . . , xk = y with P (xi, xi+1) > 0) between x and y such
that P̃ (x, y) > 0 (i.e., (x, y) ∈ Ẽ). Let Pxy be the set of all paths con-
necting x to y as above and set P =

⋃
(x,y) ∈ Ẽ Pxy. Also, for e ∈ E, let

P(e) = {γ ∈ P : e ∈ γ}. A function f on P is called a flow, or more
precisely a flow (P, P̃ ) if ∑

γ∈Pxy

f(γ) = P̃ (x, y)π̃(x). (2.54)

The proof of Theorem 2.3 yields immediately the following theorem:

Theorem 2.5. Let P, P̃ be reversible Markov chains on a finite set X,
which stationary distributions are π, π̃, respectively. Then, for any
g ∈ RX and any (P, P̃ ) flow f , Ẽ (g, g) ≤ A(f)E (g, g), with

A(f) = max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
γ ∈P(z,w)

|γ|f(γ)
}
. (2.55)
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Proof. Proposition 2.19 leads to

Ẽ (g, g) =
1

2

∑
x,y ∈X

(g(x)− g(y))2π̃(x)P̃ (x, y).

For an edge ej = (xj, xj+1) ∈ E, let g(ej) = g(xj)− g(xj+1). For each pair
x 6= y with P̃ (x, y) > 0, we make the following remark:

Remark 2.6.
g(x)− g(y) =

∑
e ∈ γ

g(e),∀γ ∈Pxy.

Note that if some path γ contain a loop, the sum of the values of g
in the edges of the loop will be zero. Therefore, we may assume with-
out loss of generality that there is no path containing loops. From the
Cauchy-Schwarz inequality, we get(∑

e ∈ γ

1 · g(e)
)2

≤
(∑
e ∈ γ

12
)(∑

e ∈ γ

g(e)2
)

= |γ|
∑
e ∈ γ

|g(e)|2,∀γ ∈Pxy.

Plugging this with Remark 2.6,

(g(x)− g(y))2 ≤ |γ|
∑
e ∈ γ

|g(e)|2,∀γ ∈Pxy.

We have such an inequality for each path γ ∈ Pxy. Summing all of
them,

|Pxy|(g(x)− g(y))2 ≤
∑
γ∈Pxy

|γ|
∑
e ∈ γ

|g(e)|2,

which is the same as

(g(x)− g(y))2 ≤ 1

|Pxy|
∑
γ∈Pxy

|γ|
∑
e ∈ γ

|g(e)|2. (2.56)

Replacing (2.56) in the expression of Ẽ (g, g), we get

Ẽ (g, g) ≤ 1

2

∑
x,y ∈X

( 1

|Pxy|
∑
γ∈Pxy

|γ|
∑
e ∈ γ

|g(e)|2
)
π̃(x)P̃ (x, y).
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Since f is a flow, (2.54) leads to

Ẽ (g, g) ≤ 1

2

∑
x,y ∈X

1

|Pxy|
∑
γ∈Pxy

|γ|
∑
e ∈ γ

|g(e)|2
{ ∑
ζ∈Pxy

f(ζ)
}
.

Putting 1/|Pxy| and |γ| inside of the fourth and third summations, re-
spectively,

Ẽ (g, g) ≤ 1

2

∑
x,y ∈X

∑
γ∈Pxy

∑
e ∈ γ

|γ||g(e)|2
{ ∑
ζ∈Pxy

f(ζ)

|Pxy|

}
.

The term
∑

ζ∈Pxy
f(ζ)/|Pxy| is the mean value of the flow f in Pxy.

Therefore,

∑
x,y ∈X

∑
γ∈Pxy

∑
e ∈ γ

|γ||g(e)|2
{ ∑
ζ∈Pxy

f(ζ)

|Pxy|

}
=
∑
x,y ∈X

∑
γ∈Pxy

∑
e ∈ γ

|γ||g(e)|2f(γ).

Applying Fubini’s Theorem,∑
x,y ∈X

∑
γ∈Pxy

∑
e ∈ γ

|g(e)|2|γ|f(γ) =
∑
e∈E

∑
γ 3 e

|g(e)|2|γ|f(γ),

which leads to

Ẽ (g, g) ≤ 1

2

∑
e∈E

∑
γ 3 e

|g(e)|2|γ|f(γ)

=
1

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)

π(z)P (z, w)

∑
γ ∈P(z,w)

|γ|f(γ).

In the equality above, we multiplied and divided each term by the pos-
itive number π(z)P (z, w), where e = (z, w). Therefore,

Ẽ (g, g) ≤ 1

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)
1

π(z)P (z, w)

∑
γ ∈P(z,w)

|γ|f(γ)

≤ 1

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)
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× max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
γ ∈P(z,w)

|γ|f(γ)
}

=
A(f)

2

∑
e=(z,w)∈E

(g(z)− g(w))2π(z)P (z, w)

(∗)
=
A(f)

2

∑
z,w∈X

(
g(z)− g(w)

)2
π(z)P (z, w)

= A(f)E (g, g).

The equality (∗) holds because if (z, w) 6∈ E, then P (z, w) = 0 and the
pair (z, w) does not contribute to the sum.

As in the previous section, there are some subtleties in the anal-
ogous result for F . While E deals with a difference (see Proposition
2.19), F deals with a sum (see Proposition 2.20). That changes the
scheme which leads to a telescopic sum along a path. It is required an
odd number of edges in each path.

Suppose we are in the setting of Theorem 2.4 and want to compare
the Dirichlet forms F and F̃ of two reversible Markov chains on the
finite set X, whose stationary distributions are π, π̃, respectively. It
often happens that there is more than one path x0 = x, x1, x2, . . . , xk = y

with P (xi, xi+1) > 0) between x and y such that P̃ (x, y) > 0 (i.e., (x, y) ∈
Ẽ) and containing an odd number of edges. Let P∗

xy be the set of all
paths connecting x to y as above and set P∗ =

⋃
(x,y) ∈ Ẽ P∗

xy. Moreover,
for e ∈ E, let P∗(e) = {γ∗ ∈P∗ : e ∈ γ∗}. A function f ∗ on P∗ is called
a flow, or more precisely a flow (P, P̃ ) if∑

γ∗∈P∗xy

f ∗(γ∗) = P̃ (x, y)π̃(x). (2.57)

Now, we cannot rule out the possibility of repeated edges along γ∗.
Indeed, if γ∗ contains a loop with a odd number of edges, the removal
of the loop would change the parity of |γ∗|. Thus, we set

rγ∗(e) = |{(bi, bi+1) ∈ γ∗ : (bi, bi+1) = e}|.
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In this way, rγ∗(e) is the number of loops in γ∗ which contain the edge
e. The proof of Theorem 2.4 yields immediately the following theorem:

Theorem 2.6. Let P, P̃ be reversible Markov chains on a finite set X,
which stationary distributions are π, π̃, respectively. Then, for any
g ∈ RX and any (P, P̃ ) flow f ∗, F̃ (g, g) ≤ A∗(f)F (g, g), with

A∗(f ∗) = max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
γ∗ ∈P∗(z,w)

rγ∗(z, w)|γ∗|f(γ∗)
}
. (2.58)

Proof. Proposition 2.20 leads to

F̃ (g, g) =
1

2

∑
x,y ∈X

(g(x) + g(y))2π̃(x)P̃ (x, y).

For an edge ej = (xj, xj+1) ∈ E, let g(ej) = g(xj) + g(xj+1). For each pair
x 6= y with P̃ (x, y) > 0, we make the following remark:

Remark 2.7.

g(x) + g(y) =
∑
ej ∈ γ∗

(−1)jg(ej),∀γ∗ ∈P∗
xy.

From the Cauchy-Schwarz inequality, we get( ∑
ej ∈ γ∗

(−1)jg(ej)
)2

≤
( ∑
ej ∈ γ∗

(
(−1)j

)2
)( ∑

ej ∈ γ∗
g(ej)

2
)

= |γ∗|
∑
e ∈ γ∗

|g(e)|2, ∀γ∗ ∈P∗
xy.

Plugging this with Remark 2.7,

(g(x) + g(y))2 ≤ |γ∗|
∑
e ∈ γ∗

|g(e)|2, ∀γ∗ ∈P∗
xy.

We have such an inequality for each path γ∗ ∈ P∗
xy. Summing all of

them,
|P∗

xy|(g(x) + (y))2 ≤
∑

γ∗∈P∗xy

|γ∗|
∑
e ∈ γ∗

|g(e)|2,
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which is the same as

(g(x) + g(y))2 ≤ 1

|P∗
xy|

∑
γ∗∈P∗xy

|γ∗|
∑
e ∈ γ∗

|g(e)|2. (2.59)

Replacing (2.59) in the expression of F̃ (g, g), we get

F̃ (g, g) ≤ 1

2

∑
x,y ∈X

1

|P∗
xy|

∑
γ∗∈P∗xy

|γ∗|
∑
e ∈ γ∗

|g(e)|2π̃(x)P̃ (x, y).

Since f ∗ is a flow, (2.57) leads to

F̃ (g, g) ≤ 1

2

∑
x,y ∈X

1

|P∗
xy|

∑
γ∗∈P∗xy

|γ∗|
∑
e ∈ γ∗

|g(e)|2
{ ∑
ζ∗∈P∗xy

f ∗(ζ∗)
}
.

Putting 1/|P∗
xy| and |γ∗| inside of the fourth and third summations,

respectively,

F̃ (g, g) ≤ 1

2

∑
x,y ∈X

∑
γ∗∈P∗xy

∑
e ∈ γ∗

|γ∗||g(e)|2
{ ∑
ζ∗∈P∗xy

f ∗(ζ)∗

|P∗
xy|

}
.

The term
∑

ζ∗∈P∗xy
f ∗(ζ∗)/|P∗

xy| is the mean value of the flow f ∗ in P∗
xy.

Therefore,

∑
x,y ∈X

∑
γ∗∈P∗xy

∑
e ∈ γ∗

|γ∗||g(e)|2
{ ∑
ζ∗∈P∗xy

f ∗(ζ∗)

|P∗
xy|

}
=
∑
x,y ∈X

∑
γ∗∈P∗xy

∑
e ∈ γ∗

|γ∗||g(e)|2f ∗(γ∗).

For each edge e = (z, w) ∈ E, recall that rγ∗(e) = |{(bi, bi+1) ∈ γ∗ :

(bi, bi+1) = e}|. This term is important in order to count the number of
loops in γ∗ which contain (z, w). Applying Fubini’s Theorem,∑

x,y ∈X

∑
γ∗∈P∗xy

∑
e ∈ γ∗

|g(e)|2|γ∗|f ∗(γ∗) =
∑
e∈E

∑
γ∗ 3 e

rγ∗(e)|g(e)|2|γ∗|f ∗(γ∗),
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which leads to

F̃ (g, g) ≤ 1

2

∑
e=(z,w)∈E

|g(e)|2
∑

γ∗ ∈P(z,w)∗

rγ∗(z, w)|γ∗|f ∗(γ∗)

=
1

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)

π(z)P (z, w)

∑
γ∗ ∈P(z,w)∗

rγ∗(z, w)|γ∗|f ∗(γ)∗.

In the equality above, we multiplied and divided each term by the pos-
itive number π(z)P (z, w), where e = (z, w). Therefore,

F̃ (g, g) ≤ 1

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)
1

π(z)P (z, w)

×
∑

γ∗ ∈P(z,w)∗

rγ∗(z, w)|γ∗|f ∗(γ∗)

≤ 1

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)

× max
(z,w)∈E

{ 1

π(z)P (z, w)

∑
γ∗ ∈P(z,w)∗

rγ∗(z, w)|γ∗|f ∗(γ∗)
}

=
A∗(f ∗)

2

∑
e=(z,w)∈E

|g(e)|2π(z)P (z, w)

(∗)
=
A∗(f ∗)

2

∑
z,w∈X

(
g(z)− g(w)

)2
π(z)P (z, w)

= A∗(f ∗)F (g, g).

The equality (∗) holds because if (z, w) 6∈ E, then P (z, w) = 0 and the
pair (z, w) does not contribute to the sum.



Chapter 3

Spectral Gap for Zero-Range
Dynamics

3.1 Introduction and Results

In this chapter, we detail the paper [4], which adapts Lu and Yau’s
method [6] to the context of symmetric zero-range processes, in order
to achieve the spectral gap for such model.

In contrast with the previous chapter, the space state here (to be de-
fined below) is not only infinite, but also uncountable. For this reason,
it is necessary a new definition for the spectral gap, which will be de-
scribed as a lower bound of the spectral gap for the dynamics restricted
to a finite cube of volume nd. Lu and Yau’s method can also be applied
in order to estimate the spectral gap in general finite-volume settings,
such as the torus ZdN .

The symmetric zero-range processes consist of infinitely many par-
ticles moving on the lattice Zd according to a Markovian law. The
evolution of the particles may be informally described as follows. De-
note by N the set of non-negative integers, fix a non-negative function
c : N 7→ R+ such that c(0) = 0 < c(i) for i ≥ 1 and fix a symmetric
transition measure p( · ) on Zd. If there are k particles at a site x of
Zd, one of them jumps to y at rate c(k)p(y − x). This happens indepen-

80
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dently at each site. To clarify ideas, we shall consider in this chapter
only nearest-neighbor interactions: p(x) = 1/2d if |x| = 1 and p(x) = 0,
otherwise.

At this point, some notation is required. The sites of Zd are denoted
by x, y and z, the space state NZd by the symbol Σ and the configurations
by the Greek letters η and ξ. In this way ηx stands for the total number
of particles at site x for the configuration η.

These so-called zero-range processes are Markov processes with in-
finitesimal generator L defined by its action on functions
φ : Σ→ R

(Lφ)(η) =
1

2

∑
|y−x|=1

c(ηx)
(
φ(ηx,y)− φ(η)

)
,

where

(ηx,y)z =


ηx − 1 , if z = x,

ηy + 1 , if z = y,

ηz , if z 6= x, y,

provided ηx ≥ 1 and x 6= y; otherwise, ηx,y ≡ η. A simple (and useful)
remark is

Remark 3.1. If η ∈ Σ, x, y ∈ Zd and ηx > 0 then

(
ηx,y)y,x = η.

To ensure that the process is well defined on the infinite lattice Σ

we shall assume throughout this chapter a Lipschitz condition on the
rate:

Hypothesis 3.1.

sup
k≥0
|c(k + 1)− c(k)| ≤ a1 <∞

As a conservative system where particles are neither created nor
destroyed, it is expected that this process possesses a family of invari-
ant measures supported on configurations of fixed density. In order to
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describe these measures, define the partition function Z( · ) on R+ by

Z(α) =
∑
k≥0

αk

c(1) · · · c(k)
.

Z(α) is a series of increasing functions in α, then it is also a increasing
function. Let α∗ denote the radius of convergence of Z:

α∗ := sup{α;Z(α) <∞}.

In order to avoid degeneracy we assume that the partition function Z

diverges at the boundary of its domain of definition:

Hypothesis 3.2.
lim
α→α∗

Z(α) =∞.

For 0 ≤ α < α∗, let P̄α(·) be the translation invariant product mea-
sure on Σ with marginals µα given by

µα(ηx = k) =
1

Z(α)

αk

c(1) · · · c(k)
, for k ≥ 0, x ∈ Zd. (3.1)

An immediate remark is

Remark 3.2. If we are not in the degeneracy case α = 0, then
P̄α(ηx = r) > 0,∀x ∈ Zd, r ∈ N.

The next result, related to the measure P̄α(·), will be useful later.

Proposition 3.1. If η ∈ Σ, x, y ∈ Zd and ηx > 0 then

P̄α(η)c(ηx) = P̄α(ηx,y)c
(
(ηx,y)y

)
.

Proof. Let ηx = a, ηy = b, with a ≥ 1. Then ηx,yx = a − 1, ηx,yy = b + 1. We
know that (ηx,y)z = ηz, is z 6= x, y. Since P̄α is a product measure of the
marginals µα, we have

P̄α(η)

P̄α(ηx,y)
=

µα(ηx)µα(ηy)

µα(ηx,y)x)µα(ηx,y)y
=

µα(a)

µα(a− 1)

µα(b)

µα(b+ 1)
.
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From (3.1), we evaluate the numerator and denominator in the last two
fractions. The first fraction may be written as

µα(a)

µα(a− 1)
=

1
Z(α)

αa

c(1)···c(a)

1
Z(α)

αa−1

c(1)···c(a−1)

=

αa−1α
c(1)···c(a−1)c(a)

αa−1

c(1)···c(a−1)

=
α

c(a)
.

And the second one as

µα(b)

µα(b+ 1)
=

1
Z(α)

αb

c(1)···c(b)
1

Z(α)
αb+1

c(1)···c(b+1)

=

αb

c(1)···c(b)
αbα

c(1)···c(b)c(b+1)

=
c(b+ 1)

α
.

Thus, we have

P̄α(η)

P̄α(ηx,y)
=

α

c(a)

c(b+ 1)

α
=
c(b+ 1)

c(a)
=
c
(
(ηx,y)y

)
c(ηx)

.

Finally, cross-multiplying the first and the last fraction

P̄α(η)c(ηx) = P̄α(ηx,y)c
(
(ηx,y)y

)
.

We will make use of Proposition 3.1 to prove the following:

Proposition 3.2. P̄α(·) is a invariant measure. Moreover, it is reversible
with respect to the infinitesimal generator L.

Proof. Since the invariance of P̄α(·) is weaker than the reversibility
with respect to the infinitesimal generator L, we will only prove the
later property. Expanding 〈f, Lg〉P̄α

〈f, Lg〉P̄α =
∑
η∈Σ

f(η)(Lg)(η)P̄α(η)

=
∑
η∈Σ

f(η)
(1

2

∑
|y−x|=1

c(ηx)
(
g(ηx,y)− g(η)

))
=

1

2

∑
η∈Σ

∑
|y−x|=1

P̄α(η)c(ηx)f(η)g(ηx,y) (3.2)
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− 1

2

∑
η∈Σ

∑
|y−x|=1

f(η)c(ηx)g(η)P̄α(η).

Next, we shall use a convenient manipulation in (3.2) Since c(0) = 0,
the terms with ηx = 0 do not contribute to the sum in (3.2). Then we
can apply Proposition 3.1 and we get

1

2

∑
η∈Σ

∑
|y−x|=1

P̄α(η)c(ηx)f(η)g(ηx,y)

=
1

2

∑
η∈Σ

∑
|y−x|=1

P̄α(ηx,y)c
(
(ηx,y)y

)
f(η)g(ηx,y)

=
1

2

∑
|y−x|=1

∑
η∈Σ

P̄α(ηx,y)c
(
(ηx,y)y

)
f(η)g(ηx,y).

In the second equality we interchanged the sums. For each configura-
tion η ∈ Σ which contributes to the sum (i.e., ηx > 0), we may associate
exactly one configuration ξ ∈ Σ with ξy > 0 such that η = ξy,x. Then,
replacing the variable η in the second summation by ξy,x, we have

1

2

∑
|y−x|=1

∑
η∈Σ

P̄α(ηx,y)c
(
(ηx,y)y

)
f(η)g(ηx,y)

=
1

2

∑
|y−x|=1

∑
ξy,x∈Σ

P̄α
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)
f(ξy,x)g

(
(ξy,x)x,y

)
.

Since each configuration ξ has ξy > 0, Remark 3.1 leads to

1

2

∑
|y−x|=1

∑
ξy,x∈Σ

P̄α
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)
f(ξy,x)g

(
(ξy,x)x,y

)
=

1

2

∑
|y−x|=1

∑
ξy,x∈Σ

P̄α(ξ)c(ξy)f(ξy,x)g(ξ).

Note that ∑
ξy,x∈Σ

P̄α(ξ)c(ξy)f(ξy,x)g(ξ) =
∑
ξ∈Σ

P̄α(ξ)c(ξy)f(ξy,x)g(ξ).
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Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ξy > 0, and is
trivial that ξy,x ∈ Σ in this case. From this remark, interchanging the
sums:

1

2

∑
|y−x|=1

∑
ξy,x∈Σ

P̄α(ξ)c(ξy)f(ξy,x)g(ξ)

=
1

2

∑
|y−x|=1

∑
ξ∈Σ

P̄α(ξ)c(ξy)f(ξy,x)g(ξ)

=
1

2

∑
ξ∈Σ

∑
|y−x|=1

P̄α(ξ)c(ξy)f(ξy,x)g(ξ).

Exchanging x and y leads to

1

2

∑
ξ∈Σ

∑
|y−x|=1

P̄α(ξ)c(ξy)f(ξy,x)g(ξ)

=
1

2

∑
ξ∈Σ

∑
|x−y|=1

P̄α(ξ)c(ξx)f(ξx,y)g(ξ).

Then, changing the name of the variable, we have

1

2

∑
η∈Σ

∑
|y−x|=1

P̄α(η)c(ηx)f(η)g(ηx,y) =
1

2

∑
η∈Σ

∑
|x−y|=1

P̄α(η)c(ηx)f(ηx,y)g(η).

Finally, applying (3.3) in (3.2), we get

〈f, Lg〉P̄α =
1

2

∑
η∈Σ

∑
|y−x|=1

P̄α(η)c(ηx)f(η)g(ηx,y)

− 1

2

∑
η∈Σ

∑
|y−x|=1

f(η)c(ηx)g(η)P̄α(η)

=
1

2

∑
η∈Σ

∑
|x−y|=1

P̄α(η)c(ηx)f(ηx,y)g(η)

− 1

2

∑
η∈Σ

∑
|y−x|=1

f(η)c(ηx)g(η)P̄α(η)

= 〈Lf, g〉P̄α .
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A more intuitive parameterization can be made through the particle
density. Let ρ(α) be the density of particles for the measure P̄α:

ρ(α) = Ēα[η0],

where Ēα refers to expectation with respect to P̄α. From Hypothesis 3.2
it follows that ρ : [0, α∗) 7→ R+ is a smooth (strictly) increasing bijection.
since ρ(α) has the physical meaning as the density of particles , instead
of parametrizing the above family of measures by α, we parametrize it
in terms of the density ρ and write for ρ ≥ 0,

Pρ = P̄α(ρ).

The associated Dirichlet form Dρ(φ) is defined by its action on functions
φ : Σ→ R

Dρ(φ) := −Eρ[φ(η)(Lφ)(η)].

Also, from Proposition 3.1, we have

Remark 3.3. If η ∈ Σ, x, y ∈ Zd and ηx > 0 then

Pρ(η)c(ηx) = Pρ(ηx,y)c
(
(ηx,y)y

)
.

We shall use this remark to proof the following:

Proposition 3.3. The Dirichlet form Dρ(φ) can be written as

Dρ(φ) =
1

4

∑
|y−x|=1

Eρ
[
c(ηx)

(
φ(ηx,y)− φ(η)

)2
]
.

Proof. Expanding Dρ(φ), we have

Dρ(φ) = −Eρ[φ(η)(Lφ)(η)]

= −Eρ
[
φ(η)

1

2

∑
|y−x|=1

c(ηx)
(
φ(ηx,y)− φ(η)

)]
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=
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)2φ(η)
(
φ(η)− φ(ηx,y)

)]
=

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)2 − 2φ(η)φ(ηx,y) + φ(η)2

)]
=

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]

+
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
− 2φ(η)φ(ηx,y)

)]
+

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]
. (3.3)

The definition of (Lφ)(η) produces the second equality, in the third one
we put −2φ(η) inside the summation and the fourth one comes from
2φ(η)2 = φ(η)2 +φ(η)2. Next, we shall use a convenient manipulation in
(3.3). Writing (3.3) as a sum, we get

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]

=
1

4

∑
η∈Σ

∑
|y−x|=1

Pρ(η)c(ηx)
(
φ(η)

)2
.

Since c(0) = 0, the terms with ηx = 0 do not contribute to the sum in
the right side. Then we can apply Remark 3.3 and we get

1

4

∑
η∈Σ

∑
|y−x|=1

Pρ(η)c(ηx)
(
φ(η)

)2
=

1

4

∑
η∈Σ

∑
|y−x|=1

Pρ(ηx,y)c
(
(ηx,y)y

)(
φ(η)

)2

=
1

4

∑
|y−x|=1

∑
η∈Σ

Pρ(ηx,y)c
(
(ηx,y)y

)(
φ(η)

)2
.

In the second equality we interchanged the sums. For each configura-
tion η ∈ Σ which contributes to the sum (i.e., ηx > 0), we may associate
exactly one configuration ξ ∈ Σ with ξy > 0 such that η = ξy,x. Then,
replacing the variable η in the second summation by ξy,x, we have

1

4

∑
|y−x|=1

∑
η∈Σ

Pρ(ηx,y)c
(
(ηx,y)y

)(
φ(η)

)2
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=
1

4

∑
|y−x|=1

∑
ξy,x∈Σ

Pρ
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)(
φ(ξy,x)

)2
.

Since each configuration ξ has ξy > 0, Remark 3.1 leads to

1

4

∑
|y−x|=1

∑
ξy,x∈Σ

Pρ
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)(
φ(ξy,x)

)2

=
1

4

∑
|y−x|=1

∑
ξy,x∈Σ

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2
.

Note that ∑
ξy,x∈Σ

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2
=
∑
ξ∈Σ

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2
.

Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ξy > 0, and is
trivial that ξy,x ∈ Σ in this case. From this remark, interchanging the
sums:

1

4

∑
|y−x|=1

∑
ξy,x∈Σ

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2
=

1

4

∑
|y−x|=1

∑
ξ∈Σ

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2

=
1

4

∑
ξ∈Σ

∑
|y−x|=1

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2
.

Exchanging x and y leads to

1

4

∑
ξ∈Σ

∑
|y−x|=1

Pρ(ξ)c(ξy)
(
φ(ξy,x)

)2
=

1

4

∑
ξ∈Σ

∑
|x−y|=1

Pρ(ξ)c(ξx)
(
φ(ξx,y)

)2

=
1

4
Eρ
[ ∑
|x−y|=1

c(ηx)
(
φ(ηx,y)

)2
]
.

The second equality comes from the definition of Eρ[ · ], with a change
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of the name of the variable. Then, we have

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]

=
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(ηx,y)

)2
]
. (3.4)

Finally, applying (3.4) in (3.3), we get

Dρ(φ) =
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]

+
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
− 2φ(η)φ(ηx,y)

)]
+

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]

=
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)

)2
]

+
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
− 2φ(η)φ(ηx,y)

)]
+

1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(ηx,y)

)2
]

=
1

4
Eρ
[ ∑
|y−x|=1

c(ηx)
(
φ(η)2 − 2φ(η)φ(ηx,y) + φ(ηx,y)2

)]
=

1

4

∑
|y−x|=1

Eρ
[
c(ηx)

(
φ(ηx,y)− φ(η)

)2]
.

The last equality comes from the linearity of expectation, which con-
cludes the proof.

Consider the finite volume, finite particle zero-range process. This
model governs the behavior of K particles jumping about in a finite
cube, say to fix ideas, Λn = {1, 2, . . . , n}d. The state space is then given
as Σn,K = {η ∈ Σ :

∑
x∈Λn

ηx = K}. For configurations η ∈ Σn,K and
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test functions φ, the generator of this finite process takes the form

(Ln,Kφ)(η) =
1

2

∑
|y−x|=1

x,y∈Λn

c(ηx)
[
φ(ηx,y)− φ(η)

]
.

The ergodic measures Pn,K are equal to the conditioned measure of the
infinite volume invariant state on the hyperplane Σn,K :

Pn,K( · ) = Pρ
(
·
∣∣∣ ∑
x∈Λn

ηx = K
)
. (3.5)

From Remark 3.2, we have

Remark 3.4. If x ∈ Λn and r ∈ 0, . . . , K, then Pn,K(ηx = r) > 0.

Also, from Remark 3.3, we get

Remark 3.5. If η ∈ Σn,K , x, y ∈ Λn and ηx > 0 then

Pn,K(η)c(ηx) = Pn,K(ηx,y)c
(
(ηx,y)y

)
.

We shall use this remark to prove the following:

Proposition 3.4. The measure Pn,K defined by the generator Ln,K above
is reversible.

Proof. Expanding 〈f, Ln,Kg〉Pn,K ,

〈f, Ln,Kg〉Pn,K =
∑

η∈Σn,K

f(η)(Lng)(η)Pn,K(η)

=
∑

η∈Σn,K

f(η)
(1

2

∑
|y−x|=1

x,y∈Λn

c(ηx)[g(ηx,y)− g(η)]
)
Pn,K(η)

=
1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)f(η)g(ηx,y) (3.6)

− 1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

f(η)c(ηx)g(η)Pn,K(η).
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Next, we shall use of a convenient manipulation in (3.6). Since c(0) = 0,
the terms with ηx = 0 do not contribute to the sum in (3.6). Then we
can apply Remark 3.5 and we get

1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)f(η)g(ηx,y)

=
1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(ηx,y)c
(
(ηx,y)y

)
f(η)g(ηx,y)

=
1

2

∑
|y−x|=1

x,y∈Λn

∑
η∈Σn,K

Pn,K(ηx,y)c
(
(ηx,y)y

)
f(η)g(ηx,y).

In the second equality we interchanged the sums. For each configura-
tion η ∈ Σn,K which contributes to the sum (i.e., ηx > 0), we may asso-
ciate exactly one configuration ξ ∈ Σn,K with ξy > 0 such that η = ξy,x.
Then, replacing the variable η in the second summation by ξy,x, we have

1

2

∑
|y−x|=1

x,y∈Λn

∑
η∈Σn,K

Pn,K(ηx,y)c
(
(ηx,y)y

)
f(η)g(ηx,y)

=
1

2

∑
|y−x|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)
f(ξy,x)g

(
(ξy,x)x,y

)
.

Since each configuration ξ has ξy > 0, Remark 3.1 leads to

1

2

∑
|y−x|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)
f(ξy,x)g

(
(ξy,x)x,y

)

=
1

2

∑
|y−x|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ).
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Note that∑
ξy,x∈Σn,K

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ) =
∑

ξ∈Σn,K

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ).

Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ξy > 0, and
is trivial that ξy,x ∈ Σn,K in this case. From this remark, interchanging
the sums:

1

2

∑
|y−x|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ)

=
1

2

∑
|y−x|=1

x,y∈Λn

∑
ξ∈Σn,K

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ)

=
1

2

∑
ξ∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ).

Exchanging x and y leads to

1

2

∑
ξ∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(ξ)c(ξy)f(ξy,x)g(ξ)

=
1

2

∑
ξ∈Σn,K

∑
|x−y|=1

x,y∈Λn

Pn,K(ξ)c(ξx)f(ξx,y)g(ξ).

Then, changing the name of the variable, we have

1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)f(η)g(ηx,y)

=
1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)f(ηx,y)g(η). (3.7)
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Finally, applying (3.7) in (3.6), we get

〈f, Ln,Kg〉Pn,K =
1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)f(η)g(ηx,y)

− 1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

f(η)c(ηx)g(η)Pn,K(η)

=
1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)f(ηx,y)g(η)

− 1

2

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

f(η)c(ηx)g(η)Pn,K(η)

= 〈Ln,Kf, g〉Pn,K .

Since the measure Pn,K is reversible, given two neighbor sites x and
y in Λn, the probability of a particle jumping from x to y, with x storing
r+1 particles and y storing j particles, is equal to the probability of the
reversal phenomenon (which is a particle jumping from y to x, with y

storing j+1 particles and x storing r particles). In mathematical terms,

c(r + 1)Pn,K(η : ηx = r + 1, ηy = j) = c(j + 1)Pn,K(η : ηy = j + 1, ηx = r).

(3.8)
This result can be generalized, such as stated below.

Proposition 3.5. Let x and y be two (not necessarily) neighbor sites in
Λn, given the fixed numbers n,K. If r, j are non-negative integer num-
bers such as r + j + 1 ≤ K, we have

c(r + 1)Pn,K(ηx = r + 1, ηy = j) = c(j + 1)Pn,K(ηy = j + 1, ηx = r).

Proof. The idea of the proof is going from Pn,K to Pρ, taking advantage
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of the last one being a translation invariant measure product. By prop-
erties of conditional expectation, we will get the desired result. From
(3.5), we get

c(r + 1)Pn,K(ηx = r + 1, ηy = j)

= c(r + 1)Pρ
(
ηx = r + 1, ηy = j

∣∣∣ n∑
z=1

ηz = K
)

= c(r + 1)
Pρ
(
ηx = r + 1, ηy = j,

∑n
z=1 ηz = K

)
Pρ
(∑n

z=1 ηz = K
) .

The second equality comes from the definition of conditional probability
of events. Note that the following is true:

[
ηx = r+1, ηy = j,

n∑
z=1

ηz = K
]

=
[
ηx = r+1, ηy = j,

n∑
z=1

ηz

z 6=x,y

= K−r−j−1
]
.

Because of the identity above, we have

c(r + 1)
Pρ
(
ηx = r + 1, ηy = j,

∑n
z=1 ηz = K

)
Pρ
(∑n

z=1 ηz = K
)

= c(r + 1)

Pρ
(
ηx = r + 1, ηy = j,

∑n
z=1 ηz
z 6=x,y

= K − r − j − 1
)

Pρ
(∑n

z=1 ηz = K
)

= c(r + 1)Pρ(ηx = r + 1)Pρ(ηy = j)

Pρ
(∑n

z=1 ηz
z 6=x,y

= K − r − j − 1
)

Pρ
(∑n

z=1 ηz = K
) . (3.9)

The second equality holds because Pρ is a product measure. Since
ρ : [0, α∗) 7→ R+ is a smooth (strictly) increasing bijection, we may
reparametrize the above family of measures by α = α(ρ):

c(r + 1)Pρ(ηx = r + 1)Pρ(ηy = j) = c(r + 1)P̄α(ηx = r + 1)P̄α(ηy = j)
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= c(r + 1)µα(ηx = r + 1)µα(ηy = j).

Applying (3.1), we get

c(r + 1)µα(ηx = r + 1)µα(ηy = j)

= c(r + 1)
( 1

Z(α)

αr+1

c(1) · · · c(r + 1)

)( 1

Z(α)

αj

c(1) · · · c(j)

)
= c(j + 1)

( 1

Z(α)

αr

c(1) · · · c(r)

)( 1

Z(α)

αj+1

c(1) · · · c(j + 1)

)
= c(j + 1)µα(ηx = r)µα(ηy = j + 1)

= c(j + 1)P̄α(ηx = r)P̄α(ηy = j + 1).

Reparametrizing by ρ = ρ(α),

c(r+ 1)Pρ(ηx = r+ 1)Pρ(ηy = j) = c(j+ 1)Pρ(ηx = r)Pρ(ηy = j+ 1). (3.10)

Replacing (3.10) in (3.9),

c(r + 1)Pρ(ηx = r + 1)Pρ(ηy = j)

Pρ
(∑n

z=1 ηz
z 6=x,y

= K − r − j − 1
)

Pρ
(∑n

z=1 ηz = K
)

= c(j + 1)Pρ(ηx = r)Pρ(ηy = j + 1)

Pρ
(∑n

z=1 ηz
z 6=x,y

= K − r − j − 1
)

Pρ
(∑n

z=1 ηz = K
)

= c(j + 1)

Pρ
(
ηx = r, ηy = j + 1,

∑n
z=1 ηz
z 6=x,y

= K − r − j − 1
)

Pρ
(∑n

z=1 ηz = K
)

= c(j + 1)
Pρ
(
ηx = r, ηy = j + 1,

∑n
z=1 ηz = K

)
Pρ
(∑n

z=1 ηz = K
) .

The second equality holds because Pρ is a product measure, and the
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last one comes from the identity

[
ηx = r, ηy = j+1,

n∑
z=1

ηz = K
]

=
[
ηx = r, ηy = j+1,

n∑
z=1

ηz

z 6=x,y

= K−r−j−1
]
.

The definition of conditional probability of events and (3.5) lead to

c(j + 1)
Pρ
(
ηx = r, ηy = j + 1,

∑n
z=1 ηz = K

)
Pρ
(∑n

z=1 ηz = K
)

= c(j + 1)Pρ
(
ηx = r, ηy = j + 1

∣∣∣ n∑
z=1

ηz = K
)

= c(j + 1)Pn,K(ηx = r, ηy = j + 1).

Let En,K be the expectation with respect to Pn,K . We shall use (3.8)
to prove the following:

Proposition 3.6. If x and y are two different sites in Λn, then

En,K [c(ηx)|ηy = r]Pn,K(ηy = r) = c(r + 1)Pn,K(ηy = r + 1),

where En,K [ · |ηy = r] is the expectation with respect to Pn,K [ · |ηy = r].

Proof. Given two different sites x and y in Λn, we may write the event
[ηy = r + 1] as a union of disjoint events (some of them may have zero
probability).

[ηy = r + 1] =
K⋃
j=0

[ηy = r + 1, ηx = j].

Thus, we have

Pn,K(ηy = r + 1) = Pn,K
( K⋃
j=0

[ηy = r + 1, ηx = j]
)
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=
K∑
j=0

Pn,K(ηy = r + 1, ηx = j).

Multiplying both sides of the equation by c(r + 1)

c(r + 1)Pn,K(ηy = r + 1)

=
K∑
j=0

c(r + 1)Pn,K(ηy = r + 1, ηx = j)

=
K∑
j=0

c(j + 1)Pn,K(ηy = r, ηx = j + 1)

=
K∑
j=0

c(j + 1)
Pn,K(ηx = j + 1, ηy = r)

Pn,K(ηy = r)
Pn,K(ηy = r)

= Pn,K(ηy = r)
K∑
j=0

c(j + 1)Pn,K(ηx = j + 1|ηy = r).

The second equality comes from (3.8), in the third one we multiplied
and divided by the positive number Pn,K(ηy = r) and in the last one,
we took the constant Pn,K(ηy = r) out from the summation and applied
the definition of conditional probability of two events. Note that c(0) =

Pn,K(ηx = K + 1|ηy = r) = 0, then

K∑
j=0

c(j + 1)Pn,K(ηx = j + 1|ηy = r)

=
K−1∑
j=0

c(j + 1)Pn,K(ηx = j + 1|ηy = r) + c(K + 1)Pn,K(ηx = K + 1|ηy = r)

=
K−1∑
j=0

c(j + 1)Pn,K(ηx = j + 1|ηy = r) + 0

= 0 +
K∑
j=1

c(j)Pn,K(ηx = j|ηy = r)

= c(0)Pn,K(ηx = 0|ηy = r) +
K∑
j=1

c(j)Pn,K(ηx = j|ηy = r)
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=
K∑
j=0

c(j)Pn,K(ηx = j|ηy = r).

In the third equality, we only changed the summation index. Replacing
the summation in the expression of c(r + 1)Pn,K(ηy = r + 1),

c(r + 1)Pn,K(ηy = r + 1)

= Pn,K(ηy = r)
K∑
j=0

c(j)Pn,K(ηx = j|ηy = r)

= Pn,K(ηy = r)En,K [c(ηx)|ηy = r].

In the last equality, we used the definition of En,K [ · |ηy = r].

As in the infinite volume process, we can define the Dirichlet form
for the finite volume process by its action on functions φ : Σ→ R:

Dn,K(φ) := −En,K
[
φ(η)(Ln,Kφ)(η)

]
.

The Dirichlet form Dn,K(φ) can also be written as

Proposition 3.7.

Dn,K(φ) =
1

4

∑
|y−x|=1

x,y∈Λn

En,K
[
c(ηx)

(
φ(ηx,y)− φ(η)

)2]
.

Proof. ExpandingDn,K(φ)

Dn,K(φ) = −En,K
[
φ(η)(Ln,Kφ)(η)

]
= −En,K

[
φ(η)

1

2

∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(ηx,y)− φ(η)

)]

=
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)2φ(η)
(
φ(η)− φ(ηx,y)

)]
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=
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)2 − 2φ(η)φ(ηx,y) + φ(η)2

)]

=
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]

+
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
− 2φ(η)φ(ηx,y)

)]

+
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]
. (3.11)

In the second equality we used the definition of (Ln,Kφ)(η), in the third
one we put−2φ(η) inside the summation and the fourth one comes from
2φ(η)2 = φ(η)2 +φ(η)2. Next, we shall use a convenient manipulation in
(3.11). Writing (3.11) as a sum, we get

1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]

=
1

4

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)
(
φ(η)

)2
.

Since c(0) = 0, the terms with ηx = 0 do not contribute to the sum in
the right side. Then we can apply Remark 3.3 and we get

1

4

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(η)c(ηx)
(
φ(η)

)2

=
1

4

∑
η∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(ηx,y)c
(
(ηx,y)y

)(
φ(η)

)2

=
1

4

∑
|y−x|=1

x,y∈Λn

∑
η∈Σn,K

Pn,K(ηx,y)c
(
(ηx,y)y

)(
φ(η)

)2
.

In the second equality we interchanged the sums. For each configura-
tion η ∈ Σn,K which contributes to the sum (i.e., ηx > 0), we may asso-
ciate exactly one configuration ξ ∈ Σn,K with ξy > 0 such that η = ξy,x.
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Then, replacing the variable η in the second summation by ξy,x, we have

1

4

∑
|y−x|=1

x,y∈Λn

∑
η∈Σn,K

Pn,K(ηx,y)c
(
(ηx,y)y

)(
φ(η)

)2

=
1

4

∑
|y−x|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)(
φ(ξy,x)

)2
.

Since each configuration ξ has ξy > 0, Remark 3.1 leads to

1

4

∑
|x−y|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K
(
(ξy,x)x,y

)
c
((

(ξy,x)x,y
)
y

)(
φ(ξy,x)

)2

=
1

4

∑
|x−y|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2
.

Note that∑
ξy,x∈Σn,K

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2
=
∑

ξ∈Σn,K

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2
.

Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ξy > 0, and is
trivial that ξy,x ∈ Σ in this case. From this remark, interchanging the
sums:

1

4

∑
|y−x|=1

x,y∈Λn

∑
ξy,x∈Σn,K

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2

=
1

4

∑
|y−x|=1

x,y∈Λn

∑
ξ∈Σn,K

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2

=
1

4

∑
ξ∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2
.
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Exchanging x and y leads to

1

4

∑
ξ∈Σn,K

∑
|y−x|=1

x,y∈Λn

Pn,K(ξ)c(ξy)
(
φ(ξy,x)

)2
=

1

4

∑
ξ∈Σn,K

∑
|x−y|=1

x,y∈Λn

Pn,K(ξ)c(ξx)
(
φ(ξx,y)

)2

=
1

4
En,K

[ ∑
|x−y|=1

x,y∈Λn

c(ηx)
(
φ(ηx,y)

)2
]
.

The second equality comes from the definition of En,K [ · ], with a change
of the name of the variable. Then, we have

1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]

=
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(ηx,y)

)2
]
. (3.12)

Finally, applying (3.12) in (3.11), we get

Dn,K(φ) =
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]

+
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
− 2φ(η)φ(ηx,y)

)]

+
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]

=
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(η)

)2
]

+
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
− 2φ(η)φ(ηx,y)

)]

+
1

4
En,K

[ ∑
|y−x|=1

x,y∈Λn

c(ηx)
(
φ(ηx,y)

)2
]
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=
1

4

∑
|y−x|=1

x,y∈Λn

En,K
[
c(ηx)

(
φ(ηx,y)− φ(η)

)2]
.

The last equality comes from the linearity of expectation, which con-
cludes the proof.

We define L2
Pn,K (Σn,K) as the vector space RΣn,K with inner product

with respect to the measure Pn,K , which means, given functions f, g :

Σn,K → R,

〈f, g〉Pn,K =
∑

η∈Σn,K

f(η)g(η)Pn,K(η) .

From Proposition 3.4, we get that the linear operator Ln,K : L2
Pn,K (Σn,K)→

L2
Pn,K (Σn,K) is self-adjoint with respect to the inner product 〈·, ·〉Pn,K and

the process defined by the generator Ln,K on the finite state space Σn,K

is an ergodic, reversible finite state Markov chain. The Spectral Theo-
rem from Linear Algebra assures that every eigenvalue of Ln,K is a real
number. Now we will prove another results regarding the eigenvalues
of the generator Ln,K .

Proposition 3.8. The operator Ln,K in L2
Pn,K (Σn,K) is negative definite,

i.e, if β is an eigenvalue of Ln,K , then β ≤ 0.

Proof. Let β be an eigenvalue of Ln,K . Consider an eigenfunction φ :

Σn,K → R with respect to β, i.e., Ln,K(φ) = β ·φ. Since c is a non-negative
function, Proposition 3.7 leads to

Dn,K(φ) =
1

4

∑
|y−x|=1

x,y∈Λn

En,K
[
c(ηx)

(
φ(ηx,y)− φ(η)

)2] ≥ 0.

On the other hand, by the definition of Dn,K(φ), we get

Dn,K(φ) = −En,K
[
φ(Ln,Kφ)

]
= −En,K

[
φ(β · φ)

]
= −βEn,K

[
φ2
]
.

Therefore, −βEn,K
[
φ2
]
≥ 0. Since En,K

[
φ2
]
≥ 0, β ≤ 0.

In order to define the spectral gap, we prove the following:
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Proposition 3.9. 0 is a eigenvalue of Ln,K with algebraic multiplicity
equal to 1. Moreover, the eigenfunctions with respect to 0 are exactly the
constant functions.

Proof. Let φ : Σn,K → R be a constant function. By the definition of
Ln,K , we get

(Ln,Kφ)(η) =
1

2

∑
|y−x|=1

x,y∈Λn

c(ηx)
[
φ(ηx,y)− φ(η)

]
=

1

2

∑
|y−x|=1

x,y∈Λn

c(ηx) · 0 = 0,

∀η ∈ Σn,K . Therefore Ln,K(φ) = 0 = 0 · φ, i.e., 0 is an eigenvalue of Ln,K .
Now let f be another eigenfunction with respect to the eigenvalue 0,
i.e., Ln,K(f) = 0 · f = 0. The definition of Dn,K(φ) leads to

Dn,K(φ) = −En,K
[
φ(Ln,Kφ)

]
= −En,K

[
φ · 0] = 0.

On the other hand, from Proposition 3.7 we have

0 = Dn,K(φ) =
1

4

∑
|y−x|=1

x,y∈Λn

En,K
[
c(ηx)

(
φ(ηx,y)− φ(η)

)2]
,

which is the same as

1

4

∑
|y−x|=1

x,y∈Λn

∑
η∈Σn,K

Pn,K(η)c(ηx)
(
φ(ηx,y)− φ(η)

)2
= 0.

Since the left side is a sum of only non-negative terms,

Pn,K(η)c(ηx)
(
φ(ηx,y)− φ(η)

)2
= 0,∀η ∈ Σn,K , ∀x, y ∈ Λn : |y − x| = 1.

Let η ∈ Σn,K and x ∈ Λn such that ηx > 0. Then Pn,K(η)c(ηx) > 0, which
leads to

(
φ(ηx,y)− φ(η)

)2
= 0 = φ(ηx,y)− φ(η),∀y ∈ Λn : |y − x| = 1.
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This means that if η1, η2 are two configurations in Σn,K such that we
can go from η1 to η2 in a single jump, then f(η1) = f(η2).

Let ξ1, ξ2 be two arbitrary configurations in Σn,K . Since the process
defined by the generator Ln,K is an irreducible Markov chain, we can
go from ξ1 to ξ2 in a finite number of jumps. That means there is a finite
sequence of length k η0 = ξ1, . . . , ηk = ξ2 such that we can go from ηj to
ηj+1 in a single jump, ∀j = 0, . . . , k − 1. Therefore,

f(ξ1) = f(η1) = . . . = f(ηk−1) = f(ξ2).

Since ξ1, ξ2 are two arbitrary configurations in Σn,K , we get that f is
constant. Then, the only eigenfunctions with respect to the eigenvalue
0 are the constant ones and the geometric multiplicity of 0 is 1. From
the reversibility of the operator Ln,K in L2

Pn,K (Σn,K), we get that it is
diagonalizable, then the algebraic and geometric multiplicities are the
same for every eigenvalue. In particular, the algebraic multiplicity of 0

is 1.

We will summarize the last results in the following proposition.

Proposition 3.10. The following assertions hold:

a) There is an orthonormal basis of real-valued eigenfunctions to L2
Pn,K (Σn,K).

b) Denote the eigenvalues of the operator Ln,K by βi, 0 ≤ i ≤ |Σn,K |−1.
Then they may be written in descending order, such that

0 = β0 > β1 ≥ . . . ≥ β|Σn,K |−1.

c) Denote the eigenfunctions of the operator Ln,K by ϕi, 0 ≤ i ≤
|Σn,K | − 1, and the constant function equal to 1 by 1. Then ϕ0 ≡ 1.

Proof. a) By Proposition 3.4, since the operator Ln,K is self-adjoint with
respect to the inner product 〈·, ·〉Pn,K , the Spectral Theorem assures
the existence of an orthonormal basis of real-valued eigenfunctions
to the vector space L2

Pn,K (Σn,K).
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b) Since the eigenvalues are real numbers and R is a ordered field, they
can be written in descending order. By Propositions 3.8 and 3.9, we
have

0 = β0 > β1 ≥ . . . ≥ β|Σn,K |−1.

c) By Proposition 3.9, 1 is a eigenvector corresponding to the eigen-
value β0 = 1. It only remains to prove that the norm of 1 with respect
to the inner product 〈·, ·〉Pn,K is equal to 1. Evaluating 〈1,1〉Pn,K ,

〈1,1〉Pn,K =
∑

η∈Σn,K

1(η)1(η)Pn,K(η) =
∑

η∈Σn,K

1 · 1 · Pn,K(η) = 1.

We define the spectral gap γ of the process as the absolute value of
the second largest eigenvalue, i.e., γ = |β1| = −β1 > 0. An very useful
result that will be used in order to evaluate the spectral gap is the
following.

Proposition 3.11. The spectral gap γ = − β1 > 0 satisfies

γ = min
f∈RΣn,K

VarPn,K (f)6=0

Dn,K(f)

VarPn,K (f)
,

where VarPn,K (f) = En,K
[(
f−En,K [f ]

)2]
= 〈f−En,K [f ]1, f−En,K [f ]1〉Pn,K .

Proof. From Proposition 3.10, the vector space L2
Pn,K (Σn,K) contains an

orthonormal basis of eigenfunctions ϕi, 0 ≤ i ≤ |Σn,K | − 1. Therefore,

f =

|Σn,K |−1∑
j=0

〈f, ϕj〉Pn,Kϕj. (3.13)

From Proposition 3.10, ϕ0 = 1, and we have

En,K [f ]1 =
( ∑
η∈Σn,K

f(x) · 1 · π(x)
)
ϕ0 = 〈f, ϕ0〉Pn,Kϕ0. (3.14)
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Subtracting (3.14) from (3.13),

f − En,K [f ]1 =

|Σn,K |−1∑
j=1

〈f, ϕj〉Pn,Kϕj.

Computing the inner product 〈·, ·〉Pn,K of each side of the equation above
with itself results in

〈f − En,K [f ]1, f − En,K [f ]1〉Pn,K

=
〈 |Σn,K |−1∑

j=1

〈f, ϕj〉Pn,Kϕj,
|Σn,K |−1∑
m=1

〈f, ϕm〉Pn,Kϕm
〉
Pn,K

=

|Σn,K |−1∑
j=1

|Σn,K |−1∑
m=1

〈f, ϕj〉Pn,K 〈f, ϕm〉Pn,K 〈ϕj, ϕm〉Pn,K .

Since ϕj, 0 ≤ j ≤ |Σn,K |− 1 is an orthonormal basis of L2
Pn,K (Σn,K), we

get 〈ϕj, ϕm〉π = δjm. Recalling VarPn,K (f) = 〈f−En,K [f ]1, f−En,K [f ]1〉Pn,K ,

VarPn,K (f) =

|Σn,K |−1∑
j=1

〈f, ϕj〉Pn,K 〈f, ϕj〉Pn,K =

|Σn,K |−1∑
j=1

(〈f, ϕj〉Pn,K )2.

Applying the linear operator in both sides of (3.13)

Ln,K(f) =

|Σn,K |−1∑
j=0

〈f, ϕj〉Pn,KLn,K(ϕj) =

|Σn,K |−1∑
j=0

〈f, ϕj〉Pn,Kβjϕj. (3.15)

The definition of Dn,K(f) produces

Dn,K(f) = −En,K
[
f · Ln,K(f)

]
= −〈f, Ln,K(f)〉Pn,K .

From (3.13) and (3.15), we get

Dn,K(f) =−
〈 |Σn,K |−1∑

j=0

〈f, ϕj〉Pn,Kϕj,
|Σn,K |−1∑
j=0

〈f, ϕj〉Pn,Kβjϕj
〉
Pn,K
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=−
|Σn,K |−1∑
j=0

|Σn,K |−1∑
m=0

βj〈f, ϕj〉Pn,K 〈f, ϕm〉Pn,K 〈ϕj, ϕm〉Pn,K .

Again, from the orthonormality of the eigenfunctions,

Dn,K(f) = −
|Σn,K |−1∑
j=0

βj〈f, ϕj〉Pn,K 〈f, ϕj〉Pn,K =

|Σn,K |−1∑
j=0

(−βj)(〈f, ϕj〉Pn,K )2.

Since β0 = 0 and the eigenvalues are in descending order,

Dn,K(f) =

|Σn,K |−1∑
j=1

(−βj)(〈f, ϕj〉Pn,K )2

≥
|Σn,K |−1∑
j=1

(−β1)(〈f, ϕj〉Pn,K )2

= − β1

|Σn,K |−1∑
j=1

(〈f, ϕj〉Pn,K )2

= γVarPn,K (f),

which is the same as
γ ≤ Dn,K(f)

VarPn,K (f)
.

It remains to prove there is equality for some non-constant function
f ∈ RΣn,K . Choosing f = ϕ1,

VarPn,K (f) =

|Σn,K |−1∑
j=1

(〈f, ϕj〉Pn,K )2 =

|Σn,K |−1∑
j=1

(〈ϕ1, ϕj〉Pn,K )2 = 1,

and

Dn,K(f) =

|Σn,K |−1∑
j=1

(−βj)(〈f, ϕj〉Pn,K )2 =

|Σn,K |−1∑
j=1

(−βj)(〈ϕ1, ϕj〉Pn,K )2 = γ.

In other words, the minimum of Dn,K(f)/VarPn,K (f) is attained when
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f = ϕ1.

Actually, the orthonormal eigenfunctions, the eigenvectors and the
spectral depend on n and K, but we do not write them in function of
n and K for sake of the notation. We will only make this dependence
explicit for the reciprocal of the spectral gap, which will be denoted by
W (n,K), i.e.,
W (n,K) = 1/γ > 0. The following result gives a way to evaluate the
spectral gap.

Proposition 3.12. Let f : Σn,K 7→ (−∞,∞). Then

En,K
[
(f − En,K [f ])2

]
≤ W (n,K)Dn,K(f). (3.16)

Proof. If f is constant, then En,K
[
(f − En,K [f ])2

]
= 0. By Proposition

3.7, Dn,K(f) ≥ 0. Since W (n,K) > 0, we have

En,K
[
(f − En,K [f ])2

]
= 0 ≤ W (n,K)Dn,K(f).

If f is not constant, we can apply Proposition 3.11 and get

1

W (n,K)
≤ Dn,K(f)

En,K
[
(f − En,K [f ])2

] ,
which is the same as

En,K
[
(f − En,K [f ])2

]
≤ W (n,K)Dn,K(f).

The aim of this chapter is to determine for a class of zero-range pro-
cesses the spectral gap bound W (n,K) < W0n

2, where W0 is a constant
which does not depend on n and K. To establish such a bound, we will
impose a third assumption:

Hypothesis 3.3. There is k0 ∈ N and a2 > 0 such that c(k)−c(j) ≥ a2

for all k ≥ j + k0.
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Notice that, under Hypothesis 3.1 and 3.3, α∗ is actually infinite.
We are now in a position to state the main theorem of this chapter.

Theorem 3.1. Given the Hypothesis 3.1 and 3.3, there is a constant W0

independent of n and K such that (3.16) holds with W (n,K) = W0n
2 for

the corresponding nearest-neighbor zero-range process. This implies a
spectral gap of at least {W0n

2}−1 on a cube of volume nd.

In the next section, we will present the proof ’s structure for this
theorem.

3.2 Summary of the Proof

For simplicity, we will prove Theorem 3.1 for dimension d = 1. We
will show that there is a constant W0, independent of n and K, such
that (3.16) holds with W (n,K) = W0n

2. In other words, we will prove
that there is a constant W0 such that

En,K
[
(f − En,K [f ])2

]
≤ W0 n

2Dn,K(f), (3.17)

∀n ∈ N,∀K ∈ N ∪ {0}, ∀f : Σn,K 7→ (−∞,∞). Let’s resume the proof of
(3.17). Initially, we define

W (n) = sup
K∈N

W (n,K).

Therefore, is true that

En,K
[
(f − En,K [f ])2

]
≤ W (n)Dn,K(f). (3.18)

Using induction and some estimates, we will obtain in the end of the
proof that ∀ε > 0, there are constants n0(ε) and C(ε) such that W (n)
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satisfiesW (n) ≤
(
1 + a2

1B0

)
W (n− 1) + B0

2
n, for n ≥ 2,

W (n) ≤
(

1− εB0

n

)−1[
W (n− 1) + nB0

2
+B0C(ε)

]
, for n ≥ n0(ε),

(3.19)
where a1 and B0 are positive constants, which produces W (n) ≤ W0n

2.
Let’s show that the recursive inequalities above actually leads to the
desired estimate.

Proposition 3.13. If for all ε > 0, there are constants n0(ε) and C(ε)

such thatW (n) ≤
(
1 + a2

1B0

)
W (n− 1) + B0

2
n, for n ≥ 2,

W (n) ≤
(

1− εB0

n

)−1[
W (n− 1) + nB0

2
+B0C(ε)

]
, for n ≥ n0(ε),

where a1 and B0 are positive constants, then there is a constant W0 such
that W (n) ≤ W0n

2, ∀n ∈ N.

Proof. Let ε = B−1
0 > 0. For n ≥ n0(ε), we have

W (n) ≤
(

1− εB0

n

)−1[
W (n− 1) +

nB0

2
+B0C(ε)

]
=
(

1− 1

n

)−1[
W (n− 1) +

nB0

2
+B0C(ε)

]
=

n

n− 1

[
W (n− 1) +

nB0

2
+B0C(ε)

]
.

Dividing the inequality by n

W (n)

n
≤ W (n− 1)

n− 1
+B0

n

2(n− 1)
+B0

C(ε)

n− 1
.

Let y(n) = W (n)/n, ∀n ∈ N. Then

y(n) ≤ y(n− 1) +B0
n

2n− 2
+B0

C(ε)

n− 1
.

There is n1 > n0(ε), n1 ∈ N such that if n > n1, then n/(2n − 2) < 1 and
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C(ε)/(n− 1) < 1. In these conditions

B0
n

2n− 2
+B0

C(ε)

n− 1
< B0 · 1 +B0 · 1 = 2B0,

which leads to
y(n) ≤ y(n− 1) + 2B0.

Therefore, the sequence y(n) is bounded above by a arithmetic progres-
sion with initial term of y(n1) and common difference of 2B0. If n ≥ n1,
we get

y(n) ≤ y(n1) + 2B0(n− n1).

Multiplying the inequality above by n, we have

ny(n) ≤ ny(n1) + 2B0(n− n1)n.

Because of the definition of y(n),

W (n) ≤ n

n1

W (n1) + 2n2B0 − 2B0n1n ≤
n

n1

W (n1) + 2n2B0.

There is n2 > n1, n2 ∈ N such that if n > n2, then nW (n1)/n1 < n2B0. In
these conditions,

W (n) ≤ n

n1

W (n1) + 2n2B0 ≤ n2B0 + 2n2B0 = 3n2B0.

If n ≤ n2, we know that

W (n) ≤
(
1 + a2

1B0

)
W (n− 1) +

B0

2
n.

Therefore, W (n) ≤ x(n), where x(n) is the solution of

x(n) =
(
1 + a2

1B0

)
x(n− 1) +

B0

2
n, for n ≥ 2.

If n ≤ n2, x(n) will be a finite number, then the same will hold with
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W (n). Define W0 := max{W (1), . . . W (n2), 3B0}. If 2 ≤ n ≤ n2,

W (n) ≤ W0 ≤ W0n
2.

If n > n2,
W (n) ≤ 3B0n

2 ≤ W0n
2.

Therefore, we have W (n) ≤ W0n
2, ∀n ∈ N.

Our efforts now will be to use the induction hypothesis to set up both
recursive inequalities above for W (n). The initial induction case n = 2

is a consequence of the one site spectral gap and is further discussed in
Section 4 of the paper [4]. For sake of clarity, we shall present the idea
of the proof of Theorem 3.1 in three more sections. Before we begin, let’s
make a general remark in order to deal with conditional expectation.
Notice that, for all f : Σn,K 7→ (−∞,∞), En,K [ f ] is a finite sum of real
numbers. Since Pn,K is a probability measure on a finite state space,
we have

Remark 3.6. All the (functions of) random variables in the rest of this
chapter are integrable. More generally, all the (functions of) random
variables in the rest of this chapter are in Lp(Pn,K), for all p ∈ N.

The remark above is a important one, since the conditional expecta-
tion is a tool that will be used frequently in the following sections and
it only makes sense when we are dealing with integrable (functions of)
random variables, according to

Definition 3.1 (Conditional expectation). Let (Ω,Fo, P ) be a probabil-
ity space. Given are a σ-field F ⊂ Fo and a random variable X measur-
able on Fo, with E[|X|] < ∞. We define the conditional expectation
of X given F , denoted by E[X|F ], to be a random variable Y which
satisfies

(a) Y ∈ F , i.e., Y is measurable on F ;

(b) for all A ∈ F ,
∫
A
XdP =

∫
A
Y dP .
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Intuitively, given a random variable X, E[X|F ] is a “mean” of X on
F , being the random variable on F which is closest to X, see [2] for
more details about the subject. In particular, recalling that the σ-field
generated by η1 is denoted by σ(η1), we shall discuss the properties
of the conditional expectations En,K [ · |σ(η1)], which will denoted by
En,K [ · |η1], for the sake of simplicity. Two properties related to condi-
tional expectation which will be used in this chapter are:

Property 3.1. Given are a probability space (Ω,Fo, P ), a σ-field
F ⊂ Fo and a random variable X measurable on Fo, with E[|X|] <∞,
then

E[E[X|F ]] = E[X].

Property 3.2. Given are a probability space (Ω,Fo, P ), a σ-field
F ⊂ Fo, a random variable X measurable on F and a random vari-
able Y measurable on Fo with E[|Y |] <∞. If E[|XY |] <∞, we have

E[XY |F ] = XE[Y |F ].

An immediate consequence of both properties is the following.

Property 3.3. Given are a probability space (Ω,Fo, P ), a σ-field
F ⊂ Fo, a random variable Z measurable on F and a random variable
Y measurable on Fo with E[|Y |] <∞. If E[|Y Z|] <∞, we have

E[(Y − E[Y |F ])Z] = 0.

Proof. Let Ỹ := E[Y |F ]. Substituting X by Z in Property 3.2

Ỹ Z = ZE[Y |F ] = E[Y Z|F ].

Taking the expectation in both sides of the equality above

E[Ỹ Z] = E[E[Y Z|F ]] = E[Y Z].
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The last equality comes from replacing X by Y Z in Property 3.1. Then

E[(Y − E[Y |F ])Z] = E[(Y − Ỹ ])Z] = E[Y Z]− E[Ỹ Z] = 0.

Next, we will use the properties above in order to obtain a upper
bound for the variance which appears in the left side of (3.17), which
will be given as a sum of two terms. We begin adding and subtracting
the term En,K [f |η1], resulting in

f − En,K [f ] = (f − En,K [f |η1]) + (En,K [f |η1]− En,K [f ]).

Squaring the identity,

(f − En,K [f ])2 =
(
(f − En,K [f |η1]) + (En,K [f |η1]− En,K [f ])

)2

= (f − En,K [f |η1])2 + (En,K [f |η1]− En,K [f ])2

+ 2(f − En,K [f |η1])(En,K [f |η1]− En,K [f ]).

Taking the expectation in both sides of the equality above

En,K [(f − En,K [f ])2] = En,K [(f − En,K [f |η1])2]

+ En,K [(En,K [f |η1]− En,K [f ])2]

+ 2En,K [(f − En,K [f |η1])(En,K [f |η1]− En,K [f ])].

By definition of conditional expectation, En,K [f |η1] is measurable on
σ(η1). Since En,K [f ] is constant, En,K [f ] is measurable on σ(η1) (for it
is mensurable on any σ-field). Therefore, En,K [f |η1]− En,K [f ] is mensu-
rable on σ(η1). Replacing Y by f , Z by (En,K [f |η1]− En,K [f ]), F by σ(η1)

in Property 3.3, we get

En,K [(f − En,K [f |η1])(En,K [f |η1]− En,K [f ])] = 0.

Because of Remark 3.6, (f − En,K [f |η1]) and (En,K [f |η1] − En,K [f ]) are
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in the Hilbert space L2(Pn,K). A geometric interpretation of this result
is that (f − En,K [f |η1]) and (En,K [f |η1] − En,K [f ]) are orthogonal in this
space. In this way, the variance En,K [(f − En,K [f ])2] may be written as:

En,K [(f − En,K [f |η1])2] (3.20)

+ En,K [(En,K [f |η1]− En,K [f ])2]. (3.21)

We will devote the next two sections to bound (3.20) and (3.21).

3.3 Boundedness of expression (3.20)

In this section, we will bound (3.20) by an expression with Dn,K(f),
leading to a result close to (3.17). We begin proving

Proposition 3.14. If η ∈ Σn,K , r ∈ {0, . . . , K} and ξ ∈ Σn−1,K−r, then

Pn,K
(
(η2, . . . , ηn) = ξ|η1 = r

)
= Pn−1,K−r(ξ).

In particular, we have

Pn,K(r, ξ) = Pn,K
(
η1 = r, (η2, . . . , ηn) = ξ

)
= Pn,K(η1 = r)Pn,K

(
(η2, . . . , ηn) = ξ|η1 = r

)
= Pn,K(η1 = r)Pn−1,K−r(ξ).

Proof. The idea of the proof is going from Pn,K to Pρ, taking advantage
of the last one being a translation invariant measure product. By prop-
erties of conditional expectation, we will get the desired result. Since
Pn,K

(
(η2, . . . , ηn) = ξ|η1 = r

)
is a conditional probability of two events,

Pn,K
(
(η2, . . . , ηn) = ξ|η1 = r

)
=

Pn,K
(
η1 = r, (η2, . . . , ηn) = ξ

)
Pn,K(η1 = r)
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=
Pρ
(
η1 = r, (η2, . . . , ηn) = ξ

∣∣∣∑x∈Λn
ηx = K

)
Pρ
(
η1 = r

∣∣∣∑x∈Λn
ηx = K

)
=

Pρ
(
η1 = r, (η2, . . . , ηn) = ξ,

∑
x∈Λn

ηx = K
)

Pρ
(
η1 = r,

∑
x∈Λn

ηx = K
) . (3.22)

The second equality comes from (3.5), the third one is true because of
the definition of conditional probability (of events) and the last one is
obtained eliminating the term Pρ

(∑
x∈Σn,K

ηx = K
)

. Since we are in
case d = 1, (3.22) may be written as

Pρ
(
η1 = r, (η2, . . . , ηn) = ξ,

∑n
x=1 ηx = K

)
Pρ
(
η1 = r,

∑n
x=1 ηx = K

) .

Note that the following is true:

[
η1 = r,

n∑
x=1

ηx = K
]

=
[
η1 = r,

n∑
x=2

ηx = K − r
]
,

[
η1 = r, (η2, . . . , ηn) = ξ,

n∑
x=1

ηx = K
]

=
[
η1 = r, (η2, . . . , ηn) = ξ,

n∑
x=2

ηx = K − r
]
.

Provided by the the identities above, we have

Pρ
(
η1 = r, (η2, . . . , ηn) = ξ,

∑n
x=1 ηx = K

)
Pρ
(
η1 = r,

∑n
x=1 ηx = K

)
=

Pρ
(
η1 = r, (η2, . . . , ηn) = ξ,

∑n
x=2 ηx = K − r

)
Pρ
(
η1 = r,

∑n
x=2 ηx = K − r

)
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=
Pρ(η1 = r)Pρ

(
η2, . . . , ηn) = ξ,

∑n
x=2 ηx = K − r

)
Pρ(η1 = r)Pρ

(∑n
x=2 ηx = K − r

)
=

Pρ
(

(η2, . . . , ηn) = ξ,
∑n

x=2 ηx = K − r
)

Pρ
(∑n

x=2 ηx = K − r
)

= Pρ
(

(η2, . . . , ηn) = ξ
∣∣∣ n∑
x=2

ηx = K − r
)
.

The second equality holds because Pρ is a product measure, the third
one is obtained eliminating the term Pρ(η1 = r) and the last one comes
from the definition of conditional probability (of events). Since Pρ is a
translation invariant measure, we get

Pρ
(

(η2, . . . , ηn) = ξ
∣∣∣ n∑
x=2

ηx = K − r
)

= Pρ
(

(η1, . . . , ηn−1) = ξ
∣∣∣ n−1∑
x=1

ηx = K − r
)

= Pρ
(

(η1, . . . , ηn−1) = ξ
∣∣∣ ∑
x∈Λn−1

ηx = K − r
)

= Pn−1,K−r(ξ).

The second equality holds because Λn−1 = {1, · · · , n − 1} and the last
one comes from (3.5).

Proposition 3.15. In the notation of this chapter, the following equality
holds:

En−1,K−r[f(r, ξ)] = En,K [f |η1 = r].

Intuitively, the proposition above may be explained in this way:
En,K [ · ] is a mean over all the possible configurations of K particles
in n sites, where each one of the n random variables η1, η2, . . . , ηn is un-
known. However, if we know that the value of η1 is exactly r, we will
obtain a mean over all the possible configurations of K − r particles in
n−1 sites, where the unknown random variables are η2, . . . , ηn. We note
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that En,K [f |η1 = r] is a number, for it is the expectation of the proba-
bility measure Pn,K [ · |η1 = r]. Now we shall prove the validity of the
proposition.

Proof. The proof comes from a summation manipulation, along with
Proposition 3.14 and conditional probability properties. Writing the
left side as a summation:

En−1,K−r[f(r, ξ)] =
∑

ξ∈Σn−1,K−r

Pn−1,K−r(ξ)f(r, ξ)

=
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)

Pn,K(η1 = r)
f(r, ξ)

=
∑

ξ∈Σn−1,K−r

Pn,K(r, ξ)

Pn,K(η1 = r)
f(r, ξ)

=
∑

η∈Σn,K
η1=r

Pn,K(η)

Pn,K(η1 = r)
f(η).

The second equality was obtained multiplying and dividing by the pos-
itive number Pn,K(η1 = r), the third one comes from Proposition 3.14
and replacing the variable ξ by η = (r, ξ) produces the last one. There-
fore ∑

η∈Σn,K
η1=r

Pn,K(η)

Pn,K(η1 = r)
f(η) =

∑
η∈Σn,K
η1=r

Pn,K(η|η1 = r)f(η)

=
∑

η∈Σn,K

Pn,K(η|η1 = r)f(η)

= En,K [f |η1 = r].

The definition of conditional probability of events leads to the second
equality, the third one holds because if η̃ is a configuration with η1 6= r,
then Pn,K(η|η1 = r) = 0 and the last one comes from En,K [f |η1 = r] being
the expectation of f with respect to Pn,K [ · |η1 = r].

Now we will produce a bound above for the first term in the right
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side of (3.20). Property 3.1 leads to

En,K [
(
f − En,K [f |η1]

)2
] = En,K

[
En,K [

(
f − En,K [f |η1]

)2
]
∣∣η1

]
.

We shall obtain a equivalent way of writing the conditional expectation
in the right side.

Proposition 3.16. In the notation of this chapter, the following equality
holds:

En,K [
(
f − En,K [f |η1]

)2|η1] = En−1,K−η1 [
(
f(η1, ·)− En−1,K−η1 [f(η1, ·)]

)2
].

Intuitively, the proposition above may be explained in this way:
En,K [ · ] is a mean over all the possible configurations of K particles
in n sites, where each one of the n random variables η1, η2, . . . , ηn is un-
known. However, if we know the value of η1, we will obtain a mean
over all the possible configurations of K − η1 particles in n − 1 sites,
where the unknown random variables are η2, . . . , ηn. We note that
En−1,K−η1

[(
f(η1, ·) − En−1,K−η1 [f(η1, ·)]

)2] is a random variable, since it
is a function of the random variable η1. Now we shall prove the validity
of the proposition.

Proof of Proposition 3.16. The idea of the proof is showing that our can-
didate to conditional expectation satisfies both conditions of Defini-
tion 3.1. Since En−1,K−η1

[(
f(η1, ·) − En−1,K−η1 [f(η1, ·)]

)2] is a function of
η1, it is measurable on σ(η1), therefore satisfies condition a) of Defini-
tion 3.1. To show that condition b) also holds, we note that η1 only takes
values in the discrete set {0, 1, . . . , K}. In this way, σ(η1) is generated by
the events [η1 = 0], [η1 = 1], . . . , [η1 = K], which are disjoint. Therefore,
it is sufficient to consider the case A = [η1 = r], where r ∈ {1, 2, . . . , K}
is a fixed number:∫

A

En−1,K−η1

[(
f(η1, ·)− En−1,K−η1 [f(η1, ·)]

)2]Pn,K
=

∫
En−1,K−η1

[(
f(η1, ·)− En−1,K−η1 [f(η1, ·)]

)2]
1(η1 = r)dPn,K
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=

∫
En−1,K−r

[(
f(r, ·)− En−1,K−r[f(r, ·)]

)2]
1(η1 = r)dPn,K .

In the first equality, we only adopted the notation of indicator function,
and in the second one, we replaced η1 by r in the integrand. Notice that,
since r is fixed, En−1,K−r

[(
f(r, ·)− En−1,K−r[f(r, ·)]

)2] is constant and we
can take it out of the integral:∫

En−1,K−r
[(
f(r, ·)− En−1,K−r[f(r, ·)]

)2]
1(η1 = r)dPn,K

= En−1,K−r
[(
f(r, ·)− En−1,K−r[f(r, ·)]

)2] ∫
1(η1 = r)dPn,K

= En−1,K−r
[(
f(r, ·)− En−1,K−r[f(r, ·)]

)2]Pn,K(η1 = r)

=
( ∑
ξ∈Σn−1,K−r

Pn−1,K−r(ξ)
(
f(r, ξ)− En−1,K−r[f(r, ξ)]

)2
)
Pn,K(η1 = r).

Since the expectation of the indicator function correspondent to a event
A is equal to the probability of A, we have the second equality. The
third one comes from the definition of En−1,K−r[ · ]. We know that(

f(r, ξ)− En−1,K−r[f(r, ξ)]
)2

=
(
f(r, ξ)

)2 − 2f(r, ξ)En−1,K−r[f(r, ξ)] +
(
En−1,K−r[f(r, ξ)]

)2
.

Therefore, we have( ∑
ξ∈Σn−1,K−r

Pn−1,K−r(ξ)
(
f(r, ξ)− En−1,K−r[f(r, ξ)]

)2
)
Pn,K(η1 = r)

=
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
f(r, ξ)− En−1,K−r[f(r, ξ)]

)2

=
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
f(r, ξ)

)2

− 2
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)f(r, ξ)En−1,K−r[f(r, ξ)]

+
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
En−1,K−r[f(r, ξ)]

)2
.
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In the first equality, we put the term Pn,K(η1 = r) inside of the summa-
tion and in the second one, we wrote

(
f(r, ξ)− En−1,K−r[f(r, ξ)]

)2

as a sum of three terms. Next, we shall make claims about each sum-
mation in the last expression.

Claim 3.1.∑
ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
f(r, ξ)

)2
=

∫
f 21(η1 = r)dPn,K .

Indeed, Proposition 3.14 leads to∑
ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
f(r, ξ)

)2
=

∑
ξ∈Σn−1,K−r

Pn,K(r, ξ)
(
f(r, ξ)

)2
.

Since the terms in the summation of the right side are exactly the ones
with η1 = r∑

ξ∈Σn−1,K−r

Pn,K(r, ξ)
(
f(r, ξ)

)2
=
∑

η∈Σn,K
η1=r

Pn,K(η)
(
f(η)

)2
.1

+
∑

η∈Σn,K
η1 6=r

Pn,K(η)
(
f(η)

)2
.0

=
∑

η∈Σn,K

Pn,K(η)
(
f(η)

)2
1(η1 = r)

=

∫
f 21(η1 = r)dPn,K .

The second equality comes from the definition of indicator function and
the definition of integral with respect to a measure produces the third
one.
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Claim 3.2.

− 2
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)f(r, ξ)En−1,K−r[f(r, ξ)]

=

∫
−2f(η)En,K [f |η1 = r]1(η1 = r)dPn,K .

Indeed, taking the constant En−1,K−r[f(r, ξ)] out of the summation,
we get

− 2
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)f(r, ξ)En−1,K−r[f(r, ξ)]

= −2En−1,K−r[f(r, ξ)]
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)f(r, ξ)

= −2En−1,K−r[f(r, ξ)]
∑

ξ∈Σn−1,K−r

Pn,K(r, ξ)f(r, ξ)

= −2En−1,K−r[f(r, ξ)]
∑

η∈Σn,K
η1=r

Pn,K(η)f(η) · 1

− 2En−1,K−r[f(r, ξ)]
∑

η∈Σn,K
η1 6=r

Pn,K(η)f(η) · 0

= −2En−1,K−r[f(r, ξ)]
∑

η∈Σn,K

Pn,K(η)f(η)1(η1 = r).

Proposition 3.14 produces the second equality, the third one holds be-
cause the terms in the summation are exactly the ones with η1 = r and
the last one comes from the definition of indicator function. Because of
the definition of integral with respect to a measure, we have

− 2En−1,K−r[f(r, ξ)]
∑

η∈Σn,K

Pn,K(η)f(η)1(η1 = r)

= −2En−1,K−r[f(r, ξ)]

∫
f1(η1 = r)dPn,K

=

∫
−2fEn−1,K−r[f(r, ξ)]1(η1 = r)dPn,K
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=

∫
−2fEn,K [f |η1 = r]1(η1 = r)dPn,K .

In the second equality, we put the constant −2En−1,K−r[f(r, ξ)] inside of
the integral, and Proposition 3.15 leads to the last one.

Claim 3.3. ∑
ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
En−1,K−r[f(r, ξ)]

)2

=

∫ (
En,K [f |η1 = r]

)2
1(η1 = r)dPn,K .

Indeed, taking the constant
(
En−1,K−r[f(r, ξ)]

)2Pn,K(η1 = r) out of the
summation, we get∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
En−1,K−r[f(r, ξ)]

)2

=
(
En−1,K−r[f(r, ξ)]

)2Pn,K(η1 = r)
∑

ξ∈Σn−1,K−r

Pn−1,K−r(ξ)

=
(
En−1,K−r[f(r, ξ)]

)2Pn,K(η1 = r).1

=
(
En−1,K−r[f(r, ξ)]

)2
∫

1(η1 = r)dPn,K

=

∫ (
En−1,K−r[f(r, ξ)]

)2
1(η1 = r)dPn,K

=

∫ (
En,K [f |η1 = r]

)2
1(η1 = r)dPn,K .

Since Pn−1,K−r[ · ] is a probability measure, we have the second equal-
ity. The third one holds because the probability of a event B is the
integral of the corresponding indicator function. In the fourth one, we
put the constant

(
En−1,K−r[f(r, ξ)]

)2 inside of the integral and the last
one comes from Proposition 3.15. Finally, summing the left sides of the
three claims, we get∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
f(r, ξ)

)2



124

− 2
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)f(r, ξ)En−1,K−r[f(r, ξ)]

+
∑

ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)
(
En−1,K−r[f(r, ξ)]

)2

=

∫
f 21(η1 = r)dPn,K

+

∫
−2fEn,K [f |η1 = r]1(η1 = r)dPn,K

+

∫ (
En,K [f |η1 = r]

)2
1(η1 = r)dPn,K

=

∫ (
f − En,K [f |η1 = r]

)2
1(η1 = r)dPn,K

=

∫
A

(
f − En,K [f |η1]

)2
dPn,K .

The definition of the event A produces the last equality. Therefore,
condition b) of Definition 3.1 also holds.

Taking the expectation in both sides of Proposition 3.16, we get

En,K
[
En,K

[(
f − En,K [f |η1]

)2∣∣η1

]]
= En,K

[
En−1,K−η1

[(
f(η1, ·)− En−1,K−η1 [f(η1, ·)]

)2]]
.

Equation (3.18) leads to

En−1,K−η1

[(
f(η1, ·)− En−1,K−η1 [f(η1, ·)

])2 ≤ W (n− 1)Dn−1,K−η1

(
f(η1, ·)

)
.

Taking the expectation in both sides of above, we have

En,K
[
En−1,K−η1

[(
f(η1, ·)− En−1,K−η1 [f(η1, ·)]

)2]]
≤ En,K

[
W (n− 1)Dn−1,K−η1

(
f(η1, ·)

)]
.

Therefore, we obtain

En,K
[(
f − En,K [f |η1]

)2] ≤ En,K
[
W (n− 1)Dn−1,K−η1

(
f(η1, ·)

)]
= W (n− 1)En,K

[
Dn−1,K−η1

(
f(η1, ·)

)]
.
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We will prove the following result about En,K
[
Dn−1,K−η1

(
f(η1, ·)

)]
:

Proposition 3.17. In the notation of this chapter, the following equality
holds:

En,K
[
Dn−1,K−η1

(
f(η1, ·)

)]
≤ Dn,K(f).

The first step of the proof is writing the Dirichlet form as a sum of
non-negative terms. Next, we will use a convenient manipulation to
complete the summation in the left side of this proposition, obtaining
the expression in the right side.

Proof. Writing the expectation as a sum,

En,K
[
Dn−1,K−η1

(
f(η1, ·)

)]
=
∑

η∈Σn,K

Pn,K(η)Dn−1,K−η1

(
f(η1, ·)

)
=

K∑
r=0

∑
η∈Σn,K
η1=r

Pn,K(η)Dn−1,K−η1

(
f(η1, ·)

)

=
K∑
r=0

∑
η∈Σn,K
η1=r

Pn,K(η)Dn−1,K−r
(
f(r, ·)

)

=
K∑
r=0

Dn−1,K−r
(
f(r, ·)

) ∑
η∈Σn,K
η1=r

Pn,K(η)

=
K∑
r=0

Dn−1,K−r
(
f(r, ·)

)
Pn,K(η1 = r).

In the second equality, we decomposed the summation according to the
values taken by η1. In the third one, we replaced η1 by r and in the
fourth one we took the term Dn−1,K−r

(
f(r, ·)

)
outside of the second sum-

mation. Then,

K∑
r=0

Dn−1,K−r
(
f(r, ·)

)
Pn,K(η1 = r)

=
K∑
r=0

Pn,K(η1 = r)Dn−1,K−r
(
f(r, ·)

)
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=
K∑
r=0

Pn,K(η1 = r)
1

4

n−1∑
x,y=1

|x−y|=1

En−1,K−r

[
c(ξx)

(
f
(
(r, ξ)x,y

)
− f(r, ξ)

)2]

=
K∑
r=0

Pn,K(η1 = r)
1

4

n−1∑
x,y=1

|x−y|=1

∑
ξ∈Σn−1,K−r

Pn−1,K−r(ξ)

× c(ξx)
(
f
(
(r, ξ)x,y

)
− f(r, ξ)

)2

=
1

4

K∑
r=0

n−1∑
x,y=1

|x−y|=1

∑
ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)

× c(ξx)
(
f
(
(r, ξ)x,y

)
− f(r, ξ)

)2

.

Proposition 3.7 produces the second equality and in the third one, we
wrote En−1,K−r[ · ] as a summation. In the last one, we took the constant
1/4 outside of all the summations and put the term Pn,K(η1 = r) inside
of all the summations. Proposition 3.14 leads to

1

4

K∑
r=0

n−1∑
x,y=1

|x−y|=1

∑
ξ∈Σn−1,K−r

Pn,K(η1 = r)Pn−1,K−r(ξ)c(ξx)
(
f
(
(r, ξ)x,y

)
− f(r, ξ)

)2

=
1

4

K∑
r=0

n−1∑
x,y=1

|x−y|=1

∑
ξ∈Σn−1,K−r

Pn,K(r, ξ)c(ξx)
(
f
(
(r, ξ)x,y

)
− f(r, ξ)

)2

=
1

4

n−1∑
x,y=1

|x−y|=1

K∑
r=0

∑
ξ∈Σn−1,K−r

Pn,K(r, ξ)c(ξx)
(
f(
(
r, ξ)x,y

)
− f(r, ξ)

)2

=
1

4

n∑
x,y=2

|x−y|=1

∑
η∈Σn,K

Pn,K(η)c(ηx)
(
f
(
(η)x,y

)
− f(η)

)2

=
1

4

n∑
|x−y|=1

x,y=2

En,K
[
c(ηx)

(
f
(
(η)x,y

)
− f(η)

)2]
.
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In the second equality, we interchanged the first two sums. In the third
one we replaced the variable (r, ξ) (where the range of the indices x and
y with respect to ξ is {1, . . . , n−1} ) by the variable η (where the range of
the indices x and y is {2, . . . , n} ). The last one comes from the definition
of En,K [ · ]. Notice that, since c is a non-negative function,

0 ≤ En,K
[
c(η1)

(
f
(
(η)1,2

)
− f(η)

)2]
+ En,K

[
c(η2)

(
f
(
(η)2,1

)
− f(η)

)2]
.

Adding
∑n

x,y=2
|x−y|=1

En,K
[
c(ηx)

(
f(
(
η)x,y

)
−f(η)

)2]
in both sides of the inequal-

ity above

n∑
x,y=2

|x−y|=1

En,K
[
c(ηx)

(
f
(
(η)x,y

)
− f(η)

)2]

≤
n∑

x,y=2

|x−y|=1

En,K
[
c(ηx)

(
f
(
(η)x,y

)
− f(η)

)2]

+ En,K
[
c(η1)

(
f
(
(η)1,2

)
− f(η)

)2]
+ En,K

[
c(η2)

(
f
(
(η)2,1

)
− f(η)

)2]
=

n∑
x,y=1

|x−y|=1

En,K
[
c(ηx)

(
f
(
(η)x,y

)
− f(η)

)2]
.

Then, we have

En,K
[
Dn−1,K−η1

(
f(η1, ·)

)]
=

1

4

n∑
|x−y|=1,x,y=2

En,K
[
c(ηx)

(
f
(
(η)x,y

)
− f(η)

)2]
≤ 1

4

n∑
|x−y|=1,x,y=1

En,K
[
c(ηx)

(
f
(
(η)x,y

)
− f(η)

)2]
= Dn,K(f).
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Since

En,K
[(
f − En,K [f |η1]

)2] ≤ W (n− 1)En,K
[
Dn−1,K−η1

(
f(η1, ·)

)]
,

we conclude that

En,K
[(
f − En,K [f |η1]

)2] ≤ W (n− 1)Dn,K(f). (3.23)

3.4 Boundedness of expression (3.21)

In this section, we will make use of three lemmas in order to bound
(3.21). From Property 3.1, this term can be written as

En,K
[(
En,K [f |η1]− En,K [f ]

)2]
= En,K

[(
En,K [f |η1]− En,K

[
En,K [f |η1]

])2
]
,

which is the variance of En,K [f |η1]. Notice that En,K [f |η1] is a function
of a single site. The first and second lemmas bound the variance of a
function H depending on a single site. Next we will apply both lemmas
to the one variable function H(η1) = En,K [f |η1], obtaining a sum which
deals with En,K [f |η1 = r + 1] − En,K [f |η1 = r]. The third lemma gives
a simpler expression for this difference and will eventually produce
a bound for the second term in the right side of (3.21). In order to
enunciate the first two lemmas, for each fixed K and n, let P1

n,K be the
one site marginal of the canonical measure Pn,K :

P1
n,K(r) = Pn,K(η1 = r) = Pρ

(
η1 = r

∣∣∣ n∑
x=1

ηx = K
)
.

The expectation with respect to P1
n,K will be written E1

n,K . On {0, . . . , K},
consider the birth and death process which jumps from r to r ± 1 with
rates p(r ± 1) given by

p(r, r − 1) = c(r), r ≥ 1,

p(r, r + 1) = E1
n−1,K−r[c(η2)] = En,K [c(η2)|η1 = r], r ≤ K − 1.
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Intuitively, p(r, r − 1) is the probability of a particle jumps from site
1 to site 2, which depends only on η1. On the other hand, p(r, r + 1)

is the probability of a particle jumps from site 2 to site 1. Since this
probability depends on the number of particles stored in the site 2, it is
the expected value of the random variable η2, given η1 = r.

We denote the generator of this process by Ln,K . We shall verify
that

Proposition 3.18. P1
n,K is reversible for Ln,K .

Proof. Writing the event [η1 = r] as a union of disjoint events

[η1 = r] =
K−r⋃
j=0

[η1 = r, η2 = j],

and recalling p(r, r − 1) = c(r), we have

P1
n,K(r)p(r, r − 1) = Pn,K(η1 = r)c(r) =

K−r∑
j=0

c(r)Pn,K(η1 = r, η2 = j).

Equation (3.8) ensures that reversibility of a jump between sites 1 and
2:

K−r∑
j=0

c(r)Pn,K(η1 = r, η2 = j) =
K−r∑
j=0

c(j + 1)Pn,K(η1 = r − 1, η2 = j + 1).

Since P(A ∩B) = P(A)P(B|A), we get

K−r∑
j=0

c(j + 1)Pn,K(η1 = r − 1, η2 = j + 1)

=
K−r∑
j=0

c(j + 1)Pn,K(η1 = r − 1)Pn,K(η2 = j + 1|η1 = r − 1)

= Pn,K(η1 = r − 1)
K−r∑
j=0

c(j + 1)Pn,K(η2 = j + 1|η1 = r − 1).
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Note that Pn,K(η2 = j + 1|η1 = r − 1) = Pn,K−(r−1)(η2 = j + 1). Therefore,

Pn,K(η1 = r − 1)
K−r∑
j=0

c(j + 1)Pn,K(η2 = j + 1|η1 = r − 1)

= Pn,K(η1 = r − 1)
K−r∑
j=0

c(j + 1)Pn,K−(r−1)(η2 = j + 1).

Writing the summation as a expectation

Pn,K(η1 = r − 1)
K−r∑
j=0

c(j + 1)Pn,K−(r−1)(η2 = j + 1)

= Pn,K(η1 = r − 1)E1
n,K−(r−1)[c(η2)]

= P1
n,K(r − 1)p(r − 1, r),

by the definition of the birth-and-death process.

If H : Σn,K → R is a function of only one site (let’s say, H(η) = H(η1)),
then

Dn,K(H) = −(1/2)E1
n,K [HLn,KH],

which will be called the one-coordinate Dirichlet form and it will be
denoted byD1

n,K(H). In order to estimate a spectral gap for zero-range
processes, the method studied here requires that the associated birth
and death processes with generator Ln,K exhibits a spectral gap with
magnitude independent of n and K. In the Lemma 4.1 of section 4 of
the paper [4], it is proved the following one site spectral gap lemma.

Lemma 3.1. Under hypothesis 3.1 and 3.3, there is a constant B0 =

B0(a1, a2, k0) such that

E1
n,K

[
(H − E1

n,K [H])2
]
≤ B0D

1
n,K(H),

for all n ≥ 1, K ≥ 1 and H in L2(P1
n,K).

This lemma applied to the function En,K [f |η1] shows that the second
term of (3.17) is bounded above by B0D

1
n,K(En,K [f |η1]). Applying the
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following lemma to the one-variable function H(η1) = En,K [f |η1], we
shall simplify the one-coordinate Dirichlet form D1

n,K(En,K [f |η1]).

Lemma 3.2. For every H = H(η1) em L2(P1
n,K), we have

D1
n,K(H) = (1/2)

K−1∑
r=0

Pn,K(η1 = r + 1)c(r + 1)
(
H(r + 1)−H(r)

)2
.

Proof. We will prove Lemma 3.2 taking advantage of the following re-
mark

Remark 3.7. If x 6= 1 and y 6= 1, then η1 = (ηx,y)1. In this case, if
H = H(η1), then H(η) = H((ηx,y)).

Expanding D1
n,K(H):

D1
n,K(H) = −1

2
E1
n,K [HLn,KH]

=
1

4

n∑
x,y=1

|x−y|=1

En,K
[
c(ηx)

(
H(ηx,y)−H(η)

)2]

=
1

4

n∑
x,y=2

|x−y|=1

En,K
[
c(ηx)

(
H(ηx,y)−H(η)

)2]

+
1

4
En,K

[
c(η1)

(
H(η1,2)−H(η)

)2]
+

1

4
En,K

[
c(η2)

(
H(η2,1)−H(η)

)2]
.

Remark 3.7 leads to

1

4

n∑
x,y=2

|x−y|=1

En,K
[
c(ηx)

(
H(ηx,y)−H(η)

)2]

=
1

4

n∑
x,y=2

|x−y|=1

En,K
[
c(ηx)

(
H(η)−H(η)

)2]
= 0.
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Since H = H(η1), (η1,2)1 = η1−1 (if there was a particle at the site x = 1)
and (η2,1)1 = η1 + 1 we have that

H
(
(η1,2)1

)
= H(η1 − 1) , H

(
(η2,1)1

)
= H(η1 + 1).

Note that, if η1 = 0, then c(η1 = 0) and this case does not give contri-
bution to En,K

[
c(η1)

(
H(η1,2)−H(η)

)2]. Therefore, in the computation of
this expected value, we will assume η1 ≥ 1.

The Dirichlet form may be then written as

D1
n,K(H) =

1

4
En,K

[
c(η1)

(
H(η1,2)−H(η)

)2]
1

4
En,K

[
c(η2)

(
H(η2,1)−H(η)

)2]
=

1

4
En,K

[
c(η1)

(
H
(
(η1,2)1

)
−H(η1)

)2]
+

1

4
En,K

[
c(η2)

(
H
(
(η2,1)1

)
−H(η1)

)2]
=

1

4
En,K

[
c(η1)

(
H(η1 − 1)−H(η1)

)2]
+

1

4
En,K

[
c(η2)

(
H(η1 + 1)−H(η1)

)2]
.

Next, we will evaluate each of the two expectations obtained in the
last expression. Writing the first one as a sum and manipulating the
indices:

1

4
En,K

[
c(η1)

(
H(η1 − 1)−H(η1)

)2]
=

1

4

K∑
r=1

Pn,K
(
η1 = r)c(r)(H(r − 1)−H(r)

)2

=
1

4

K−1∑
r=0

Pn,K
(
η1 = r + 1)c(r + 1)(H(r + 1)−H(r)

)2
,

which is one half of the expression in the right side of the Lemma 3.2.
In order to evaluate the second expectation, we shall take advantage of
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Property 3.1:

1

4
En,K

[
c(η2)

(
H((η1 − 1)−H(η1)

)2]
=

1

4
En,K

[
En,K

[
c(η2)

(
H(η1 + 1)−H(η1)

)2∣∣η1

]]
.

Since the random variable
(
H(η1 + 1)−H(η1)

)2 is measurable on σ(η1),
Property 3.2 leads to

1

4
En,K

[
En,K

[
c(η2)

(
H(η1 + 1)−H(η1)

)2∣∣η1

]]
=

1

4
En,K

[
En,K [c(η2)|η1]

(
H(η1 + 1)−H(η1)

)2]
.

Writing the first expectation as a summation:

1

4
En,K

[
En,K [c(η2)|η1]

(
H(η1 + 1)−H(η1)

)2]
=

1

4

K−1∑
r=0

Pn,K(η1 = r)En,K [c(η2)|η1 = r]
(
H(r + 1)−H(r)

)2
.

From Proposition 3.6, we get

Pn,K(η1 = r)En,K [c(η2)|η1 = r] = Pn,K(η1 = r + 1)c(r + 1).

Therefore,

1

4

K−1∑
r=0

Pn,K(η1 = r)En,K [c(η2)|η1 = r]
(
H(r + 1)−H(r)

)2

=
1

4

K−1∑
r=0

Pn,K
(
η1 = r + 1)c(r + 1)(H(r + 1)−H(r)

)2
,

which is one half of the expression in the right side of Lemma 3.2.
Replacing the expressions obtained for both expectations, we conclude
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that

D1
n,K(H) =

1

2

K−1∑
r=0

Pn,K(η1 = r + 1)c(r + 1)
(
H(r + 1)−H(r)

)2
.

Next, our intention is to apply Lemmas 3.1 and 3.2 to the one vari-
able function H(η1) = En,K [f |η1]. In this way, we derive a simpler ex-
pression for the difference

En,K [f |η1 = r + 1]− En,K [f |η1 = r], (3.24)

taking advantage of the reversibility of Pn,K . First, we will prove the
following:

Proposition 3.19. Fix 2 ≤ x ≤ n and a non-negative integer r. In the
notation of this chapter, the following equality holds:

En,K [f |η1 = r + 1] =
1

P1
n,K(r + 1)c(r + 1)

En,K [f(ηx,1)c(ηx)1(η1 = r)].

Before entering the proof of above, we notice that the jump corre-
sponding to the symbol ηx,1 is, in general, not allowed in the dynam-
ics (which permits only nearest neighbor jumps). Nevertheless, such
movement of a particle can occur by a finite sequence of jumps.

Proof of Proposition 3.19. To not carry on the notation, we will denote

Σ̃ := Σn−1,K−(r+1).

From the definition of P1
n,K( · ) and Proposition 3.15, we have

P1
n,K(r + 1)c(r + 1)En,K [f |η1 = r + 1]

= Pn,K(η1 = r + 1)c(r + 1)En−1,K−(r+1)[f(r + 1, ξ)]

= Pn,K(η1 = r + 1)c(r + 1)
∑
ξ∈Σ̃

f(r + 1, ξ)Pn−1,K−(r+1)(ξ).
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In the second equality, we wrote En−1,K−(r+1)[ · ] as a sum. Putting
the constant Pn,K(η1 = r + 1)c(r + 1) inside of the sum, we get from
Proposition 3.14:

Pn,K(η1 = r + 1)c(r + 1)
∑
ξ∈Σ̃

f(r + 1, ξ)Pn−1,K−(r+1)(ξ)

=
∑
ξ∈Σ̃

f(r + 1, ξ)c(r + 1)Pn,K(η1 = r + 1)Pn−1,K−(r+1)(ξ)

=
∑
ξ∈Σ̃

f(r + 1, ξ)c(r + 1)Pn,K(r + 1, ξ).

Next, we will take advantage of the reversibility of Pn,K , more particu-
larly in a jump between two sites. In order to make that jump explicit,
we will replace the variable ξ by (η2, . . . , ηx, . . . , ηn) and apply Proposi-
tion 3.5: ∑

ξ∈Σ̃

f(r + 1, ξ)c(r + 1)Pn,K(r + 1, ξ)

=
∑

(η2,...,ηn)∈Σ̃

f(r + 1, η2, . . . , ηx, . . . , ηn)

× c(r + 1)Pn,K(r + 1, η2, . . . , ηx, . . . , ηn)

=
∑

(η2,...,ηn)∈Σ̃

f(r + 1, η2, . . . , ηx, . . . , ηn)

× c(ηx + 1)Pn,K(r, η2, . . . , ηx + 1, . . . , ηn).

From the definition (η)x,1, we have:∑
(η2,...,ηn)∈Σ̃

f(r + 1, η2, . . . , ηx, . . . , ηn)c(ηx + 1)Pn,K(r, η2, . . . , ηx + 1, . . . , ηn)

=
∑

(η2,...,ηn)∈Σ̃

f
(
(r, η2, . . . , ηx + 1, . . . , ηn)x,1

)
× c(ηx + 1)Pn,K(r, η2, . . . , ηx + 1, . . . , ηn).

Putting an extra particle in the site x, for each configuration
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ξ = (η2, . . . , ηx, . . . , ηn) ∈ Σ̃ = Σn−1,K−(r+1), we can associate exactly one
configuration (η2, . . . , ηx + 1, . . . , ηn) ∈ Σn−1,K−r. In this way, we get∑

(η2,...,ηn)∈Σ̃

f
(
(r, η2, . . . , ηx + 1, . . . , ηn)x,1

)
× c(ηx + 1)Pn,K(r, η2, . . . , ηx + 1, . . . , ηn)

=
∑

(η2...,ηn)∈Σn−1,K−r

f
(
(r, η2, . . . , ηx, . . . , ηn)x,1

)
× c(ηx)Pn,K(r, η2, . . . , ηx, . . . , ηn).

In the summation above, each configuration η ∈ Σn,K is counted exactly
once when η1 = r and it is not counted when η1 6= r. Therefore,∑

(η2...,ηn)∈Σn−1,K−r

f
(
(r, η2, . . . , ηx, . . . , ηn)x,1

)
c(ηx)Pn,K(r, η2, . . . , ηx, . . . , ηn)

=
∑

η∈Σn,K
η1=r

f(ηx,1)c(ηx)Pn,K(η) · 1 +
∑

η∈Σn,K
η1 6=r

f(ηx,1)c(ηx)Pn,K(η) · 0.

The definitions of indicator function and En,K [ · ] lead to∑
η∈Σn,K
η1=r

f(ηx,1)c(ηx)Pn,K(η) · 1 +
∑

η∈Σn,K
η1 6=r

f(ηx,1)c(ηx)Pn,K(η) · 0

=
∑

η∈Σn,K

f(ηx,1)c(ηx)Pn,K(η)1(η1 = r)

= En,K [f(ηx,1)c(ηx)1(η1 = r)].

Therefore, we know that

P1
n,K(r + 1)c(r + 1)En,K [f |η1 = r + 1] = En,K [f(ηx,1)c(ηx)1(η1 = r)],

which is the same as

En,K [f |η1 = r + 1] =
1

P1
n,K(r + 1)c(r + 1)

En,K [f(ηx,1)c(ηx)1(η1 = r)].
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Now we shall prove the final lemma in this section.

Lemma 3.3. Let M(η) be the function defined by

M(η) =
P1
n,K(η1)

P1
n,K(η1 + 1)c(η1 + 1)

1

n− 1

n∑
x=2

c(ηx).

Then, for every 0 ≤ r ≤ K − 1, the difference

En,K [f |η1 = r + 1]− En,K [f |η1 = r]

is equal to

1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[
c(ηx)

(
f(ηx,1)− f(η)

)
1(η1 = r)

]
+ En,K [M(η); f(η)|η1 = r],

where En,K [g;h|η1 = r] = En,K [gh|η1 = r] − En,K [g|η1 = r] · En,K [h|η1 = r]

is the conditional covariance of g and h.

Proof. Notice that the left side of the expression in Proposition 3.19
does not depend on x. Therefore

En,K [f |η1 = r + 1] =
1

n− 1

n∑
x=2

En,K [f |η1 = r + 1]

=
1

n− 1

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)

× En,K [f(ηx,1)c(ηx)1(η1 = r)].

In order to obtain the first term in the right side of the expression of
this lemma, we will apply the trivial identity

f(ηx,1) = (f(ηx,1)− f(η)) + f(η).
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Replacing this identity in the expression of En,K [f |η1 = r + 1]:

En,K [f |η1 = r + 1] =
1

n− 1

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)

(3.25)

× En,K [f(ηx,1)c(ηx)1(η1 = r)]

=
1

n− 1

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)

(3.26)

× En,K
[((

f(ηx,1)− f(η)
)

+ f(η)
)
c(ηx)1(η1 = r)

]
=

1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)1(η1 = r)

]
+

1

n− 1

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)

En,K [f(η)c(ηx)1(η1 = r)]. (3.27)

We shall simplify the last term above. Writing En,K [ · ] as a sum:

1

n− 1

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)

En,K [f(η)c(ηx)1(η1 = r)]

=
n∑
x=2

1

P1
n,K(r + 1)c(r + 1)(n− 1)

∑
η∈Σn,K

f(η)c(ηx)1(η1 = r)Pn,K(η).

Interchanging the order of summation and multiplying and dividing by
the positive number Pn,K(η1 = r):

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)(n− 1)

∑
η∈Σn,K

f(η)c(ηx)1(η1 = r)Pn,K(η)

=
∑

η∈Σn,K

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)(n− 1)

f(η)c(ηx)1(η1 = r)Pn,K(η)

=
∑

η∈Σn,K

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)(n− 1)

f(η)c(ηx)

×
(1(η1 = r)Pn,K(η)

Pn,K(η1 = r)

)
Pn,K(η1 = r).

Next, we will prove the following:
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Claim 3.4. If η ∈ Σn,K , then

1(η1 = r)Pn,K(η)

Pn,K(η1 = r)
= Pn,K(η|η1 = r).

Indeed,
1(η1 = r)Pn,K(η) = Pn,K([η] ∩ [η1 = r]).

Therefore,

1(η1 = r)Pn,K(η)

Pn,K(η1 = r)
=

Pn,K([η] ∩ [η1 = r])

Pn,K(η1 = r)
= Pn,K(η|η1 = r),

leading to the desired result. From the remark, the definition of P1
n,K(r)

and taking all the terms which do not depend on x out of the second
summation

∑
η∈Σn,K

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)(n− 1)

f(η)c(ηx)

×
(1(η1 = r)Pn,K(η)

Pn,K(η1 = r)

)
Pn,K(η1 = r)

=
∑

η∈Σn,K

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)(n− 1)

f(η)c(ηx)Pn,K(η|η1 = r)P1
n,K(r)

=
∑

η∈Σn,K

Pn,K(η|η1 = r)f(η)
( P1

n,K(r)

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

c(ηx)
)
.

The definitions of M(η) and En,K [ · |η1 = r] lead to

∑
η∈Σn,K

Pn,K(η|η1 = r)f(η)
( P1

n,K(r)

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

c(ηx)
)

=
∑

η∈Σn,K

Pn,K(η|η1 = r)f(η)M(η)

= En,K [f(η)M(η)|η1 = r].
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Therefore, we know that

1

n− 1

n∑
x=2

1

P1
n,K(r + 1)c(r + 1)

En,K [f(η)c(ηx)1(η1 = r)]

= En,K [f(η)M(η)|η1 = r].

Replacing this summation in (3.27)

En,K [f |η1 = r + 1]

=
1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)1(η1 = r)

]
+ En,K [f(η)M(η)|η1 = r].

(3.28)

The covariance in the right side of the expression of Lemma 3.3 may be
written as

En,K [M(η); f(η)|η1 = r]

=En,K [f(η)M(η)|η1 = r]− En,K [f(η)|η1 = r]En,K [M(η)|η1 = r].

We now evaluate En,K [M(η)|η1 = r]. From the definition of M(η), we get

En,K [M(η)|η1 = r]

= En,K
[ P1

n,K(η1)

P1
n,K(η1 + 1)c(η1 + 1)

1

n− 1

n∑
x=2

c(ηx)
∣∣∣η1 = r

]
= En,K

[ P1
n,K(r)

P1
n,K(r + 1)c(r1 + 1)

1

n− 1

n∑
x=2

c(ηx)
∣∣∣η1 = r

]
.

In the last equality, we replaced η1 by r. Note that the term to the left
of the summation is constant. From the linearity of En,K [ · |η1 = r] and
the definition of P1

n,K( · ), we have

En,K
[ P1

n,K(r)

P1
n,K(r + 1)c(r1 + 1)

1

n− 1

n∑
x=2

c(ηx)
∣∣∣η1 = r

]
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=
P1
n,K(r)

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K [c(ηx)|η1 = r].

Putting the constants inside of the summation and the definition of
P1
n,K( · ):

P1
n,K(r)

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K [c(ηx)|η1 = r]

=
n∑
x=2

1

n− 1

Pn,K(η1 = r)En,K [c(ηx)|η1 = r]

Pn,K(η1 = r + 1)c(r + 1)
.

Proposition 3.6 produces

n∑
x=2

1

n− 1

Pn,K(η1 = r)En,K [c(ηx)|η1 = r]

Pn,K(η1 = r + 1)c(r + 1)

=
n∑
x=2

1

n− 1

Pn,K(η1 = r + 1)c(r + 1)

Pn,K(η1 = r + 1)c(r + 1)

=
n∑
x=2

1

n− 1
· 1,

which leads to

En,K [M(η)|η1 = r] =
n∑
x=2

1

n− 1
· 1 = 1.

Therefore, the covariance is

En,K [M(η); f(η)|η1 = r]

= En,K [f(η)M(η)|η1 = r]− En,K [f |η1 = r]En,K [M(η)|η1 = r]

= En,K [f(η)M(η)|η1 = r]− En,K [f |η1 = r] · 1. (3.29)

Finally, subtracting En,K [f |η1 = r] in both sides of (3.28) we get from
(3.29) that

En,K [f |η1 = r + 1]− En,K [f |η1 = r]
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=
1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)1(η1 = r)

]
+ (En,K [f(η)M(η)|η1 = r]− En,K [f |η1 = r])

=
1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)1(η1 = r)

]
+ En,K [M(η); f(η)|η1 = r].

From Lemmas 3.1 and 3.2, we have

En,K
[(
En,K [f |η1]− En,K [f ]

)2] ≤ B0D
1
n,K(En,K [f |η1])

≤ 1

2
B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)

(
En,K [f |η1 = r + 1]− En,K [f |η1 = r]

)2
.

Lemma 3.3 leads to

En,K [f |η1 = r + 1]− En,K [f |η1 = r]

=
1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)I(η1 = r)

]
+ En,K [M(η); f(η)|η1 = r] = a1 + a2,

with

a1 =
1

P1
n,K(r + 1)c(r + 1)

1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)I(η1 = r)

]
,

a2 = En,K [M(η); f(η)|η1 = r].

Remark 3.8. If a1, a2 are real numbers

(a1 + a2)2 = a2
1 + a2

2 + 2a1a2 ≤ a2
1 + a2

2 + (a2
1 + a2

2) = 2(a2
1 + a2

2).
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Therefore, we know that

En,K
[(
En,K [f |η1]− En,K [f ]

)2] ≤ B0D
1
n,K(En,K [f |η1])

≤ 1

2
B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)

(
En,K [f |η1 = r + 1]− En,K [f |η1 = r + 1]

)2

=
1

2
B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)(a1 + a2)2 ,

where a1 and a2 have been defined above. From Remark 3.8, we get

1

2
B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)(a1 + a2)2

≤ 1

2
B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)2(a2

1 + a2
2)

= B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)a2

1 +B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)a2

2.

Replacing a1 and a2:

En,K
[(
En,K [f |η1]− En,K [f ]

)2]
≤ B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)

( 1

P1
n,K(r + 1)c(r + 1)

)2

×
( 1

n− 1

n∑
x=2

En,K
[(
f(ηx,1)− f(η)

)
c(ηx)I(η1 = r)

])2

+B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)

(
En,K [M(η); f(η)|η1 = r]

)2

= B0

K−1∑
r=0

1

P1
n,K(r + 1)c(r + 1)

×
(
En,K

[ 1

n− 1

n∑
x=2

c(ηx)
(
f(ηx,1)− f(η)

)
I(η1 = r)

])2

+B0

K−1∑
r=0

P1
n,K(r + 1)c(r + 1)

(
En,K [M(η); f(η)|η1 = r]

)2
.
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We will denote the factors which multiply B0 by:

A1(n,K, f) :=
K−1∑
r=0

1

P1
n,K(r + 1)c(r + 1)

×
(
En,K

[ 1

n− 1

n∑
x=2

c(ηx)
(
f(ηx,1)− f(η)

)
I(η1 = r)

])2

.

A2(n,K, f) :=
K−1∑
r=0

P1
n,K(r + 1)c(r + 1)

(
En,K [M(η); f(η)|η1 = r]

)2
.

In this way, we obtained the desired bound for (3.21):

En,K
[(
En,K [f |η1]− En,K [f ]

)2] ≤ B0A1(n,K, f) +B0A2(n,K, f). (3.30)

3.5 Achieving the Recursive Inequalities

In this section, we will apply some results derived in [4] in order
to obtain the recursive inequalities displayed in (3.19), which proves
Theorem 3.1.

Recall that

En,K
[(
f − En,K [f ]

)2]
= En,K

[(
f − En,K [f |η1]

)2]
+ En,K

[(
En,K [f |η1]− En,K [f ]

)2]
.

From (3.23) and (3.30), we get

En,K
[(
f − En,K [f ]

)2] ≤ W (n− 1)Dn,K(f) +B0

(
A1(n,K, f) + A2(n,K, f)

)
.

In the Lemma 3.1 of Section 3 of the paper [4], it is proved that for
every n ≥ 2 and positive integer K,

A1(n,K, f) ≤ (n/2)Dn,K(f).

In the Lemma 3.2 of Section 3 of the paper [4], it is proved under Hy-



145

pothesis 3.1 and 3.3 for n ≥ 2 that

A2(n,K, f) ≤ a2
1B0W (n− 1)Dn,K(f).

This inequality for A2(n,K, f) shall be used to perform the iteration for
small values of n. On the other hand, in the Proposition 3.1 of section
3 of the paper [4], it is proved under Hypothesis 3.1 and 3.3 that for all
ε > 0, there exist finite n0(ε) and C(ε) such that

A2(n,K, f) ≤ C(ε)Dn,K(f) + εn−1En,K
[(
f − En,K [f ]

)2]
,

for n ≥ n0(ε). The estimates above produce

En,K
[(
f − En,K [f ]

)2] ≤ [(1 + a2
1B0)W (n− 1) +

nB0

2

]
Dn,K(f),

for n ≥ 2 and

En,K
[(
f − En,K [f ]

)2] ≤ [W (n− 1) +
(nB0

2

)
+B0C(ε)

]
Dn,K(f)

+
εB0

n
En,K

[(
f − En,K [f ]

)2]
,

for n ≥ n0(ε). Therefore, if n ≥ 2

En,K
[(
f − En,K [f ]

)2]
Dn,K(f)

≤ [1 + a2
1B0]W (n− 1) +

nB0

2
,

which leads to

W (n) ≤ [1 + a2
1B0]W (n− 1) +

nB0

2
.

Moreover, if n ≥ n0(ε),

En,K
[(
f − En,K [f ]

)2](
1− εB0

n

)
≤
[
W (n− 1) +

nB0

2
+B0C(ε)

]
Dn,K(f),
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which is the same as

En,K
[(
f − En,K [f ]

)2] ≤ (1− εB0

n

)−1[
W (n− 1) +

nB0

2
+B0C(ε)

]
Dn,K(f),

which leads to

En,K
[(
f − En,K [f ]

)2]
Dn,K(f)

≤
(

1− εB0

n

)−1[
W (n− 1) +

nB0

2
+B0C(ε)

]
,

and we conclude that

W (n) ≤
(

1− εB0

n

)−1[
W (n− 1) +

nB0

2
+B0C(ε)

]
.

Therefore, because of the two recurrence relations above for the se-
quence W (n), we get W (n) ≤ W0n

2 for some universal constant W0.
This concludes the proof of Theorem 3.1.
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