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“It is remarkable that a science which be-
gan with the consideration of games of
chance should have become the most im-
portant object of human knowledge.”

—Pierre-Simon Laplace



Resumo

O objetivo desta dissertacdo de mestrado é estudar alguns resulta-
dos relativos ao buraco espectral de cadeias de Markov reversiveis; a
principal ferramenta serdo as formas de Dirichlet. Para cadeias finitas,
nés apresentamos algumas técnicas que fornecem cotas para os auto-
valores a fim de estimar o burazo espectral. Para processos simétricos
de alcance zero satisfazendo algumas condicdes, nés obtemos um bu-
raco espectral de ordem n~2 para um cubo de volume n?.
Palavras-chave: Cadeias de Markov, buraco espectral e formas de
Dirichlet.



Abstract

The aim of this master’s thesis is to study some results with re-
spect to the spectral gap of reversible Markov chains; the main tool will
be the Dirichlet forms. For finite chains, we present some techniques
that give bounds on the eigenvalues in order to estimate the spectral
gap. For symmetric zero-range processes satisfying some conditions,
we achieve a spectral gap of order n~2 on a cube of volume n?.
Keywords: Markov chains, spectral gap and Dirichlet forms.
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Chapter 1
Introduction

We begin illustrating the main concepts involved in this master’s
thesis with a simple example. Consider that you live in a big house,
with two bedrooms just for you: namely, bedrooms A and B. Since you
do not prefer a particular one, you decide where you will sleep in the
next night with a random experiment. Regardless of where did you
spend the last night, every morning you toss a coin which is always
kept in the bedroom where you wake up (meaning there are two coins,
one for each bedroom). If the coin lands heads up, you will remain
sleeping in the same place. If the coin lands tails up, you will change
your bedroom.

Since the coins are different, we expect the probabilities for each
coin to lands tails up to be different. Let us denote the probabilities
for the coins kept in bedrooms A and B to lands tails up by p4 and pg,
respectively. Trivially, the probabilities for the coins kept in bedrooms
A and B to lands heads up are 1 —p4 and 1 —pg. Since we want the tran-
sitions between different bedrooms to have positive probability (you do
not want to be stuck in the same bed forever), we assume p4, pg > 0.

This setting is a example of a Markov chain, which sample space is
the set X = {A, B}. Indeed, the probability of you going to wake up in
a specific bedroom tomorrow (future) does not depend of whether room
you woke up yesterday (past), given the bedroom you are waking up



today (present). Let’s denote the bedroom where you will sleep in day
k by X, with k € {0, 1, ...}. Also, we will say X}, is the k-th state of
the chain. Notice that in this terminology, the possible states are the
elements of X.

The informations given in the beginning of this example are condi-
tional probabilities: P(X;,1 = A|Xy = A) = 1 — pa, P(Xpy1 = B| Xy =
A) = pa, P(Xyy1 = A| Xy = B) = pp and P(Xyy = B| X, = B) =1 — pp.
The standard representation of Markov chains with a finite sample
space is the transition matrix, whose entries are the transition proba-

bilities between states. Denoting this matrix by P, we can write

P =

1—pa pa
pe 1—pB

The first and second rows are the probability distributions of the
next state, given the current one is A and B, respectively, therefore the
sum of the elements of each row of a Markov chain is equal to 1. It does
not hold for columns: each element of the first and second column is
the probability of the next state is A and B, given a different current
state; that means we are fixing the future state, and not the present
one. If p, # pp, we get

(1=pa)+pp# 1 pat (l—pp) #1
We will denote the probability distribution of X, by the vector py, i.e.,
e = [pk(A) p(B)] = [P(X = A) P(X, = B)].
There is a close relation between 1, and ;. 1:

P(Xpi = A) = P(X; = A)P(Xps1 = A|X, = A)
+P(X), = B)P(Xps1 = A| Xy = B),



P(Xjs1 = B) = P(X; = A)P(X41 = B|X), = A)
+ P(X; = B)P(Xjs1 = B|Xi = B).

The equalities above are equivalent to the matrix equality
trs1 = M - P, which illustrates why is very convenient to write the
chain as a matrix . Therefore, ;i; = 1o - P; more generally, an inductive
argument leads to j;, = po - P, Vk > 0.

In order to calculate the probabilities which are not conditional
(such as P(X; = A)), we need the probability distribution of the ini-
tial state X,. Since our scheme can’t evaluate 1o, we will add a initial
step in our random experiment. In the day 0, we shall toss a third
coin: the probabilities of it lands heads up and lands tails up are ¢4
and ¢z = 1 — g4, respectively. If it lands heads up or tails, X, = A or
Xo = B, respectively. Therefore, 1o = [ga ¢5].

There is a special probability distribution 7 = [-22— —24_] such
PA+PB  PA+PB
that 7 = 7 - P; we say « is a stationary distribution of the Markov
chain P. If 4y = m, then uy = o - P = m - P = 7; more generally, an
inductive argument leads to y, = 7, Vk > 0. In the same way, if p,,, = 7
for some m, then p, = 7,Vk > m. Because of this, we say that if y,,, = 7
for some m, then the chain will have achieved the equilibrium.

Denote 22— and _-EA— by 7(A) and 7(B), respectively. Note that

A+D PA+DPB

T(APX+1=B|X, = A) = A2 — 2(B)P(X)+ 1= A|X, = B),
PA+PB

Then, we have

1) P( X+ 1=yl X =2) = 7(y)P(Xy +1=2|Xr =y),Vz,y € X. (1.1)

Our Markov chain satisfies (1.1), which is known as reversibility
with respect to the measure 7. Besides, if 2y, x1, ..., zp_1, 71 € X, an



inductive argument leads to

W(xo)P(Xl = ZE1|X0 = wo) .. ]P)(Xk = $k|Xk:—1 = xk—l)
:W(.Tk)]P)(Xl = ka_l‘Xo = .Tk) c ]P)(Xk = I0|Xk_1 = 33'1).

Intuitively, if we choose the initial state according to the distribution 7,
the probability of achieving a sequence z(, x1, ..., z,_1, 7} is equal to
the probability of achieving the reversal sequence x;, x._1, ..., 1, Zo.
For instance, if the initial distribution is 7, the probability of achieving
the sequence A, B, B is

__PB ) = paps(l —pp)
pa+pB Pa+DpB

and the probability of achieving the reversal sequence B, B, A is

papB(l —pB)
pa+ pB( pB)pB A+ PB

We are specially interested in evaluating how close the Markov chain
is of the equilibrium in the day k. In order to answer this question,
we will make use of a distance between 1, and 7. The total varia-
tion distance between two probability distributions « and 8 in X is
maxgcy |@(E) — B(E)|. f E = @, a(F) = S(F) = 0 and if E = X,
a(E) = B(F) = 1. Since in our example X = {A, B}, the event £ C X
which maximizes |«(E) — f(E)| is either £ = A or E = B. Indeed,

(A) = B(A)| = |(1 = a(B)) = (1 = B(B))| = |a(B) — B(B)|.



Denote p, — 7 by A,. Then

Api1(A) = pyr — m(A) = P(Xppy = A) — m(A)
=P(Xg 41 = A|X), = A)P(X}, = A)
+P(Xg1 = A|X), = B)P(X; = ) —7(A)
=(1 = pa)((A)) + pp(1 — e
(1 —pa —pB)(u(A)) + (pA
(1= pa—pp)((A) — 7(A4)
(1 =pa—pp)Ak(A).

An inductive argument leads to Ax(A) = (1 — pa — pp)*Ao(A),VE > 0.
Since |p1x(A) — 7(A)| = | (B) — w(B)],

e = 7l = 1 (A) = w(A)] = [Ax(A)]
=|(1 = pa—pp)* Do(A)| = [(L = pa —pp)* |0 — 77y, Yk 2 0

Since 0 < ps < 1,0 <pp < 1,weget0 < ps+pp < 2and |(1-ps—pp)| < 1.
Therefore, we conclude that the distance between the chain and the
equilibrium decays exponentially with rate |(1 — pa — pg)|.

Since we may (and we will) write the exponential convergence rate
to the equilibrium in terms of the spectral representation of the transi-
tion matrix, the rate is called the spectral gap (which will be defined
later) of the chain. In our example, the eigenvalues of the matrix P are
land 1 — ps — pp; its spectral gapis 1 — |1 — ps — p5|.

In this master’s thesis, we will develop some tools in order to esti-
mate the spectral gap of reversible Markov chains, which is useful to
bound the distance between the distribution of X and the equilibrium.

We will start Chapter 2 with some basic definitions with respect to
Markov chains, which are essential to the remainder of this work. Then
we define the spectral gap of discrete-time and continuous-time finite
state Markov chains. Afterwards, we introduce Dirichlet forms and use
some results from Linear Algebra in order to bound the eigenvalues of



a transition matrix, by comparison of two different chains on the same
finite set. This produces a estimate for the spectral gap.

The setting is totally different in Chapter 3: now we deal with
infinite-volume interacting particle systems, meaning the state space
is infinite and uncountable. We will study a particular but very im-
portant case: the symmetric zero-range processes on Z¢. After making
some hypothesis and proving some initial results for this model, we
achieve a spectral gap of order »n=2 on a cube of volume n? making use
of an inductive argument.



Chapter 2

Spectral gap of finite state
Markov chains

2.1 Introduction and Results

In this chapter, X denotes a finite set. We define the spectral gap of
a finite state Markov chain and connect it with the Dirichlet forms. Af-
terwards, we detail the paper [1], which develops a geometric bound
between a Markov chain of interest and another chain with known
eigenvalues on the same state space. In this way, we can bound the
eigenvalues of the first chain and estimate its spectral gap.

In this section, we will follow closely the book [5]. Before we start
to discuss Markov chains, we will define a distance between two prob-
ability distributions.

Definition 2.1. The total variation distance between two probability
distributions o and 5 in X is defined by

lae = Bllzy = max ja(E) — 5(E)|- 2.1)

Now we will prove a very useful result with respect to this distance:

Proposition 2.1. Let o and (5 be two probability distributions on X.



Then,
2l = Blyy = Y la(z) — B(x)]. (2.2)

zeX

Proof Let f = a— 3, A ={x € X : f(x) > 0} and B C X. Then,
Vo € AC, f(x) <0, and

Y Sy =Y f@)+ DY fla)y< Y fla).

z€B € ANB rcACNB e ANB

Since we may have A° N B = @, the inequality above is not strict.

Moreover,

S i< Y f@+ Y f@) = ()

€ ANB rz€ANB re ANBC €A

and we get

> f@) <> fla). (2.3)

zeB TEA

Replacing A by AY, the inequalities are reversed. Indeed,

Yof@w =Y f+ Y, fle)= > fla).

z€B r€EANB x€ACNB x€ACNB

Besides,

Y otz Y i@+ Y fa) =Y f@)

x€ACNB z€ACNB r€ACNBC rCAC

Since we may have A° N B¢ = @, the inequality above is not strict.

Then,
NGED IR

zeEB zeAC

which is the same as

i< Y fw. (2.4)

zeEB € AC



An useful remark is
Remark 2.1. The right-hand sides of (2.3) and (2.4) are equal.
Indeed, subtracting these right-hand sides leads to

S i) = (=X f@) =D f@+ Y f@) =Y @)

€A z€AC €A x€AC zeX

Recalling that f = o — j3,

Y @)=Y al@)=) Ba)=1-1=0,

zeX reX rzeX

which proves the remark. Besides, if we take B = A, the right-hand
side of (2.3) is achieved. Then,

e 20| = 5@ == 3 5@
z€A zeAC

By the definition of total variation distance, we have

o = Bllpy = wax|a(B) = B(B)| = max | > f()|.
zeB

which leads to

— Bl = Z f(z Z la(z) — B(z)] (2.5)
T€A €A
and
o= Bllry == 3 @) = 3 lae) - 5)] (2.6)
€ AC z€AC

Finally, adding (2.5) and (2.6) produces

= Bllpy +lla = Blizy = D la(z) = Bx)l + Y la(z) -

TEA zeAC
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which is the same as

2l = Bllpyy = Y la(w) = B(x)]-

zeX
[

A finite state Markov chain is a process which moves among the
elements of the finite set X in the following way: when at © € X,
the next state is chosen according to a fixed probability distribution
P(z,-). More precisely, a sequence of random variables (X, Xi,...)
is a Markov chain with state space X and transition matrix P
if Vo,y € X,Vk > 1, and all events H,_; = ﬂf;é[Xj = x;| satisfying
P(Hy_1 N [Xy = z]) > 0, we have

P( X1 = y|Hp—1 N [Xg = z]) = P(Xpy1 = y|Xp =2) = P(z,y).  (2.7)

Equation (2.7) is often called the Markov property and means that
the conditional probability of going from state x to state y does not de-
pend on the sequence z, 1, ..., x,_; of states that precede the current
state x. Intuitively, given the present, the future is independent of the
past.

Therefore, P (which is a matrix of order | X | x | X|) suffices to describe
all the probability transitions and we will identify a Markov chain with
its transition matrix. The z-th row of P is the distribution P(z, -); it has
non-negative real entries such that

 Play) =1, VeeX. (2.8)

yeX

We will denote the distribution of X by the row vector p:

pr(x) = P(Xy =), Vo € X.
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Conditioning on all the predecessors of the (k + 1)-st state, we get

i1 (y) =P(Xgi1 = y) = Y P(Xp = 2)P(Xgi1 = y|Xp = @)

rzeX
= Z Nk(x)P(xv y)
zeX
In matrix notation, we have

We can extend this result by the following:

Proposition 2.2.

Proof. The proof is by induction. By hypothesis, the property already
holds for the initial case £ = 0. Assume that it holds for some £ > 0; by
(2.9), it remains valid for & + 1. H

An corolary of the last result is

Corollary 2.1. If 11 is a probability distribution on a finite set X and
P is the transition matrix of a Markov chain on X, then 1 - P is a
probability distribution on X,Vk > 0.

A chain P is called irreducible if for any two states =,y € X,
there exists a positive integer k(z,y) such that P*@¥)(x 4) > 0. This
means that is possible to move from any state to any other state us-
ing only transitions of positive probability. Consider the chain of the
introduction: if py, = pp = 0, P = I, (identity matrix of order 2) and
P*(1,2) = P*(2,1) = 0,Vk > 0; this chain is not irreducible. Moreover,
this chain is irreducible if and only if p4 - pg > 0.

In the following, we will assume that we are always dealing with
irreducible chains, which have a very important property: they always
have exactly one stationary distribution. Before we prove this result,
let’s define this last notion more precisely and discuss it.
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Definition 2.2. A stationary distribution = of a Markov chain P is
a probability distribution distribution satisfying

T=m-P,
which is the same as

m(x) = Zﬂ(y)P(y,x),‘v’x € X.

yeX

If the chain is not irreducible, there may be an infinite number of
stationary distributions; for instance, if P is the identity matrix, every
distribution is stationary. That is why we will be focusing at irreducible
chains. As we will prove in the following, there is a stationary distri-

bution for every finite state Markov chain.

Proposition 2.3. Let P be the transition matrix of a Markov chain on
a finite state space X. Then there is at least one stationary distribution
7 for the chain P.

Proof. Let 1 be an arbitrary initial distribution on X. For every positive
integer n define the distribution 7, by

n—1
1 )
TL:_ -PJ.
T njgzolu

In order to prove the result, we will state three claims. The first one is

Claim 2.1. For every n > 0, m, is a probability distribution, i.e.,
() 20, Ve e Xand ) mo(z) = 1.

By Corollary [2.1], i1 - P/ is a probability distribution Vj > 0, i.e.,

(u-P)(x)>0Ve e X, > (u-P)x)=1, Vj=>0. (2.10)

rzeX
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Fix n > 0. Summing from j = 0 to n — 1 and dividing by n, we get

() :% ._ (- P)(z) > 0¥z e X
and
S m@ =Y (CX P = Y P =y 1=1

Also, we can state the following:

Claim 2.2. For any x € X and positive integer n,

(7o - P)(&) — ()| < 2

Indeed, for every positive integer n, we have
1 n—1
J.p_ — . pJi
| - P 7Tn|—‘< Zu P) P TLZM P
7=0
n—1
_ . pitl _ . pi
n‘ Zu P Z,u P
7=0 7=0

The last expression is a telescopic sum, which leads to

1
|7Tn'P_7TN|:E|N'Pn+1_N|-

1 . 1
(7 - P)(2) = mn(@)] = ~[(u- P (@) = p(@)| < ~(141) =
proving Claim
From Claim 2.1, 0 < m,(z) < 1,Vn > 0,Vz € X, then (m,),>1 is a

|X]

bounded sequence in RI*!. Therefore, the Bolzano-Weierstrass Theo-

rem leads to

Claim 2.3. There exists a subsequence (,, x>0 such that limy_, m,, ()

exists for every x € X.
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For z € X, define 7(z) := limy_,o 7, (x). From Claim 2.1 we get
m(x) = lim m,, (z) > 0,V € X
k—o0 '

and

2 mle) = 2, Jim (o) = Jim ) oy (@) = Jim 1 =1,
with 7(z) being a probability distribution on X. Denote M := max{x €
X :|(7- P)(z) — w(z)|}. Finally, if we assume that = is not stationary,
then 7 # 7 - P and M > 0. Let =, be the state which maximizes |(7
P)(xz) — m(x)|. Choosing k, large enough such that 2/n,, < M/2, Claim
leads to

2 2 M
: < —< — —
|(7Tnk P)(ZL'O) Wnk($0)| — - < 5 \V/k > ko
Therefore,
. M
M = (7 P)(zo) = ()| = Jim |(mn, - P)(x0) = T, (20)| < = < M,

which is a contradiction. Therefore, = is a stationary distribution for
P. O

The finiteness of X is necessary to prove the result above; one counter-

example to the result above is the random walk on Z, described below.

Example 2.1 (Random walk on Z). In this chain, at each step you toss
a fair coin. Given you are in the integer number x, you jump to v + 1 if
the coin lands heads up and you jump to x — 1 if it lands tails up. Then,
we can describe the transitions by a function P : 7 x Z — |0, 1] such as

1
P(z,y) = {° _
0, otherwise.

(2.11)

Let us prove that it is indeed a counter-example for Proposition [2.3;
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Proposition 2.4. There is not a stationary distribution for the chain
described in Example

Proof. Assume there is a stationary distribution 7 for this chain. Then
0<m(x)<1,VreZ,) ,m(xr)=1and

n(z) =Y 7w(y)Py,z),Vz € Z,

yeX

From (2.17), we get
2r(x) =7(x — 1) +7(x +1),Vz € Z,
which is the same as
m(x+1)—n(z) = w(x) —n(x — 1),V € Z.

We note that the entries of 7 are numbers of a arithmetic progression
with common difference d. Assume d = 0. If 7(0) = 0, then Vz €
Z,m(x) = 0 and ) _, 7(x) = 0 (contradiction). If 7(0) = p > 0, then
Vo € Z,m(x) =pand ) _, m(x) = +oo (contradiction).

Now assume d > 0. Choosing z such that = > 1/d, we get

m(x)=7(0)+2z-d>0+2x-d=x-d>1,

which is a contradiction. Finally, assume d < 0. Choosing = such that
x> 1/(—d), we get

m(—z) =7(0)+ (—2) - d>0+z-(=d) =z (—=d) > 1,

which is a contradiction. Therefore, there is not a stationary distribu-
tion for this Markov chain. O

An intuitive result with respect to stationary distributions is

Proposition 2.5. Let P be a Markov chain with stationary distribution
7. Then m =7 - P* Yk > 0.
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Proof. The proof is by induction. The result is trivial for £ = 0 and
by hypothesis, the property already holds for the initial case k£ = 1.
Assume that it holds for some k£ > 1; we will prove that it remains
valid for k£ + 1. Fix z € X. Then

(- P* (@) =) (r- P (y)P(y, ) = Y wl(y)Py,z) = m(x).

yeX yeX
]

Next, we will prove that a stationary distribution 7 of a irreducible
Markov chain assigns a positive weight for each state:

Proposition 2.6. Let P be an irreducible Markov chain with stationary
distribution m. Then w(x) > 0,Vz € X.

Proof. Assume there is 2y € X such that n(zy) = 0. From Proposi-
tion [2.5] we get
(7 - P*)(z0) = 0,k > 0,

which is the same as

> 7(y) - PH(y, w0) = 0,k > 0. (2.12)

yeX

Let yo be any state of X. Since P is an irreducible Markov chain, there
is a positive integer r(yo, z9) such that P7%0®0)(y, 24) > 0. Applying
(2.12) for k = r(yo, x0),

> wly) - Pt (y, ) = 0.

yeX

Since all the terms of the sum in the left side are non-negative,
m(y) - PT@o20) (y 20) = 0,Vy € X.

In particular, taking y = 3o, we have 7 (y,) - P"020) (o, z0) = 0. Dividing
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by P7wo:z0) (yo. ) > 0 leads to 7(y) = 0. Since it holds for any y, € X,

> wly)=>0=0,

yeX yeX
which is a contradiction. Therefore, 7(x) > 0,Vx € X. N

If the chain is not irreducible, the stationary distribution does not
need to be positive. For instance, if P = I, each canonical vector of RI¥!
is stationary but assigns a positive weight for only one state.

Finally, we will prove the uniqueness of the stationary distribution
of an irreducible Markov chain.

Proposition 2.7. Let P be an irreducible Markov chain. Then P has
only one stationary distribution .

Proof. From Proposition there is at least one stationary distribu-

tion for P. Let m,m be two stationary distributions for P. Proposi-

tion [2.6] says that m, m, are positives. Define f := m /m,. Let 2o € X the

state which minimizes f and let k = f(z() > 0 be the minimum. Then
m1(y)

m(y) = — ma(y) = [(y)m2(y) = kma(y), Vy € X. (2.13)

Let yo be any state of X. Since P is an irreducible Markov chain,
there is a positive integer r(yo, 2¢) such that P"o:@0)(y, 24) > 0. Apply-
ing Proposition 2.5/ for 7 = 7 and k = 7(yo, z) at the entry y = z, leads
to

m(z0) = (my - PTWo20) Z 1 () P00 ().

yeX

Taking the term corresponding to y = y, out of the sum,

(o) = m1(yo) P (o, o) + Zﬂl )P0 (y, ).

yeX
Y#Yo
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Assume f(yy) > k. Then

m1(Yo) = 7r1(yo)7f2(yo) = f(yo)m2(yo) > km2(yo)

m2(Yo)
and
Wl(yo)PT(yO’zo)(y(),I()) > kﬂg(yo)Pr(yo’mo)(yo,.fo). (214)
Also, (2.13) leads to
S () PO (g, a0) = 3 kma(y) PO (g, ). (2.15)
yeX yeX
Y7#Yo Y#Yo
Adding (2.14) and (2.15),
m1(wo) = 1 (yo) PV (o, o) + Z?ﬁ ) Prwos0) (4 20
yeX
Y#Yo
> ky(yo) P (o, wo) + > ka(y) P (y, o)
yeX
Y#Yo
= & (malyo) P00 (yo, w0) + 3 mal) P00 ) (3, ) )
yeX
Y#Yo
=k Z () P00 ().

yeX

Applying Proposition [2.5|for 7 = m, and k = r(yo, z¢) at the entry y =
leads to
k Z o (1) PTW00) (3 220) = k(o).

yeX
Then we have,
7Tl<I0) > k‘ﬂ'z(l’o),

which is the same as
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and that is a contradiction. Therefore, f(y,) = k. Since it holds for
any yo € X, f(y) = k, Yy € X. Summing over all the entries of 7, and
recalling that =, 7, are probability distributions,

1= ) = 3 W) = 3 fwimly) = Y kmae) = k1=

yeX yeX 7T2(y> yeX yeX

mo(y) = f(y)ma(y) = kma(y) = 1 - ma(y) = ma(y), Yy € X.
(2.16)

Therefore, if 71, 75 are stationary distributions for P, then 7y = m. [

A fundamental concept in this master’s thesis is the reversibility of
Markov chains. Given a Markov chain P, suppose there is a probability

distribution = on X which satisfies
m(x)P(z,y) = 7(y)P(y,z), Vr,yeX. (2.17)

The equations above are called the detailed balance equations. If
there is a probability distribution = which satisfies (2.17), we say P is
reversible (with respect to 7). An important result connecting station-

ary distributions and reversibility is

Proposition 2.8. If P is a Markov chain which is reversible with re-
spect to m, then 7 is a stationary distribution of P.

Proof. Summing (2.17) over z € X,

> w(@)P(zy) = Y w(y)Ply,x).
From (2.8), we get that for every y € X,
> wy)Ply,x) = 7(y) > Ply,x) =7(y).

rzeX rzeX
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In particular, if P is irreducible, there is at most one distribution
7 satisfying (2.17), which is the unique stationary distribution. We
remark that not all the reversible chains are irreducible. For instance,
if P is the identity matrix and = is any probability distribution, P is
reversible with respect to 7. Indeed, if x = y € X, we trivially have

m(z)P(z,y) = 7(y) Py, ),
and if © # y,

m(z)P(z,y) =7(x) - 0=0=n(y) - 0 =7(y) P(y,z).

On the other hand, not all the irreducible chains are reversible. One
instance is the biased random walk on the n— cycle (n > 3), described
below.

Example 2.2 (Biased random walk on the n— cycle). In this chain,

X =27Z,=1{0,1,...,n — 1}. At each step you toss a coin with probability
p of landing heads up and probability ¢ = 1 — p of landing tails up,
p # 1/2. Given you are in the integer number x, you jump to x + 1 if the
coin lands heads up and you jump to x — 1 if it lands tails up. Then, we

can describe the transitions by a function P : Z, X Z, — [0,1] such as

p, lf y_le(mOdn)7
P(z,y) = Sq, if y—x=—1(modn), (2.18)

0, otherwise.

Proposition 2.9. The chain described in Example2.2]is irreducible but

it is not reversible.

Proof. Let x,y € Z,. If p > 0, we know that with n + z — y > 0 jumps to
the right, we may go from x to y; in this case, P"™*¥(x,y) > p"t*~¥ > (.
If p = 0, we know that with n + y — x > 0 jumps to the left, we may go
from z to y; in this case, P" * ¥Y(z,y) = 1""*7% = 1 > 0. Therefore, for
any z,y € X, there is a positive integer r(z,y) such that P"®¥ > 0 and
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the chain is irreducible. The stationary distribution 7 is the uniform
one, i.e., 7(z) := 1/n,Va € X. Indeed,

> wy)Ply.x) =) %P(y,x) _ptra_ % = 7(z),Vz € X.

n
yeX yeX
On the other hand, since p # 1/2, then p # ¢ and

1 1
m(z)P(z,x+1) = P # —q= m(z+1)P(x+1,2),Vr € X.

Thefore, the chain is not reversible. O

If a Markov chain P is reversible with respect to 7, the probability of
any finite sequence of states is equal to the probability of the reversed

sequence, given the initial distribution is 7. More precisely, we say that

Proposition 2.10. Let P be a Markov chain, reversible with respect
to w. If the initial distribution is w, given a finite sequence of states

<y07 Y1y -3 Yn—1, yn); we have

IP)()(O - y0,X1 =Yy .- 7Xn—1 - yn—lan = yn)
:]P)(Xo = UYn, X1 = Yn—1,. .-, Xpo1 = Y1, X, = yo)-

Proof. Let (yo,v1,---,Yn—1,Yn) be a finite sequence of states. Then

]P)(XO = Yo, Xl =Yy .- 7Xn—1 - yn—laXn = yn)
:]P)(Xo = yO)P(Xl = yl‘XO = yo) s ']P(Xn = yn‘Xn—l = yn—l)
:W(yo)P(yanl)P(ylayz) ce P(ynflayn)-

Applying (2.17), we can "shift the term corresponding to the distribu-
tion 7 to the right":

T(Y0) P (Yo, y1) P(y1,y2) - - P(Yn—1,Yn)
:P(y17yo)7T(y1)P(yl7y2) : "P(ynflayn)'
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Applying (2.17) again,

P(y1, y0)m(y1) P(y1,v2) - - P(Yn—1, Yn)
=P(y1,90) P(y2, y1)m(y2) - - - P(Yn—1,Yn)-

After applying (2.17) n times, we get

7(Yo) P(Yo, v1) -+ PYn—1,Yn) = T(Yn) P(Yn> Yn—1) - - - P(y1, %0)-

Besides,

W(yn)}j(yn>yn—l)"']D<y17y0)
:]P’(Xo = yn)P(Xl = ?/n71|X0 = ?/n) . 'P<Xn = yO‘anl = yo)
I]P(Xo = Yn, X1 = Yn—1,- -+ Xno1 = Y1, Xp = y0)~

O

Now, we will exhibit a spectral characterization of Markov chains;
this will be useful later in order to estimate the convergence rate to the
equilibrium. We will start with the following result:

Proposition 2.11. If § is a eigenvalue of a finite state Markov chain,
then |5 < 1.

Proof. Let P be a Markov chain on a finite set X with eigenvalue £.
Let v be a eigenvector of P different from 0 corresponding to 5. Then
P-v = pBv. We write v = [v1, ..., vy|]’. Let v;, the entry which
maximizes |v;|, i.e, |v;| < |v;|,Vj = 1,...,]|X]|. In particular, |v;| > 0.
From the triangular inequality,

X

| X
Bul = 1P 0)Gio, V] = | 30 Pl K)ok, 1] < 37 1PGios ) - .
k=1 k=1
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Since v;, maximizes |v;|, we get

R | X
1Bvsa| < D 1PGos k)] - [owl < vl D 1PGio, K) = Jujo] - 1 = Jugo-
k=1 k=1
Dividing both sides by |v;,| leads to 5| < 1. O

Another general result of Markov chains is

Proposition 2.12. v, = [1, ..., 1]7 is a eigenvector of every finite state

Markov chain, corresponding to the eigenvector 3y = 1.

Proof. Let P be a Markov chain on a finite set X. For every ; =

1, ..., |X]|, the j-entry of v is
| X 1 X
(P-vo)(js1) = > PG k) -volk, 1) =Y P(j,k) - 1=1=1-v(j, 1).
k=1 k=1
Then,P"UO:l'Uo. ]

Therefore, for every Markov chain the geometric multiplicity of the
eigenvalue (5, is at least 1. Now we will show that it is exactly 1 for
irreducible chains.

Proposition 2.13. Let P be an irreducible Markov chain, and v an
eigenvector of P corresponding to By = 1. Then all the entries of v are

equal.

Proof By hypothesis, P - v = v. By induction, P* - v = v,Vk > 0. Let
vy, be the entry which maximizes v;, i.e, v,, > v;,Vj = 1,...,|X|. Let
yo € {1,...,|X|}. Since P is an irreducible Markov chain, there is a
positive integer r(yo, z¢) such that Pr#0:20) (y; 24) > 0. Then v = P wo:w0).
v. Taking the zy-entry in both sides, we get

By
Ugg = (P70 ) = 3" prlwoao) (g o,
j=1



24

Taking the term corresponding to j = y, out of the sum,

| X
Vag = PTO7) (20, 40 )0y, + ZPT(%JO)(%J)“J’

j=1
J7#Yo
|X|

< Pr(wo,zo) (o, y0>,0y0 + ZPr(yo,zo) (70, J)Vaq-
j=1
J7#Yo

Since v,, is the entry which maximizes v;, the inequality above holds.

Assume v, < v,,. Since P"¥0:¥0)(yo 1) > 0,

|X]
, < Prwo, Io) -TO,QO Vyo + E Prwoszo) $0’ Ua:o

J#yo
||
< PT(:LIO,CEO)UIO + ZPT(yO’IO)(fEmj)Um
j=1
J#Yo
X
= (PO (g, o) + 0 PTO (, ) ),
j=1
J#Yo
which leads to
X
Vg < VUgg Z Pr(yo,$0)<x0’j) = Ugy - 1= Vg
j=1

and that is a contradiction. Therefore, v,, = v,,. Since it holds for
any j = 1,...,|X]|, v; = v, Vj = 1,...,|X]| and all the entries of v are
equal. O

An immediate corollary is

Corollary 2.2. Let P be an irreducible Markov chain. Then the geo-
metric multiplicity of the eigenvalue 5y = 11is 1.

The corollary does not hold for chains which are not irreducible. For
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instance, if the transition matrix P is the identity matrix of order n > 1,
then P - v = v, Vv, i.e., the geometric multiplicity of 1 is n > 1.

If we deal only with irreducible chains, it does not hold all the eigen-
values are real. For instance, if the transition matrix P is

i 5 5

al»a ;lﬂ =
El\l | = Sl)—l

the eigenvalues are 1 and (4 4 3v/3i)/16. Nevertheless, since all the
entries of P are positive, the chain is irreducible.

In the same way, the transition matrix of an irreducible Markov
chain does not need to be diagonalizable. For instance, if the transition
matrix P is

s

I
Gll= G N Ot
SN RS ITEN

atje gt~ atlno

the eigenvalues are 1, 1/5 and 1/5. However, if v is a eigenvector cor-
responding to the eigenvalue 1/5, v =[x — 3z z]7, where z is a real
number. Therefore, the eigenvalue 1/5 has algebraic multiplicity 2 and
geometric multiplicity 1, meaning P is not diagonalizable.

Therefore, the irreducibility of a Markov chain is not a sufficient
condition to produce a diagonalizable operator with only real eigenval-
ues; we will prove that the reversibility is necessary to get it. First, we
need a convenient vector space; we define ¢2(X) as the vector space R*
with inner product with respect to the measure 7, which means, given
vectors f,g: X — R,

(f,9)= = > f@)gl)m(x).
zeX
We identify P with the linear operator P : ¢2(X) — (2(X) whose matrix
with respect to standard basis is P (here we have a slight abuse of
notation). Recalling the definition from Linear Algebra, we say that
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the linear operator P is self-adjoint with respect to the inner product
(-, ) if
(Pf,g)x = (f.Pg)r, Vf.geR.

The last proposition of this section is

Proposition 2.14. Let P be a transition matrix of a Markov chain. The
linear operator P : (2(X) — (%2(X) is self-adjoint with respect to the

inner product (-,-), if, and only if, P is reversible with respect to .

Proof. Assume that f — Pf is reversible with respect to 7. Then,
m(x)P(z,y) = w(y)P(y,z), Vr,yeX. (2.19)

We will prove that the operator P is self-adjoint with respect to the
inner product (-, -).. Let f,g € R*. We have that

(Pl.g)x = D (PH@)gl@)r(x) = D (D ) P@,y))gl@)n(x)

reX zeX yeX

The second equality comes from the definition of Pf. Interchanging

the sums,

> (X f@P@y))g@n@) = 33 fy)el@) Pl y)n(a).

zeX yeX yeX zeX

Applying (2.19), we get

D> fWg@)Play)m(z) = Y > f(y)g(x)Ply, ) (y).

yeX zeX yeX reX

From the definition of Py,

ST (X 9@ Pw.2))wy) = 3 FW(Pe))r(y) = (f. Po)r

yeX reX yeX

Assume now that P is self-adjoint with respect to the inner product



(-, )r. Therefore,

(Pf,9)x

= (f, Pg)x,

27

Vf, g€ RX. (2.20)

We will prove that the operator P is reversible with respect to 7. Fix

r,y € X . Define f, g € RX by

and

From (2.21), we get

=Y f(2)P

zeX
Equation (2.22) leads to
(Pf.g)x = Y _Pf(z
zeX
and

= g(x)P

zeX

Besides, from (2.21) we get

(f, Pg)x

zeX

Finally, (2.20) leads to

(Pf,9)x

= Y f(2)Py(z =

*oz=y, 2.21)

if z#£y.

if z=u,

(2.22)

if z#x.

= f(y)P(x,y) = P(x,y).

= Pf(x)g(z)n(z) = P(z,y)m(z),
(y,2) = g(x)P(y,z) = P(y,n).

fW)Pg(y)m(y) = Py, z)m(y)

= (f, Pg)r = P(z,y)n(z) = Py, z)n(y).
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An immediate corollary is

Corollary 2.3. Let P be an irreducible and reversible Markov chain.
Then the algebraic multiplicity of the eigenvalue 3y = 11is 1.

Proof. Since P is irreducible, Corollary[2.2]says that the geometric mul-
tiplicity of the eigenvalue 3, is 1. Besides, P is reversible, then by
Proposition [2.14] it is diagonalizable. Therefore, the geometric and the
algebraic multiplicities of every eigenvalue are equal. In particular, the

algebraic multiplicity of the eigenvalue [, is 1. H
Another corollary (very useful to the next sections) is

Corollary 2.4. Let P be an irreducible, reversible Markov chain. Then

a) There is an orthonormal basis of real-valued eigenfunctions to (2(X).

b) Denote the eigenvalues of the matrix P by ;,, 0 < i < |X|—1. Then
they may be written in descending order, such that

1= 05 > B > ... 2 Px-1=>—1

c) Denote the eigenfunctions of the matrix P by ¢;, 0 < i < |X|—1,
and the constant function equal to 1 by 1. Then ¢, = 1.

Proof. a) By Proposition [2.14], since P is reversible, P is self-adjoint
with respect to the inner product (-, -),. Then the Spectral Theorem
from Linear Algebra assures the existence of an orthonormal basis
of real-valued eigenfunctions to the vector space /2 (X).

b) Since P is self-adjoint with respect to (-, )., the Spectral Theorem
assures every eigenvalue 3, 0 < ¢ < |X|—1is a real number.
Since R is a ordered field, they can be written in descending order.
By Proposition [2.11}, we have

1>08y > B > ... > Bxj-1 = —L



29

Besides, by Corollary[2.3] 1 = 3, > 31, which leads to

Il=050 > B = ... 2Px-1=>—1

¢) By Proposition [2.12] 1 is a eigenvector corresponding to the eigen-
value 3y = 1. It only remains to prove that the norm of 1 with respect
to the inner product (-, -), is equal to 1. Evaluating (1,1),,

(1L,1): = > 1x)l(z)n(x) = Y 1-1-7(z) =1L

rzeX rzeX

2.2 Spectral Gap of Discrete-Time Markov
Chains

In the remainder of this chapter, we always assume that we are
dealing with an irreducible Markov chain with a finite state space X
and transition matrix P, which is reversible with respect to the station-
ary distribution 7. In this way, we are in the (very convenient) hypothe-
ses of Corollary Moreover, hereafter we will adopt the notation of
Corollary i.e., there is an orthonormal basis of eigenfunctions to
the vector space (2(X), where the eigenfunctions and eigenvalues will
be denoted by ¢; and 3,0 < i < |X|—1, respectively. Besides that, the
eigenvalues are in descending order,i.e., 1 = 3y > 31 > ... > Bx|-1.

Our goal here is to estimate the required time for P being “close”
to the equilibrium. In order to make this notion more precise, it is
customary to make use of the total variation distance. Recall it is a
distance between two probability distributions  and v on the same
sample space X and is defined by

= vy = mas{u(A) - v(A)]}
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This distance is the biggest difference between the probabilities as-
signed to a unitary event by the two distributions. According to Propo-
sition [2.1, we write it as

2= vlipy = Y luly) -

yeX

Recall that P(x,y) = P([Xy = 2] N [X; = y]). More generally, P*(z,y) =
P([Xo = z| N [X) = y]), Vk € N. Therefore, if we enumerate the elements
of X, the x-th row of P* is the probability distribution P*(z,-) = P([X, =
z] N [ X} = -]), which will be denoted by P*.

We will say that the chain P is close to equilibrium in the time £ if

max{||PF —x|| : z € X} < 1/4,

where the choice of 1/4 is arbitrary and most frequently used in the
literature. Note that this notion of being close does not depend on Xj.
The relation between the total variation distance and the eigenval-

ues of P is explained in the following result:

Proposition 2.15. Since n(y) > 0,Vy € X, let p*(x,y) = P*(z,y)/7(y).
Denote the vector p*(x,-) by p*. Then, in the notations defined above:

|X|—1

a) p*(z,y) ZB’%

|X[-1 , 1
b) ; = —.
j;o (p](ZC) 7T(IE)
c¢) Let 3. = max{|Bx|-1|, 61}. Then,

ko i 2k 1_7(@ 2%k
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d) Let 7, = minge x{m(x)}. Then,

2||ka_7r||TV < 7T*_1/25f-

Proof. a) Since ¢;,0 < j < |X|—11is an orthonormal basis of /2(X),

|X]-1

pio= > Wk ei)nps

j=0

Expanding the expression of (p*, ¢,),

1X|—1
Dhon)e = Y P y)ei(y)r(y)
IX|-1
= Y Piay)ei(y) = (Prg) = Bie(a).

In the third equality, (-, -) denotes the usual inner product. The first,
second and third equalities come from the definitions of {-,-),, p*(-, )
and (-, -), respectively. To obtain the last one, we recall that P*p; =
Bj’?goj, since ¢; is a eigenfunction of P. Then, (P* ;) is the inner
product of the z-th row of P* by ¢;, which is 5}¢;(x). Comparing
both expressions obtained above, we get:

|X]—1

pho= > Bioi(x)p;.
=0

The expression above is a equality between two vectors. Then, look-
ing at the entry y in each side, we conclude that

|X]-1

pr(z,y) = Z Broi(x)e;(y).

b) For each z with 0 < z < |X| — 1, we define the operator
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(r(y)~t, if y = =,
0, if y # =

Since ¢;,0 < j < |X|—1is an orthonormal basis of ¢2(X),

|X]-1

> A fe )2 = {for fo)r (2.23)

J=0

Expanding the expression of (f,, ©;)x,

|X|-1
(fooi)e = Y L)ew)nly) = ﬁ%(az‘)w(m) = p;(z). (2.24)

The first and the second equalities come from the definitions of (-, ).
and f,, respectively. In a similar way, we may expand the expression

of (fe, fa)n

(fo, fo)r = ;iolfm(y)fx(y)w(y) = %%ﬂx) = % (2.25)
From (2.24), (2.23) and (2.25), we conclude that
|X[-1 |X|—1
> 00 = YoMt = S = =

¢) Ranging y over X in the result of the first item, we get the vectorial

equality
IX]-1

pi = Z Bl o;(x)p;.
=0
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Isolating the term correspondent to j = 0 of the sum,

|X]-1 |X]-1

ph = Bivo(z)po+ > Bioi(z)e; = 1+ ) Bloi(a)e
P p

To explain the second equality, we recall that 5, = 1 and ¢y = 1.
Subtracting 1 in both sides, we have

|X]—1

> Blpi(x)e;
j=1

Computing the inner product (-, -). of each side of the equation above
with itself results in

|X|-1 |X]-1

(vh— 1.7k~ <ZB’% s Y Brpm(@)om)
m=1
1X|— 1|X\ 1
> BBhei(@em(@) (@, om)-
j=1 m=1

Since ¢;,0 < j < |X|—11is an orthonormal basis of /2(X), we get

(©j,@m)x = Ojm. Then:
IX|-1 IX|-1

(ph—Lph— 1) = Y BiBlg(@)pi(x) = Y ()8
j=1 =1

Recall that the eigenvalues are in descending order. Since
B, = max{|Bx|-1], 51}, we obtain

B =max{|f;],1 <j < |X|-1},

which leads to

|X]-1 | X]-1 |X]-1

Z% )BF < > p(a)B = B%Z%
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The inequality holds since ¥ = max{?*,1 < j < |X|—1}. Sub-
tracting and adding 3 (z) in the rightmost sum:

|X[-1 |X[-1

> E@er < (- @)+ @) + Y ).
j=1 J=1
Recalling that —p3(z) = —1 and letting +¢?2(z) be absorbed in the
summation:
|X]—-1 | X]-1

Z P@)g < g1+ Z Pw)) = /33’“(—%+$).

In the equality above, we applied the result obtained in the second

item. Reducing the fractions to the same denominator, we get

|X]-1

2k m(z) 1 1 — () Lo
> dwa < o~ ) = e
Therefore, we conclude that
|X|—1
1 —7(x)
vy — 1,0 — 1)x Z o5 (x)Bh < @) 2,

d) Proposition[2.1]leads to

2PE—rlry = S0 IP @ y) —a)l = 3 y) — Un(y).

yeX yeX

The last equality holds since P*(z,y) = p*(x,y)7(y). Recalling that 7
is a probability distribution, the last summation is the expectation
of |pf — 1| with respect to 7, i.e.,

S 1M y) — Un(y) = Eqlpk —1]].

yeX

From Jensen inequality, if Y is a random variable, we know that
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(E[Y])* < E[Y?]. Since both sides of this inequality are non-negative,
taking the square root,

E[Y] < (E[Y?)V2 (2.26)
Applying the result above to Y = [p* — 1|, we get
E(lpf — 1] < (E[lph — 11"/

Writing the last expectation as a sum,
Exllph — 1) = O (0" (w,y) = 1)°7(w)* = ((ph—1,p5 — 1))
yeX

Comparing the expression obtained with the result of the previous

item:

1 —7(x) 1/2
2 PF — < k_q k—lwl/2<< Qk) '
H x ﬂ_HTV — (<px 7px > ) — W(.l’) B*

Since 7(z) > 0,Vz € X,

1 S e

7(x) 7(x) zeX

Moreover, m, = mingex{7(z)}, then max,cx{n(z)"'} = 7, !. There-
fore,
1 —m(x 1/2 _ _
(Ao gy < (e = w2
m(x)
Finally, we conclude that 2||P* — |, < m /3"
[

The result obtained in item d) of Proposition [2.15| only takes into
account the values of 7, and .. However, if [P — 7|, does not de-
pend much on z, it may be interesting to make use of an alternative

inequality:
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Proposition 2.16.
X1 1/2
SN 1P @) —rwln(@) < (D 8%)
zeX yeX j=1

Proof. Let f(x) = 2||P¥ — 7| ;. Then,

>SS IPH @)~ w()lr(@) = Y (Y IPH @ y) - ww)l ) 7(a)

reX yeX zeX yeX
- Z(2|‘Pf_ﬂ|Tv)7T(x)' = Zf(x)ﬂ(:c)
rzeX zeX

The second equality comes from Proposition The last summation
may be written as the expectation of f with respect to 7, i.e.,

Y flo)m(z) = Eqlf).

zeX

Applying toY = f(x), we get
E.[f] < (Ba[f?)

Expanding the expression of (f(z))? and applying Proposition

(@) = CIE =l = (X 1Puey) — 7))

yeX

Recall that P*(z,y) = p"(x,y)7(y). In the same way as we did in the pre-
vious proposition, we may write the last summation as the expectation

of |p* — 1| with respect to 7, i.e.,

(S 1P ) —w)l) = (X ) —1nl) = Ellpk — 107

yeX yeX



Jensen’s inequality leads to

(Ballph — 11)° < Bl —1P) = Y (0" (x,9) — 1)*n(y).

yeX
From item c) of Proposition [2.15 we get

|X[-1

> W@y =D aly) = (b~ 1.0k 1) Z P2 () B

yeX

Therefore,
|X|-1

Z 90] /82]6

Since the expectation is monotone, we get

|X[-1

) < (B [Z 202])".

Writing the expectation of the last term as a summation:

|X|-1 i IX|—1 |X|-1 o
e[ an))" = (X (X d0s)ma)”

Interchanging the sums and taking ﬁf’“ out of the sum over =,

X|-1 |X|-1 19 X|-1 X|-1
('Z 'le 02 (x) ) m )>/ B <|Z ﬁfk'z(%(x))%(m
- (%1 ﬂ?k@j»@j%) is — (l)il B]Qk . 1) 1/2.
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The second equality comes from the definition of (-,-),. To obtain the

last equality, recall that ¢;, 0 < j < |X|—11is an orthonormal basis
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of /2(X). Finally, we conclude that

|X]-1

>3 1Py~ e < (Y )"

rzeX yeX
[

The final result of Proposition [2.15{means that the distance between
the chain distribution at the time £ and the equilibrium is bounded by
a constant times 3*. For this reason, we define the spectral gap of the
Markov chain P in this setting as v, = 1 — f,.

2.3 Spectral Gap of Continuous-Time
Markov Chains

In this section, we introduce continuous-time Markov chains, and

for a paticular case, we will obtain analogous results to Propositions

12.15| and [2.16, We now construct, given a transition matrix P and a

set X, a process (X;):c0,c) Which we call the continuous-time chain
with state space X and transition matrix P. The random times be-
tween transitions for this process are i.i.d. exponential random vari-
ables of unit rate, and at these transition times, movements are made
according to P. Continuous-time chains are often natural models in
applications, since they do not require transitions to occur at regularly
specified intervals. Indeed, it is possible to deal with continuous-time
chains in a more general setting, allowing that the rates of the transi-
tion times to be any positive number. However, in our particular case
of unit rate we will achieve equivalent conclusions to Propositions[2.15
and in a natural way.

More precisely, let 77, T5, ... be i.i.d. exponential random variables
of unit rate. That is, each 7; takes values in [0, c0) and has distribution
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function
1—et, if t > 0,

0, if t < 0.

B(T, < 1) =

Let (®1)%2, be a Markov chain with transition matrix P, independent of
the random variables (7})%2,. Let Sp = 0 and S, := Zle T;, for k > 1.
Define X; := &, if S, < t < Siy1.

Change of states occur only at the transition times S;, S;, ...
(note, however, that if P(z,x) > 0 for at least one state z € X, then
it is possible that the chain does not change state at a transition time).

Define N, := max{k : Sy < t} to be the number of transition
times up to and including time ¢. Observe that NV, = £k if and only if
Sy < t < Sgy1. From the definition of X,

P([Xo = 2] N [X; = y|N; = k]) = P([Xo = 2] N[ =y]) = P*(z,y).
(2.27)
Moreover, the distribution of N, is a Poisson random variable with

mean t:
etk
k!
The heat kernel H' is defined by H'(z,y) = P([Xo = 2] N [X; = 9]).

From (2.27) and (2.28), it follows that

P(N, = k) =

e 0 €_ttk
H'(z,y) =Y P([Xo=2]N[X, = y|Ny = k)P(N, = k) = ) 1 P*(z,y)
k=0 k=0
For an m x m matrix M, define the m x m matrix eV := > im0 % In
matrix representation,
= (tP)*
H = ¢t Z ( k!) _ e—tletP _ et(P—I)‘

k=0

Therefore, if we enumerate the elements of X, the z-th row of H! is the
probability distribution H'(x,-) = P([X, = z] N [X; = -]), which will be
denoted by H!. An analogous result to Proposition is
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Proposition 2.17. Since n(y) > 0,Vy € X, let hi(z,y) = H'(z,y)/7(y).
Denote the vector h'(z,-) by h.. Then, in the notations defined above:

X1
a) h(z,y) = Y e Hoi(a)p;(y).
=0
X1 .
b) <htx . 17h§; _ Z 90] e~ 2t(1=5;) < ﬂe—%(l—ﬁl)_

m(x)
¢) Let m, = min,ex{7(x)}. Then 2|H. — 7|, < m /2 (1700

Proof. a) Expanding the expression of h'(x,y),

1 <= etk

1
ht z,Yy) = _Ht'ruy = 5 Pk z,y
w0 =Ty = g e Ty
> e—ttk' Pk‘ e —ttk
= > o Z (2.29)
k=0 =
From Proposition |2.15 we get that for every non-negative integer k:
|X]-1
= > Bloi(x)e;(y). (2.30)
=0
Replacing the expression of (2.30) in (2.29),
=, etk o o—tyk X
Ty = Y (X Bei@e)).
k=0 ) k=0 ’ j=0

Interchanging the sums,

0 —tik |X]-1 |X|-1 B otk gk
( Z Blo;(x) ) = > elpi(r)pi(y) o
k=0 j=0 k=0
|X]-1 0o (ﬁjt)k
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From the Taylor series of the exponential function, the last expres-

sion is equal to

|X|-1 |X|-1
Y etpi@ps(y)et = Y e pi()p;(y).
=0 =0
Therefore,
1X|-1

h'(z,y) = Z e M) (2)p;(y).

b) Ranging y over X in the result of the previous item, we get the vec-

torial equality
|X|-1

o= Y e Wpi(x)p;.

J=0

Taking the term correspondent to j = 0 out of the sum,

By, = e Ppg(r)po+ Y e pi(a)g,

| X1
=1+ Z et (2) ;.
j=1

To explain the second equality, we recall that 5, = 0 and ¢y = 1.
Subtracting 1 in both sides, we have

Computing the inner product (-, -). of each side of the equation above
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with itself results in

|X]-1 |X]-1

(hY, —1,h, — 1), = < Z e =B (z) ¢, Z 6_t(1_5’")s0m(96)90m>
Jj=1 m=1 ™

IX|—1|X|-1
= Y 3 T O g (1) o (2) (05, P

j=1 m=1

<¢ja 90m>7r 5 Then,

Since p;, 0 < j < |X|—1is an orthonormal basis of /2(X), we get

| X]-1

(Bl = LBl = 1), = Y e e g (1) ()

J=1
| X]—1

— Z @?($)6_2t(1_6j).

j=1
Recall that the eigenvalues are in descending order. Since

B> B;,1 <j<|X|—1, we obtain

e*?i(lfﬁl) — max e*Qt(lfﬁj)}’
1<j<[X|-1

which leads to

|X]-1 |X]-1 |X[-1

Z S032.@)(‘3—%(1—6]-) < Z w?(x)e_Qt(l—ﬁl) — 2t(1=B1) Z @?(95)
j=1 j=1 j=1

Subtracting and adding ¢2(z) in the rightmost sum:

X|-1 X!
Z (p?(x)e—Qt(l—ﬁj) < e—zt(l—ﬁl) ( _ 900( + 900 Z gpj
j=1

Recalling that —p3(z) = —1 and letting +¢2(z) be absorbed in the
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summation:

| X]-1 |X]-1

> e < B (214 3 i)
j=1 Jj=0

In the equality above, we applied the result obtained in the second
item of Proposition Reducting the fractions to the same de-
nominator, we get

|X|-1
Z @2(1»)6*%(1*/53‘) < €2t(1ﬁ1)<_M+L) — 1_—7T(x)e—2t(1761)'
! - m(z) w(x) 7(x
7j=1
Therefore, we conclude that
|X|-1 1 (z)
-
(h, —1,ht — 1), = o2 (x)e 208 < T T —2(1-p1)
]Z:; / m(z)

¢) Proposition [2.1]leads to

2HL =7l = > [H'(z,y) —7(y)| = D _ |h'(x,y) — Ln(y).

yeX yeX

The last equality holds since H'(x,y) = h'(x,y)7(y). Recalling that =
is a probability distribution, the last summation is the expectation
of |hl, — 1| with respect to =, i.e.,

> IR, y) = 1n(y) = Ea[lh, - 1]].

yeX

Applying (2.26) to Y = |h., — 1|, we get

Exllh — 1] < (Ea[lh, — 1))
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Writing the last expectation as a sum,

(Exllhy =12 = Y (h'(a,y) = 1)n(y)? = (b — 1, — 1)x)"%

yeX

Comparing the expression obtained with the result of the previous

item:

INHE — 7 < (Kt —1,ht — 1), 12 < 1_—7T(x)e*2t(1*ﬁ1) 1/2_
T TV T x 7T(I‘)

Since 7(z) > 0,Vz € X,

1 —m(x) 1

< < max{n(z)'}.

mw(x) T zex

()

Also, m, = mingex{m(z)}, then max,cx{7(z)~'} = 7, !. Therefore,

(1 — W(x) th(151)>1/2 < (71_;167215(1—,81))1/2 _ 71_;1/267t(1*,81).
()

Finally, we conclude that 2||H. — 7|, < e e (1B,
[

An analogous result to Proposition for continuous-time pro-
cesses is the following:

Proposition 2.18.
iy 1/2
SN I )~ 7 @lala) < (3 e
zeX yeX =

Proof Let f(x) = 2||H! — 7|, Then,

SN @)~ w()lr(@) = Y (3 @)~ ()] )7 (2)

zeX yeX zeX yeX

- Z(QHH; = 7|y )7 (z) = Z f(x)m(x).

zeX rzeX
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The second equality comes from Proposition The last summation
may be written as the expectation of f with respect to 7, i.e.,

Y flo)m(z) = Eqlf).

zeX

Applying toY = f(x), we get
E.[f] < (B[]

Expanding the expression of (f(z))? and applying Proposition

(F@)? = @UE —allp ) = (318 ) 7))

yeX

Recall that H'(x,y) = h'(z,y)w(y). In the same way as we did in the pre-
vious proposition, we may write the last summation as the expectation

of |ht, — 1| with respect to 7, i.e.,

(Sl ey —=w)l) = (X hy —10) = Elrt - 1))

yeX yeX

Jensen’s inequality leads to

(Exllh = 1)))* < Eqllhy = 1P = Y (h'(z,y) — 1)°n(y).

yeX
From item b) of Proposition [2.17, we get
|X]|—1
> (h(x,y) = 1)?aly) = (bl — 1,0 — Z G (x)e 2R
yeX
Therefore,

|X]-1

Z % 1=Bj)t
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Since the expectation is monotone, we get

|X[-1

(E[7)"? < (E [Z% -5 )

Writing the expectation of the last term as a summation:

[%1902 —2(1 })1/2 _ ()i_—l()ilgpi(x)e_ga—ﬁj)t)ﬂ(x))l/z

Interchanging the sums and taking e 2(!=%)! out of the sum over z,

IX]-1 |X|-1 |X|—1 |X|—1
(D) e@)e PN m(e) = Y e PO (p)(x)) (@)
=0 j=1 j=1 =0
|X[-1 |X|—1
Z SOJa ‘PJ) = Z e 2=t
: j:l

The second equality comes from the definition of (-,-),. To obtain the
last equality, recall that ¢;, 0 < j < |X| —1is an orthonormal basis
of /2(X). Taking the square root, we get

|X[-1]X]-1

(33 dettvnetn) = (3 o)™

z=0 j=1
Finally, we conclude that

|X]—1

ZZ’Htmy_ﬂ_ (ZeZ(l 5,) >1/2.

zeX yeX

]

The final result of Proposition[2.17|means that the distance between
the chain distribution at the time ¢ and the equilibrium is bounded by
a constant times e~ (!~#)!, For this reason, we define the spectral gap of
the Markov chain P in this setting as v, =1 — 3; > 0.
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2.4 First and Second Dirichlet Forms

Now we will define the first and second Dirichlet forms, which will
be handy later in order to bound the unknown eigenvalues of P, making
use of a auxiliar Markov chain. The following definition will be useful
to achieve the upper bounds:

Definition 2.3. Let f ¢ RX. We define the first Dirichlet form & : RX —
R as

Proposition 2.19. The first Dirichlet form & can be also written as

G0 = 5353 (@)~ F)n(@) Pl ).

rzeX yeX

Proof: Expanding the expression of &(f, f),

E(f, £)=>_ (I -P)f)(x)f(x)r(x)

=3 [/@) - Pr@)| f@)m(a)
=3 1@ 1= Y Fw) Py f)n(a).

From (2.8), we rewrite the constant 1 above as a sum and we have

Do lf@) 1= fy)Pay)lf (@)m(x)

=3 [S r@P@y) = 3 F@) P w)] ()
=33 lf (@) — FW)P(a, ) f(@)m(x)
=D D @)~ fW)f (@)m(x) P, y). (2.31)

zeX yeX
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Since P is reversible with respect to 7, (2.17), leads to

DD @) = fWf(@)m(@)Pley) = Y Y [f(@) = f)lf (@) (y)Ply, z).

zeX yeX rzeX yeX

Exchanging the indices = and y in the double summation above, we get

SN @) = FWf(@)m(y) Py, x)

=SS ) - F@)f)m(x) P, y)
=S "3 @) = fW=fW)r(@)P(x,y) = S.

Then, we may write the double summation S in two ways. One was

obtained above and is

S = > > ) = F@I=fW)r(@) P, y). (2.32)

S = > N [f(x) - FWIf (@)m(x) Pz, y). (2.33)

Summing (2.32) with (2.33) and dividing by 2,

S = 6.0 = 530SI~ FWIF@) — ) Pla,y)

rzeX yeX

which is the same as

G0 = 555 (@)~ 1) (@) Pla,y).

reX yeX

]

The following definition will be useful to achieve the lower bounds:
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Definition 2.4. Let f € RX. We define the second Dirichlet form . :
RX* — Ras

Proposition 2.20. The second Dirichlet form .7 can be also written as

= S5 (5@ + 1)) @) Pla,y)

rzeX yeX

Proof: Expanding the expression of .7 (f, f),

F(f.£)=>_ (I +P)f) (@) f(x)r(x)

= [f(@)+ Pf(2)] f(z)m(x)
=Y " [f@) 1+ fy)P ()7 (z).

Fr (2.8), we rewrite the constant 1 above as a sum and we have

> [@ 1+ Y rwPe, y)] f(@)n(z)

> [ S r@Pwy + 3 0Py @)
=33 [f@) + f®)] Pl y) f (@) (x)
=Y > [f@) + fW)]f(@)m(z)P(z,y). (2.34)

Since P is reversible with respect to 7, (2.17), leads to

> @)+ Flf (@) (x) Pla,y)

zeX yeX

=S N If @) + FW)f(@)r(y) Ply. ).

zeX yeX



50

Exchanging the indices = and y in the double summation above, we get

> @)+ FIf (@) (y) Py, )

rzeX yeX

=SS w) + f@)f()r(a) Play) = S.

zeX yeX

Then, we may write the double summation S in two ways. One was
obtained above and is

S = Y > W)+ f@f(y)n(a)P(z,y). (2.35)

rzeX yeX

The another one comes from (2.34) and is

S = > > [f@)+ fWlf(@)n(z)P(z,y). (2.36)

rzeX yeX

Summing (2.35) with (2.36) and dividing by 2,

S =71 = %ZZU(%‘)+f(y)][f(l‘)+f(y)]7f(x)P(fv,y)7

zeX yeX

which is the same as

Z(1.) = 5355 (F@) + 1) 7@ P, y).

zeX yeX
0

In order to connect the eigenvalues of a transition matrix with the
Dirichlet forms, we will make use of Rayleigh Theorem. We adapt its
proof from the book [3].

Theorem 2.1 (Rayleigh). Let A be a Hermitian matrix of size n X n
with eigenvalues \pin = M < X < ... < M1 < A = Anax. Let
i1,...,1 be integers such that 1 < i, < ... < iy < n. Let z;,...,z;, be
orthonormal eigenvectors such that Ax;, = \; x;,, foreach p € {1,... k}.
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Let S = span{x;,,...,x;, }. Then

Niy = min  (z,Az) < max (x, Az) = N,
{z€S : ||z||l2=1} {weS : [a]l2=1}
where || - ||2 is the Euclidean norm.
Proof. If x € S and ||z||]s = 1, there are scalars a,...,q; such that
r = oz, + ... + ogz;. Since the eigenvalues are orthonormal,

1 = (z,z) = |ay|* + ... + |ag|>. Then

(x,Az) = ((oqzy, + ... + agwy,), Alonz;, + ... + ogwyy))
= ((a1xi, + ... + ), (Azy, + ..o + apAzy,))
= (@i, + ... + apxi), (@ Xz + o0+ aphi i)

= ’061‘2)\“ + ... + |Oék’ )\ik,

which is a convex combination of the real numbers \;, ... ,\; . This
leads to \;;, < (z,Az) < X\;,. We have that
(x,Az) = |aa[*Ni; + oo+ |, = A

& a,=0,Ype{2, ... k} & x==£u,.

Thus, \;, = minges.|j2|,=1} (2, Ar). Analogously,
<£L’,A$’> = ’041‘2)\1‘1 + ...+ ‘Ckkyz)\ik = )\%
& a,=0,Ype{l, ...  k—1} & =z ==u.

Therefore, \;, = max  (z, Ax). O

{z€S : ||z|l2=1}

A simple (and useful) remark is

Remark 2.2. Let f be a bounded real-valued function on a set A. If B
and C are sets such that B is non-empty and B C C' C S, then

inf f(r) < inf f(z) < swp f(a) < sup f(x).

{zeC} {zeB} {zeB} {zeC}
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Now we adapt the Courant-Fisher Theorem in order to compare the
Dirichlet forms of two Markov chains. The adaptation is simply a nor-
malization, and we follow the book [3]].

Theorem 2.2 (Courant-Fisher). Let A be a Hermitian matrix of size

n x n with eigenvalues

Amin = A1 < A2 < 0 < A <A = Apaxe

Let k € {1,...,n} and let S denote a vector subspace of C". Then

A = min max  (z, Ax) (2.37)
{S:dimS =k} {zeS:|lz|l2 =1}
= max min (x, Ax). (2.38)
{S:dim S = n—k+1} {z€S:|lz|l2 =1}
Proof. Let zq, ..., x, be orthonormal eigenvalues such that
Al‘i = )\ifﬂi, Vp S {1, ey n}

Let S be a subspace of C" such that dimS = £k, and let &’ =
span{z,...,x,}. Since dimS +dimS" = k+n—k+1) = n+1,
dimS NS > 1, which means {z € SNS : |jz]ls = 1} # . From
Rayleigh Theorem, we get

= min  (z, Az) = inf (x, Ax).
{zeS":||z||2 = 1} {zeS"||z||]2 = 1}
Remark [2.2]1eads to
A = inf (x, Ax) < inf (x, Ax)
{zeS"||z||2 = 1} {z€SNS":|jz||2 = 1}
< sup (x,Ax) < sup (z, Az).
{zeSNnS"||z||2 = 1} {z€S:|z|]2 = 1}

Optimizing over all subspaces S of dimension &, we conclude that A\, <

inf sup (x, Azx). It remains to prove there is equality for
{S:dim § = k} {zeS:||z||2 = 1}

some subspace S of dimension k. Choose S = span{z, ..., x;}. In that
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case, (ry, Ary) = M\, and we obtain the equality and that leads to

A = inf sup  (z,Az) = min max  (x, Az).
{S:dim S = k} {z€S:||z||2 = 1} {S:dim S = k} {z€S:||z||]2 = 1}
(2.39)
Let B = —A. Then B is a Hermitian matrix of size n x n with eigenval-
ues
)\min = _)\n < _>\n—1 < ... < _>\2 < _/\1 = )\max'
Applying (2.39) to the matrix B,
X\ = min max  (z,(—A)x)
{S:dim S = n—k+1} {ze€S:||z|]2 = 1}
= — max min  (z, Az),
{S:dim S = n—k+1} {z€S:||z|]2 = 1}
which is the same as
A = max min (x, Az).
{S:dim S = n—k+1} {z:z€S:||z||]2 = 1}
O]

A remark from Linear Algebra is

Remark 2.3. If §3; is a eigenvalue of P, then 1 — 3; is a eigenvalue of
A = I —Pand 1+ j;is a eigenvalue of B = [ + P, with the same

eigenvectors.

In this chapter, we will denote the | X| eigenvalues of P by

Bo > B = ... = Bixj—2 = Bix|-1-

In view of the remark above, the corresponding eigenvalues of I — P are

1=Fp < 1=p1 < - < 1=Px2 < 1= Px-1,
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and the corresponding eigenvalues of [ + P are
L+ fxr < 14 Bx2 < - <146 <1+ 5.

The next result connects the eigenvalues of transition matrices with
Dirichlet forms via the Courant-Fisher Theorem (Theorem [2.2).

The next result connects the Dirichlet forms directly with the spec-
tral gap.

Proposition 2.21. The spectral gap v = 1 — [; > 0 satisfies

i D
rerx Var.(f)’
Var ()70

where Var.(f) = E.[(f — E:[f])*] = (f — Ex[f]L, f — E.[f]1).

Proof. Recall that the vector space ¢2(X) defined in the beginning of
this chapter contains an orthonormal basis of eigenfunctions ¢;,0 <
i < |X|— 1. Therefore,

| X]-1

f="> {fe)nps (2.40)

=0
From Proposition [2.15] ¢, = 1, and we have

E-[f]1 = ) f(x) 1-7(z) = {f.0)x. (2.41)

rzeX

Subtracting (2.41) from (2.40),

| X]-1

F=EfIL = ) {f.00)n05

J=1

Computing the inner product (-, ). of each side of the equation above
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with itself results in

|X]-1 |X]-1

(f = EalfIL, f = Ealfllr = (3 (Fr0i)eess 2 (Fsomdaom)

j=1 m=1 T

|X[-1]X]-1

= YD o)l fr pmdnl Py Pm)n

j=1 m=1

Since ¢;, 0 < j < |X|—1is an orthonormal basis of /2(X), we get
(@), Om)x = 0;m. Recalling Var.(f) = (f — E:[f], f — Ex[f])~, then

| X]-1 |X|-1

Var (f) = > (fenellieie = > (fr9i)0)"

j=1 j=1

Moreover, from Definiton [2.3| and (2.40)),

x| IX|-1
= < Z <fa 90]>7T(] - P)Spﬁ Z <f’ S0m>ﬂ,(pm>7r
[]-1 P
_ < Z (fr o)L= B)es D (f, SOm>’r90m>7r
1X|—1|X|-1
— Z D (=B 00w fr Pm)n(Pss P

Again, from the orthonormality of the eigenfunctions,

|X|-1 |X|—1
E(f.f) = Z(l—@)(f,m(f,m = Z(l—ﬁ»«f,sojm?.

Since $y = 1 and the eigenvalues are in descending order,

|X]-1

E, 1) = D (=B8] 05)x)

J=1
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|X]-1

> D (1=B){f,95))

J=1
|X]-1

= (1=51) Y ({(fren)a)

J=1

= yVar,(f),

which is the same as

) < &, )

Var,(f)

It remains to prove there is equality for some non-constant function
f € R¥ . Choosing f = ¢,

|X|—1 |X|—1
Var.(f) = Z(<f,s0j>)2 = Z((Qpl,@j»Q = 1,

and
|X|-1 |X|—1

E(f.f) = Z(l—ﬁj)(<f,¢j>w)2 = Z(l—ﬂj)(m,%mz = 1-pi=7.

In other words, the minimum of &(f, f)/Var,(f) is attained if f = ¢;.
O

2.5 Comparing Dirichlet Forms of

two Markov Chains

This section develops a geometric bound between Dirichlet forms
of two Markov chains. Let P, P to be reversible Markov chains on the
finite set X, which stationary distributions are 7, 7, respectively. In the
following applications, (P, 7) is the chain of interest and P is a auxiliar
chain with known eigenvalues. For each pair = # y with P(z,y) > 0,
fix a sequence of steps o = z,21,29,...,2x, = y with P(z;,z,41) > 0.
This sequence of steps will be called a path ~,, of length |v,,| = k. Set
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E = {(z,y): P(x,y) > 0}, E = {(x,y) : P(x,y) > 0} and E(e) = {(z,y) €
E:cc Yay}, Where e € E. In other words, E is the set of “directed
edges” for P, E is the set of “directed edges” for P and E(¢) is the set of

paths that contain e.

X2 xs3
- ------- e
/ \
) e
7/ \
/ A
/ \
/ AY
I ¢ » Ly
\ //
\ /
\ /
\ /
P(z,z1) >0 S
/
x Yy
P(z,y) >0

Figure 2.1: Illustration of a path ~,,. Positive probability by P and P
are indicated by dashed and continuous segments, respectively.

Theorem 2.3. Let P, P be reversible irreducible Markov chains on a fi-
nite set X, which stationary distributions are =, 7, respectively. Then, for

any
feRY, E(f, f) < AE(F, f), with

> hwlf@Pley)} >0, (242)

(z,y)€E(z,w)

where &(f, f) and & (f, f) are the first Dirichlet forms with respect to P

and P, respectively.

Proof. Proposition leads to

F =5 3 (@)~ f0)() Pla,y).

z,y €X

For each pair z # y with P(z,y) > 0, fix a sequence of steps
Ty = T,x1,Ta,...,T, = y, with P(z;,z,41) > 0. Let v,, be this path.
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For an edge ¢; = (zj,2;41) € E, let f(e;) = f(x;) — f(z;41). We make the

following remark:

Remark 2.4.
fla)=fly)= > fle).

ee’Yzy

Note that if some path v,, contain a loop, the sum of the values
of f in the edges of the loop will be zero. Therefore, we may assume
without loss of generality that there is no path containing loops. From
the Cauchy-Schwarz inequality, we get

(S 15@) < (X 2)(X £P) = hal 3 5P

€ € Yoy e € Yoy e € Yoy €€ Yoy

Plugging this with Remark

(F@) = f@)° <l D 1f ) (2.43)

€€ Yoy

Replacing (2.43) in the expression of &(f, f), we get

FUN <5 Y hnlt@Pley) Y If@F

T,y exX €€ Yoy

Applying Fubini’s Theorem,

Y i@ Ply) Y 1P =Y If@P Y huli@)Pey),

ry €X €€ Yoy EZ(Z,UI)GE Yzy D €

which leads to

EiN<y X U@ Y hali@Py)

e=(z,w)EE Yy D€
1 7(2)P(z,w) e E
=3 > \f(€)|2m > (@) Pla, y).
e=(z,w)EE ’ Yzy 3 €

In the equality above, we multiplied and divided each term by the pos-
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itive number 7(z) P(z,w), where e = (z,w). Therefore,

é@(ﬂf)s%e(;)GE|f<e>|2w<z>P<z,w>mm§;€my|ﬁ<x>ﬁ<x,y>
<3 X PP
<o { o pe )
-2 T U fwPnPw
SEPICCRHDRCEE
s

The equality (x) holds because if (z,w) ¢ E, then P(z,w) = 0 and the
pair (z,w) does not contribute to the sum. O

There are some subtleties in the analogous result for .. While &
deals with a difference (see Proposition [2.19), .7 deals with a sum (see
Proposition [2.20). That changes the scheme which leads to a telescopic
sum along a path: it is required an odd number of edges in each path.

Indeed, for z,y € X with P(z,y) > 0, let 7}, be a path with | | odd.
For e € E, set E*(e) = {(z,y) € E : e € Y2y }- Now, we cannot rule out
the possibility of repeated edges along v;, . Indeed, if 7;, contains a loop
with a odd number of edges, the removal of the loop would change the
parity of |7}, |. Thus, we set

ray(e) = [{(bi, biv1) € 7z * (bi, biga) = €e}.

In this way, 7,,(e) is the number of loops in v;, which contain the edge
e. See Figure [2.2/for a illustration.
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Y
Y

AN
/N4
(&

Figure 2.2: Illustration of a loop. Note that r,,(e) = 2, since the path
passes twice by the edge e.

Theorem 2.4. Let P, P be reversible irreducible Markov chains on a fi-
nite set X, which stationary distributions are =, 7, respectively. Then, for
any

[ ERY, Z(f,[) < AZ(f, f), with

1
A* = max

(z,w)eE {W Z sz(z7w) |fy;y| ﬁ-(x)ﬁ)(xvy>} >0,

(z,y)eE* (z,w)

(2.44)
where Z(f, f) and Z(f, f) are the second Dirichlet forms with respect
to P and P, respectively.

Proof. Proposition leads to

FUD =3 Y (@) + 1)) Pla.y).

z,y €X

For each pair =z # y with 15(:1073/) > 0, fix a sequence of steps
Ty = T,T1,Tg,..., T = Y, With P(x;,2,4,) > 0 and k odd. Let 7}, be
this path. For an edge ¢; = (z;,z;41) € E, let f(e;) = f(x;)+ f(xj11). We
make the following remark:

Remark 2.5.
F@)+ )= > (1) f(e;).

€j e’}';y
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From the Cauchy-Schwarz inequality, we get

(S Cwse) < (8 ) (X fer)

€5 €72y €5 €zy €j €vay

=17l D 1)

€ €5y

Plugging this with Remark

=5 3 (X V) 5@y (@245)

z,y €X €5 €5y

Replacing (2.45) in the expression of .Z (f, f), we get

zy €X € €Yy

Recall that r,,(e) = [{(bs,bir1) € 75, © (bi;0i41) = e}, for each edge
e = (z,w) € E, . This term is important in order to count the number of
loops in 7}, which contain (z,w). Applying Fubini’s Theorem,

> g lr@)Plr,y) Y 1f(e)

z,y €X €€ Vzy
= Y 1@ D ray(z w7 (@) Pz, y).
e=(z,w)EFR Vay D€

FN <y 3 OF Y ralew)h, i) Py

e=(z,w)eE Yiy D€
1 m(z)P(z,w) . -
= 5 Z |f(e)|2m Z T:B?J(’Z?w”’)/xy’ﬂ-(x)P(x?y) :
e=(z,w)eEE ’ Vay D€

In the equality above, we multiplied and divided each term by the pos-
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itive number 7(z) P(z,w), where e = (z,w). Therefore,

F(.0) < (Z> |f<e>|2w<Z>P<Z=w>m

< D2 Tl 0l ) P y)

I
§§ Zw VP(z,w)

1 )

X max §——~———~ Z Twy(zaw)hiyﬁ(x)P(l"y)

(Z“’)EE{ BPE) e }
=2 Y PP w)

e=(z,w)EFE

9 A S () + S () Pl )
=AZ(f,f)

The equality () holds because if (z,w) ¢ F, then P(z,w) = 0 and the
pair (z,w) does not contribute to the sum. O

As an example, we will apply Theorems [2.3] and [2.4] to the case
where P and P are simple random walks associated to two undirected
graphs 4 = (X,E) and 4 = (X, E) on the same finite set X. Then, if
d(z) and d(x) are the degrees of z € X, we have 7(z) = d(z)/|E| and
P(z,y) = 1/d(z) if (z,y) € E, P(xz,y) = 0 otherwise. Analogously, we
have 7(z) = d(z)/|E| and P(z,y) = 1/d(z) if (z,y) € E, P(z,y) = 0
otherwise. Besides,

)= % S5 () — Fw)) () Plaw)

zeX yeX
_1 Z 2ML
A, )8 @)

Z»f

(z,y)EE
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It follows that the constant A in Theorem is

1 N
A= AP~ m(z)P
(gvz)igE {W(Z)P(z, w) Z Yy |7 (2) P, y)}
(z,y)€E(2,w)
| E]d(x) J(a:)
= max Ve
(z,y)EE(z,w)

= EQ%{Z’%M}

Therefore, if we define A = A(P,P) = max.cp { > ) \fyxy\}, we get

= (|E|/|E|)A. More generally, this is a reasonable way to bound A
whenever P(z,w)n(z) does not depend too strongly on (z,w). A similar
analysis can be used for the constant A* in Theorem [2.4}

1 ~
A* = _ P
(gu??E{ﬁ(z)P(z,w) Z Tay(2,0) 1| K@) Ple, )}
(zg)EE*(Z,w)
- |E|d(z) d(x)
- (zr?u??E{ d(z) 2. ralzw) |W|E|J(x)}
(o) e B (20)

5]
ikl 2 rale i)

Then, if we define A* = A*(P, P) = max,cp { D () my(e)\fy;y|}, we have
= (IEI/|E)A.

Proposition 2.22. Let P, P be reversible irreducible Markov chains in
X. Denote the eigenvalues of the matrices P and P by (; and Bz’; 0 <
i < |X|— 1. Then they may be written in descending order, such that

1=05 > b =2 ... 2Pxj-1=>—1

1= 6y > B > ... ZB|X\712—1-

The following assertions hold.:
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a) If there is a positive constant A such that & < A&, then

1 -
@Sl—z(l—@), 1 <@ < [X]—-1,
where & and & are the first Dirichlet forms with respect to P and P,

respectively.

b) If there is a positive constant A* such that F < AZ, then

1 5
ﬁz‘Z—l—i‘%(l‘i‘ﬁi); 1 <i < [X[-1,

where 7 and ¥ are the second Dirichlet forms with respect to P and

P, respectively.

Proof. a) Leti e {1,2,...,|X|— 1}. Let S be a vector subspace of dimen-
sioni+ 1. & < A& leads to

(x,(I — P)x) < Alx,(I — P)x),Yx € S : ||z]|ls = L.

Taking the maximum in both sides of the inequality over the set
{x e 8 :|lz|l = 1}, we get

max z, (I —P)z) < A max x, (I — P)x).
{$€5:lel2=1}< ( Jv) < {rESZIIxH2=1}< ( )2)
Since S is an arbitrary subspace with dimension i + 1, taking the
minimum over all the subspaces S with dimension i + 1,

min max  (z,(I — P)z),
{S:dim S =i+1} {zeS:||z|]2 =1}

max  (z, (I — P)x).

< A min
{S:dimS =i+1} {zeS:|z|l2 =1}

From Theorem we conclude that 1 — 3; < A(1 — ;). Rearranging
the inequality, we have

1 _
Bi < 1—2(1—@‘)-
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b) Let i € {1,2,...,|X| — 1}. Let S be a vector subspace of dimension

1+ 1. F < A*% leads to

(x,(I + P)x) < A(x,(I + P)x),Vzx €S : ||z|ls = 1.

Taking the minimum in both sides of the inequality over the set
{r e S:|lz|l = 1}, we get

min z,(I 4+ P)z) < A* min x, (I 4+ P)x).
{a:ES:Hx||2=1}< ( ) > {J:ES:HxH2=1}< ( ) >

Since S is an arbitrary subspace with dimension 7 + 1, taking the

maximum over all the subspaces S with dimension i + 1,

max min (z,(I + P)x),
{S:dim S =i+1} {z€S:||z|l2 =1}
< A” max min (x,(I + P)x).

{S:dimS = i+1} {z€S: [jz|l» = 1}

From Theorem we conclude that 1+j; < A*(1+ ;). Rearranging
the inequality, we have

O]

Proposition 2.23. Let § = min, ¢ x{d(z)/d(z)}. On the Markov chains
defined above, it holds that

J < ) .
A+ —(1+8) <B <1——(1-F),1 <i < |X|—1.
F o+ A) <8 <1-20=F) 1 <0 < IX]
Proof We may express |F| and |E| in function of d(z) and d(z), respec-
tively:
1
B[ =35> d(), (2.46)

zeX
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and

|E| = % > d(x). (2.47)

zeX

Since 0 = min, ¢ x{d(z)/d(x)}, we get

d(x) > 6-d(z),Vo € X.
Applying this inequality in (2.47),

B = %ZJ@) > %Za-d@). (2.48)

zeX reX

Dividing (2.48) by (2.46), we get

=l %ZxGX 0- d(&?)
’ ’ B %erX d(:r)

Since A = (|[E|/|E|)A, ifi < |X|— 1, Proposition leads to:

1 - B . b .
ﬁiﬁl——(l—@)—l—mz(l—@)Sl—z(l—ﬁi)-

E
|E] _s

N

Since A* = (|E|/|E|)A*, if i < |X|— 1, Proposition [2.22|leads to:

1 . |E| 1 . B .
ﬂi2—1+E(1+5i)_—1+EA*(1+@)2—1+A*(1+ﬁi).

]

Proposition 2.24. Let P = 1/|X/|, each entry of P is equal to 1/|X|.
Then, the | X| eigenvalues of P are

Bo=1; 05 = o= ... = Bixj-1 = 0.

Proof: Let w be the vector given by w(z) = 1, Vo =1 ..., |X]. We
obtain Pw = l.w, then 8, = 1 is eigenvalue of P. Let W = span{w}.
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since dim W = 1, dim W+ = |X| — 1. Let v € W+. Then,

0 = (v,w) = Zv(m)w(m) = Zv(x).l = |X|- Pv.

zeX rzeX

Therefore, W+ is the eigenspace associated with the null eigenvalue.
This implies P has n — 1 eigenvalues equal to 0. O

Proposition 2.25. Let P be the matrix of the simple random walk in
a complete graph (without loops), that is, each entry of the principal

diagonal of P is null and the rest of the entries are equal to =T X‘ -. Then,
the | X| eigenvalues of P are

- - " ~1

Bo=1; 01 = b= ... =fx-1 = X]—1
Proof. Let w be the vector given by w(z) = 1, Vx =1 ..., |X|. We

obtain Pw = 1.w, then 8, = 1 is a eigenvalue of P. Let I be the identity
matrix of size | X|x |X|and A = 15 +x—7/- Thisleads to A = that
is, each entry of A is equal to

|X\ L

IX\ r

0= (vw) = Y vE@w) =Y v)l = (X]-1) Av.

zeX zeX

Therefore, W+ is the eigenspace associated with the null eigenvalue
and A has 0 as a eigenvalue of multiplicity n — 1. This implies P has

n — 1 eigenvalues equal to O

IXI L

Proposition 2.26. Let ¥ = (X, E) be a undirected connected graph.

The non-trivial eigenvalues of a random walk over (X, F) satisfy:

where
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with
ren(€) = {(bisbinn) € 3, * (b bis) =}, d=maxd()

and the paths 7., v;, are defined considering the complete graph with

vertices in X, with a loop in each vertex.

Proof. Let 4 = (X, E) be the corresponding graph to P = 1/|X|. Note
that from the definition of P, ¢ is the complete graph, with a loop in
each vertex.
Therefore, the number of edges E in ¢ is
- XX+ 1)

|E| — g (2.49)

For |E| we have the expression

1 1 d|X|
— - < = = 22 .
B 22(1(35) < 2Zd : (2.50)
zeX zeX
Dividing (2.51) by (2.52),
|E| XX+ 2 X[+ X
B © > dX] i~ d
Proposition [2.24 leads to §; = | Xil, Vi > 1. From Proposition [2.22,

since A = (|E|/|E])A,if1 <i < |X]|—1we get

. B
B < 1-5(1-B) = 1—%%(1—0) <

_ KXl
dA -
From Proposition [2.22, since A* = (|E|/|E|)A*, if 1 <i < |X|—1 we
have
E] 1

1 ~
o> _ ) — 1!
B > 1+A*(1+@) 1+|E|A*

| X
1+ > 14 —.
( 0) > "
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Proposition 2.27. Let ¥ = (X, E) be a undirected connected graph.

The non-trivial eigenvalues of a random walk over (X, F) satisfy:

| X| -2 | X|
-1 < B <1-2d
taa SOhs1I- A
where
A =max {3 my@hnl} A =max{ 3 ),
VayDe Yoy €
with

Tay(e) = [{(bi, biv1) € 7yt (b3, big1) =€}, d= glg?d(x)-

and the paths 7., v;, are defined considering the complete graph with
vertices in X, without loops in the vertices.

Proof. Let ¥ = (X, E) be the complete graph (without loops).
Therefore, the number of edges E in ¢ is

LEIGED) .50

For |E| we have the expression

1 1 d| X]|
1B :§Zd(x) < §Zd = (2.52)
zeX zeX
Dividing (2.51) by (2.52),
Bl IXI0X]-1) 2 |X|-1
|E| — 2 d| X| d =
Proposition [2.25| leads to 3; = | X“l_l, Vi > 1. From Proposition [2.22]

since A = (|E|/|E])A,if1 <i < |X]|—1we get

1 . E| 1 -1 RY
<1 —(1-f) = 1= (= <120
fis1-z0=8) =1 |E]A<1 |X|—1> = 1=
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From Proposition [2.22] since A* = (|[E|/|E|)A*, if 1 <i < |X|—1we
have
|£] 1

B > —1+4—(1+f) = _HEE(H

~1
[ X1 =1

[ X] -2

) z ~1+ A

]

These previous results are important to estimate the non-trivial
eigenvalues of a Markov chain, by comparing a given Markov chain
with the random walk in the complete graph. Now we will compute
exactly the eigenvalues of a known example: the simple random walk
on the n-cycle. Let | X| =Z, = {0,1,--- ,n— 1}, the set of the remainder

modulus n. Consider the transition matrix

1/2, if k=j+ 1(modn),
P(j,k) = ¢1/2, if k=j— 1(modn),

0, otherwise

Explaining this chain in words: the n states of the chain are equally
spaced dots arranged in a circle. At each step, a coin is tossed. If the
coin lands heads up, the walk moves one step clockwise. If the coin
lands tails up, the walk moves one step counterclockwise.

Proposition 2.28. The n eigenvalues of the simple random walk on the
n-cycle are cos(%), where 0 < j < n—1

Proof. In order to compute the eigenvalues of P, we see this chain in the
complex plane. Let w = ¢*/™. Then, the set W, := {1,w,w? - - ,w" '}
of the n-th roots of unity forms a regular n-gon inscribed in the unit

circle. Since w" = 1, we have

wkw] — wk+] — w(kJrj) mod n

Hence, (W,,-) is a cyclic group of order n, generated by w. Let z =
(20, -+, zn—1]T € CXI: that column is associated to a function f of W,, on
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C,with z; = f(w/),V0 < k < n—1.Fix0 < k < n—1. Computing
the k-th entry of the product of the matrix P by the column z:

FhH) + f@h)

(Pz)k = (P[f(w0)> T 7f(wn71)]T)k = 9

In particular, if z is an eigenvector of P and [ is the corresponding
eigenvalue, we have

(Pz)e = (Bz)e = (BLF(w°), -+, F@" D] )i = BF(WF).

Foreach 0 < j < n —1, define

Ji(Wh) = W, (2.53)
The associated column to f; is z; = [f;(w?), fj(w!), -, fi(w™ V)T =
(WO, W - W DIT Seja 0 < k < n — 1. Computing the k-th

entry of the product of the matrix P by the column z;:

fi(@) + £
: .

(Pzj)x = (Pf3(w°), -, fi(" D] =
Applying (2.53), we get

(Pzj)p = 5 = wh 5

kj+i kj—j Wl —j 9mi
w +w w! +w :cos<ﬂ>fj(wk).
n
Therefore, the n eigenvalues of P are cos(%), where() < 5 < n—1. O
For an illustration of the results obtained, we shall apply Propo-
sition and Proposition [2.26|in a particular example: the simple
random walk on the triangle. In this case, since n = 3, from Propo-

sition [2.28], the eigenvalues of P are cos(%%%) = 1, cos(%l) = —1 and
3 3

2
cos(32) = —1.
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Figure 2.3: Simple random walk on the triangle. Each transition occurs
with probability 1/2.

In the notation of Proposition [2.25] we have | X| = 3 and d = 2. Also,
{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)} is the set E of the directed edges.
In order to compute A and A*, we define respectively v,, and ~;,, for
each pair (z,y). Our aim is to achieve the sharpest bounds for the
eigenvalues [3;, then we must minimize A and A*, which is the same as
minimize |v,,| e [7},]. Recall |y;, | is always an odd number. In this way,
with the following additions modulus 3:

- {(x,y)}, if T #y,
! ((e,z+1),(x+1L,2), if z=y.
{(z,9)}, if =#y,

T {(z,z+1),(z+ 1,2+ 2),(z+2,2)}, if z=y.
Note that r,,(e) = 1, for every edge ¢ in E, that is, no path v}, walks
for some edge more than once. Depending of the auxiliar graph P, we
obtain different expressions which estimate the eigenvalues of P.
Case 1: we consider P as the complete graph with three vertices,
without loops. In this case, we define v, if z # y and 7}, if z # y. Then,
A =1 and A* = 1. Proposition [2.27|leads to

3-2

X| -2 1
e =—5 < B <1-

-1
+ dA* 2.1

Case 2: we consider P as the complete graph with three vertices,

with a loop in each vertex. In this case, we define ., if  # y and 7},
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for every z,y. Then, A = 1 and A* = 3. Proposition leads to

X 3 1 X 3 1
~1 = l+—=-<pg <1-log- 2 =2
A Tag= g S A S 17gR 21 2

Note that in our particular example, the estimates provides exactly the
eigenvalues of P.

2.6 Comparing Dirichlet Forms via Flows

Many variations on Theorems [2.3| and are possible; we now de-
scribe one of them. Suppose we are in the situation of Theorem
and want to compare the Dirichlet forms & and & of two reversible
Markov chains on the finite set X, which stationary distributions are
7, 7, respectively. It often happens that there is more than one path
Ty = X,%1,Ta,...,2, = y with P(z;,z;11) > 0) between z and y such
that P(x,y) > 0 (i.e., (z,y) € E). Let ., be the set of all paths con-
necting = to y as above and set & = U(w) c i Py Also, for e € I, let
Ple) ={ye€ P :ec v} Afunction f on Z is called a flow, or more
precisely a flow (P, P) if

> f(y) = P(x,y)i(a). (2.54)

VEP 2y
The proof of Theorem [2.3]yields immediately the following theorem:

Theorem 2.5. Let P, P be reversible Markov chains on a finite set X,
which stationary distributions are w,7, respectively. Then, for any
g € RX and any (P, P) flow f, £(g,9) < A(f)&(g,9), with

A = max {—ps pl(z,w > i) (2.55)

v € Z(z,w)
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Proof. Proposition leads to

. 1 .
(9.9) =3 > (g(z) — g(v)*7 () Pz, y).
z,y €X
For an edge ¢; = (zj,z,41) € E, let g(e;) = g(z;) — g(z;4+1). For each pair
x # y with P(z,y) > 0, we make the following remark:
Remark 2.6.

9(@) —g(y) = gle),Vy € Py

eecy
Note that if some path ~ contain a loop, the sum of the values of ¢
in the edges of the loop will be zero. Therefore, we may assume with-
out loss of generality that there is no path containing loops. From the

Cauchy-Schwarz inequality, we get
2
(Y 1-9@) < (X 12) (X a(e?) = hI Y lgle). vy € 2.
eecy ecy ecy ecry
Plugging this with Remark

(9(x) = gW)* < 71 D lg(e)*, Yy € Py

eecy
We have such an inequality for each path v € #,,. Summing all of

them,
| Pyl (g() < > D lg(e)]

YEPzy ecry

which is the same as

> Y late) (2.56)

(9(z) — gly |
xy YEPzy eEry

Replacing (2.56) in the expression of &(g, g), we get

S D lgle) ) ) P(z,y).

YEP 2y ecy

1
fon =g 2 <|%y|
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Since f is a flow, (2.54) leads to

S0.0<5 Y 5 2 1o Y o)

z,y €X ecy CEP 2y

Putting 1/|%,,| and |v| inside of the fourth and third summations, re-
spectively,

g% > > Y hleer{ 3 ‘J;)Z\}'

z,y EX yE€EPzye €Y CEPry

The term ..., f(¢)/|Z%4,| is the mean value of the flow f in &#,,.
Therefore,

> ¥ Yhlser{ X A - S ¥ S hlserso

T,y EX yEPpye €y CEPwy T,y EX yEPpye €Y

Applying Fubini’s Theorem,

SN S lg@PRFe) =D g Phif(r

x,y EX yeEPpye €Y eeEv3e

which leads to

<33 S e Phlf)

ecEv>e
1 o (2)P(2z,w)
D ILC e = SO
e=(z,w)eE v € P(zw)

In the equality above, we multiplied and divided each term by the pos-
itive number 7(z)P(z, w), where e = (z,w). Therefore,

Sa9<s X OPEPEw s > hIf)
e=(z,w)eE ’ v e P(zw)
< 9(e)Pr(2) Pz, w)
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* wrer {m > b}

v € Z(zw)
— A S (o) - 9w Pew)
e=(z,w)EE
22D S (o) - gw)) () Pz, w)
= A(f)€(9,9).

The equality (x) holds because if (z,w) ¢ E, then P(z,w) = 0 and the
pair (z,w) does not contribute to the sum. O

As in the previous section, there are some subtleties in the anal-
ogous result for .#. While & deals with a difference (see Proposition
2.19), .7 deals with a sum (see Proposition [2.20). That changes the
scheme which leads to a telescopic sum along a path. It is required an
odd number of edges in each path.

Suppose we are in the setting of Theorem [2.4] and want to compare
the Dirichlet forms .#% and .# of two reversible Markov chains on the
finite set X, whose stationary distributions are =, 7, respectively. It
often happens that there is more than one path zy = =, 21,25, ..., 2, =y
with P(z;, z;41) > 0) between z and y such that P(z,y) > 0 G.e., (z,y) €
E) and containing an odd number of edges. Let 7;, be the set of all
paths connecting x to y as above and set 22* = U(I’y) c i 75, Moreover,
fore € E, let Z*(e) = {7* € &* : e € v*}. A function f* on &7* is called

a flow, or more precisely a flow (P, P) if

> () = Pla,y)i(x). (2.57)

T ET S,

Now, we cannot rule out the possibility of repeated edges along ~*.
Indeed, if v* contains a loop with a odd number of edges, the removal
of the loop would change the parity of |y*|. Thus, we set

ro(e) = [{(bi, biv1) € v* : (b, biga) = e}|.
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In this way, ., (e) is the number of loops in v* which contain the edge
e. The proof of Theorem [2.4]yields immediately the following theorem:

Theorem 2.6. Let P, P be reversible Markov chains on a finite set X,
which stationary distributions are w,7, respectively. Then, for any
g € R* and any (P, P) flow [*, #(g,9) < A*(f).F (g, 9), with

® (PR 1 * *
A= (;Igvg)ié{E {W(Z>P(Z,w) - 6;(2 w) rr@wlrifo )} (2.58)
Proof. Proposition leads to
" 1 o
F(9.9)=5 D (9(2) + 9(v)*7(2) P(x,y).
zy €X

For an edge ¢; = (z;,x;11) € E, let g(e;) = g(z;) + g(xj11). For each pair
x # y with P(z, y) > 0, we make the following remark:

Remark 2.7.

9(@) +9(y) = > (=1Yg(e;), V" € P,

ej € y*

From the Cauchy-Schwarz inequality, we get

(X W) < (X (0)) (X se))
=Y lge))P vy € 2,

ee€vy*

Plugging this with Remark

(9(2) +9)* <V Y lgle)l’ ¥ € 25,

ecy*

We have such an inequality for each path 7* € &7 . Summing all of
them,

(25 \(g(@)+ ) < Y ) lae)l,

VEPSy e € y*
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which is the same as

(9(z) + g(y))* <

> Y lete) (2.59)

| ’76] e e y*

Replacing (2.59) in the expression of .Z (g, g), we get

ﬁgg_QZ Zme )[*7 () P(z, y).

:cyeX| 'ye;@ e €y

Since f* is a flow, (2.57) leads to

Fo9<y Y AP NOREDSNA(SIS

T,y €X | VEPZy ecy* QIS

Putting 1/|27;,| and |y*| inside of the fourth and third summations,

respectively,

F(9.9) <—Z > > llgle) {

T,y EX y* €y, e€v* CrePx

zy

The term } . P, f*(¢*)/12;,| is the mean value of the flow f* in &} .
Therefore,

>3 Y Wllse)Rd

zy EX Y EPF e * QIS

=2 D> > lg@Pre.

z,y EX y*EPF e €*

For each edge e = (z,w) € E, recall that r.«(e) = [{(b;,bi11) € +*
(bi, biy1) = e}|. This term is important in order to count the number of
loops in v* which contain (z,w). Applying Fubini’s Theorem,

ST S l@PH () =D D mee)lgle) P (),

zy EX Yy EPE e€* eeEv*Se
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which leads to

Flog <y Y loleP e (5 w1 ()

In the equality above, we multiplied and divided each term by the pos-
itive number 7(z) P(z, w), where e = (z,w). Therefore,

The equality (x) holds because if (z,w) ¢ E, then P(z,w) = 0 and the
pair (z,w) does not contribute to the sum. ]



Chapter 3

Spectral Gap for Zero-Range
Dynamics

3.1 Introduction and Results

In this chapter, we detail the paper [4], which adapts Lu and Yau’s
method [6] to the context of symmetric zero-range processes, in order
to achieve the spectral gap for such model.

In contrast with the previous chapter, the space state here (to be de-
fined below) is not only infinite, but also uncountable. For this reason,
it is necessary a new definition for the spectral gap, which will be de-
scribed as a lower bound of the spectral gap for the dynamics restricted
to a finite cube of volume n?. Lu and Yau’s method can also be applied
in order to estimate the spectral gap in general finite-volume settings,
such as the torus Z4,.

The symmetric zero-range processes consist of infinitely many par-
ticles moving on the lattice Z? according to a Markovian law. The
evolution of the particles may be informally described as follows. De-
note by N the set of non-negative integers, fix a non-negative function
¢: N+ R, such that ¢(0) = 0 < ¢(i) fori > 1 and fix a symmetric
transition measure p( - ) on Z?. If there are k particles at a site = of
72, one of them jumps to y at rate c(k)p(y — x). This happens indepen-

80
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dently at each site. To clarify ideas, we shall consider in this chapter
only nearest-neighbor interactions: p(z) = 1/2d if |x| = 1 and p(z) = 0,
otherwise.

At this point, some notation is required. The sites of Z¢ are denoted
by z, y and z, the space state N2 by the symbol ¥ and the configurations
by the Greek letters n and . In this way 7, stands for the total number
of particles at site x for the configuration 7.

These so-called zero-range processes are Markov processes with in-
finitesimal generator L defined by its action on functions
$:Y =R

where

provided 1, > 1 and = # y; otherwise, n*¥ = 1. A simple (and useful)

remark is

Remark 3.1. If n € %, 2,y € Z% and n, > 0 then

(e =

To ensure that the process is well defined on the infinite lattice X
we shall assume throughout this chapter a Lipschitz condition on the

rate:

Hypothesis 3.1.

sup |c(k 4+ 1) — c(k)] < a; < 0
k>0
As a conservative system where particles are neither created nor
destroyed, it is expected that this process possesses a family of invari-
ant measures supported on configurations of fixed density. In order to
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describe these measures, define the partition function Z( - ) on R, by

2000 = 0 Sy oy

k>0

Z(«) is a series of increasing functions in «, then it is also a increasing
function. Let o* denote the radius of convergence of Z:

a* = sup{o; Z(«a) < oo}

In order to avoid degeneracy we assume that the partition function Z
diverges at the boundary of its domain of definition:

Hypothesis 3.2.
lim Z(«a) = 0.

a—a*

For 0 < a < o, let P,(-) be the translation invariant product mea-
sure on Y with marginals p,, given by

1 ak
oln. =k) = for k>0,ze7z% 3.1
Halle =K) = Zry D) ety o K= 0we @D
An immediate remark is
Remark 3.2. If we are not in the degeneracy case a« = 0, then

Py(n, =7)>0,Vr € Z% r € N.
The next result, related to the measure P,(-), will be useful later.

Proposition 3.1. Ifn ¢ %, 2,y € Z¢ and n, > 0 then

Po(n)c(n) = Po(n™)e((n™),).

Proof. Letn, = a,n, = b, with a > 1. Then ;¥ =a —1,n,Y =b+ 1. We
know that (7®¥), = 1., is z # x,y. Since P, is a product measure of the

marginals p,, we have

Po(n) _  palm)ptalny)  _ pala)  pa(d)
Pa(n™¥)  ta(™)a)ba(m™)y  pala —1) pa(b+1)°
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From (3.1), we evaluate the numerator and denominator in the last two
fractions. The first fraction may be written as

polt) _ Foatem _ Ay deie@ o
mole =) Zomte s arww @)
And the second one as
1 Ctb Olb
Ho®)  Awamewm _ anewm o+ 1)
mab+1) ot D a

Thus, we have

Po(n)  a cb+1) cb+1)  c((1™),)
P,(n=v)  cla) « c(a) c(ng)

Finally, cross-multiplying the first and the last fraction

Po(n)c(n:) = Pa(n™)e((n™),).

We will make use of Proposition [3.1]to prove the following:

Proposition 3.2. P,(-) is a invariant measure. Moreover, it is reversible
with respect to the infinitesimal generator L.

Proof. Since the invariance of P,(-) is weaker than the reversibility
with respect to the infinitesimal generator L, we will only prove the
later property. Expanding (f, Lg)p,

(f,Lg)p. = Y F(n)(Lg)(n)Pa(n)

nex

:Zf(qﬁ(% > c(m)(g(nx’y)—g(n)))

nex ly—z|=1

_%Z > Pa(m)eln) f(mg(n™) (3.2)

neX ly—z|=1
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-3 S Sweln)gtBan).
neY [y—=z|=1

Next, we shall use a convenient manipulation in (3.2) Since ¢(0) = 0,
the terms with 7, = 0 do not contribute to the sum in (3.2). Then we
can apply Proposition [3.1] and we get

330 3 Baen) )

nex ly—z|=1
LSS B el Fr
neY |y—z|=1

LS SR (o)) fongtor)

ly—z|=1nex

In the second equality we interchanged the sums. For each configura-
tion 1 € ¥ which contributes to the sum (i.e., n, > 0), we may associate
exactly one configuration { € ¥ with §, > 0 such that = {¥*. Then,
replacing the variable 7 in the second summation by £¥*, we have

5 SR e ,) fna )

ly—=z|=1neX

=133 B e (@), ) e ()

ly—z|=1&Y7eX

Since each configuration ¢ has &, > 0, Remark[3.1]leads to

DD SR A(CHE) (((5@’@)%@’)1,)f(ﬁy@)g((gww)

|y z|=1&Y*eX

=3 =Y Ye F(€7)g(8)-

\y z|=1&¥%eX

Note that

> Pa(€)c(&) F(E9)g(€) = D Pal€)e(&,) F(€77)g(&).

gures cex
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Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ¢, > 0, and is
trivial that £¥* € ¥ in this case. From this remark, interchanging the
sums:

P Y Y e fE (o)

|y z|=1&¥*eX

=5 > SRl (€ )(e)

Iy z|=1£€X

=—Z > Pal F(€9%)g(8).

ey ly—z|=1

Exchanging = and y leads to

—Z >, P F(€%)g(6)

£€X |y—z[=1
-y > ¥ F(E)g(©).
£ |z—y|=

Then, changing the name of the variable, we have

5 Balneln) S ) = 537 ST Balneln) f07 o).

neX |y—z|=1 neY |z—y|=1

Finally, applying (3.3) in (3.2), we get

(f.Lg)s, Z > B (mg(n™)

nEE ly—=z|=1

—33 S Foengln)Baln)

ne y—z|=1

=%Z > Pa(m)en) f(n™)g(n)

nex z—y|=1

—3 3 3 semglnPa)

neY |y—z|=1

=(Lf,9)p,-
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]

A more intuitive parameterization can be made through the particle
density. Let p(a) be the density of particles for the measure P,:

p(a) = Ea[nol,

where E, refers to expectation with respect to P,. From Hypothesis
it follows that p : [0, a*) — R, is a smooth (strictly) increasing bijection.
since p(«) has the physical meaning as the density of particles , instead
of parametrizing the above family of measures by «, we parametrize it
in terms of the density p and write for p > 0,

P, = Ipoé(p)'

The associated Dirichlet form D,(¢) is defined by its action on functions
¢o:x—R
Dp(9) = =Ep[o(n)(Le)(n)].

Also, from Proposition we have

Remark 3.3. If n € %, 2,y € Z% and n, > 0 then

Pp(n)c(nx) = Pp(nx’y)c((n%%y)-
We shall use this remark to proof the following:

Proposition 3.3. The Dirichlet form D,(¢) can be written as

D@ =5 3 Ey[etm) (o) ~ ow)’].

ly—z|=1

Proof. Expanding D,(¢), we have

Dy(6) = ~E,[o(n) (Le) ()]
=B, |65 Y. cm)(60™) - o(m))]

ly—z|=1
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g | > clan)20(0) (60 - o0r))]

g | 3 o) (000 = 200007 + on)?)]

- 15, p 10(%)(625(77))2]

+1g, | Z| (- 26(n) o))

+ 1, [| Z| o) (o(m)°]. 33

The definition of (L¢)(n) produces the second equality, in the third one
we put —2¢(n) inside the summation and the fourth one comes from
2¢(n)? = ¢(n)? + ¢(n)?. Next, we shall use a convenient manipulation in
(3.3). Writing as a sum, we get

EL Y mem)] =13 X Bt (6m)’

ly—z|=1 neY ly—z|=1

Since ¢(0) = 0, the terms with 7, = 0 do not contribute to the sum in
the right side. Then we can apply Remark [3.3]and we get

EZ > Pp(n)c(m)(cb(n))Q:iZ > B (7)) (6(m)°

neX |y—z|=1 neX |ly—z|=1

LS SR ()

ly—z|=1 neX

In the second equality we interchanged the sums. For each configura-
tion 7 € ¥ which contributes to the sum (i.e., , > 0), we may associate
exactly one configuration ¢ € ¥ with §, > 0 such that n = {¥*. Then,
replacing the variable 7 in the second summation by £¥*, we have

1S SR e, (6()”

ly—z|=1neX



88
=1 XX e )e((@),) (o6
\y z|=1&¥%*eX
Since each configuration ¢ has &, > 0, Remark[3.1]leads to

HD DD DR (k) (((é@)%y)y)(as(gyv%f

\y z|=1&¥-*eX

=1 T Y Bl (5

|y z|=1&¥7€X
Note that
Z IP’ gy x Z IP’ fy fb))
grren ¢ex

Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ¢, > 0, and is
trivial that £¥* € ¥ in this case. From this remark, interchanging the

sums:
1Y Y REAEEN) = X S RO ()’
\y z[=1&vreX |y z|=1 £€X
S )ID (6(6v))".
£EY ly—z|=1

Exchanging = and y leads to

DD o) =1 T (o1¢™)’

£eX ly—z|=1 562 |lz—y|=1

:%EP[ Z C(nw)((/ﬁ(nx’y)f]'

lz—y|=1

The second equality comes from the definition of E,| - |, with a change
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of the name of the variable. Then, we have

E[ S )] = 15[ X o)’ @

ly—al=1 fy=ai=1
Finally, applying (3.4) in (3.3), we get
D,(¢) = %EPL zlj_lc(nx)(cb(n)ﬂ

* EEP | Z_l clns)( —26(m)o(r") |

+ iEP [ y; 1 () (6(n)) |
- 58| X an M

. EE[Z () (= 26(n)o 7)) |

v iEp[y 3 f ¢<nw>>1
= AD> 3 el (o =200t + o)) |
i y%: | (™) = 6(m))].

The last equality comes from the linearity of expectation, which con-
cludes the proof. O

Consider the finite volume, finite particle zero-range process. This
model governs the behavior of K particles jumping about in a finite
cube, say to fix ideas, A,, = {1,2,...,n}% The state space is then given
as Y, x = {n€ ¥: Y .\ n. = K}. For configurations € ¥, x and
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test functions ¢, the generator of this finite process takes the form

1

(Lnx@) () = 5 > cna) [p(n™) — é(n)].

ly—z|=1
z,y€An

The ergodic measures P, x are equal to the conditioned measure of the
infinite volume invariant state on the hyperplane %, x:

PmK(-):]P’p( . ‘an:K). (3.5)

v€hn

From Remark we have

Remark 3.4. If t € A, and r €0,..., K, then P, x(n, =r) > 0.
Also, from Remark [3.3] we get

Remark 3.5. If n € %, k, x,y € A, and n, > 0 then

P i (n)c(n:) = P e (™Y )e((n"Y),).

We shall use this remark to prove the following:

Proposition 3.4. The measure IP,, i defined by the generator L, i above
is reversible.

Proof. Expanding (f, L, xg)p

n,K?

(f, Lnx9)p, = Z S (Lng) ()P k(1)

= Y (5 X el - o)) Bl
A
:% > 2 Pax(mea) f(ma(n™) (3.6)
n€Xy K |y—z|=1
z,yEAy

=5 XS Sl gt ()
n€Xn K |y—a|=1
z,yEAy
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Next, we shall use of a convenient manipulation in (3.6). Since ¢(0) = 0,
the terms with 7, = 0 do not contribute to the sum in (3.6). Then we
can apply Remark [3.5/and we get

5 S Elleln) fn)g(r)

N€Yn, K |y—z|=1
z,yEAy

=2 3 S R e, Fmalr)

NE€Xn K ly—z|=1
Z,YEAR

LSS B el S

ly—z|=1n€Xn K

2y,
In the second equality we interchanged the sums. For each configura-
tion n € 3, x which contributes to the sum G.e., 7, > 0), we may asso-
ciate exactly one configuration ¢ € ¥, x with , > 0 such that n = &¥~.
Then, replacing the variable 7 in the second summation by £¥*, we have

5 Pkl e((7),) Fn)g )

ly—al=1 €S,k
zyEAn

=33 X Rakl@re((E@),) sEegEnr),

‘y x' 1 £y xezn K
z,yEAn

Since each configuration ¢ has &, > 0, Remark[3.1]leads to

5 Pas(@)e( (€, ) s (e

‘y :Bl lgy mezn K
myeAn

=5 Z >, P (&) F(€9)g(8).

|y z' 1£U EZnK
z,yEAy
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Note that
Y Puk(©e(&)f(E)9(6) = > Pur(€)e(€) F(E9)g(€).
EvTed, K €T, K

Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ¢, > 0, and
is trivial that ¢¥* € ¥, i in this case. From this remark, interchanging
the sums:

S Z >, P )F(€9)g(8)

ly x| 1£yx€EnK
myeAn

=2 3 Y P& FE)oe)

|y z|=18€Xn Kk
xyEA

=3 Z D Pui()el&) f(£97)g(9).

§€EnK ly—z|=1
YA,

Exchanging = and y leads to

5 Z > Bux(©)e€) F(E7)g(6)

EGEnK |y {E| 1
z,YyeENy

=3 Z > Puk(€)e&) FE)g(6).

§€2n1< |lz—y|=1
CE,yEAn

Then, changing the name of the variable, we have

5 S Balnleln) fn)g(r)

n€EXn K |ly—z|=1
.’E,yEAn

=2 3 S Bmen) fOr (). (3.7)

n€Xn, K ly—z|=1
x7yeA’Vl
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Finally, applying (3.7) in (3.6), we get

oLt =5 O O Pur(ne(n) f(n)g(n™)

WEEH’K ‘y—:r‘:l
LRSI

-3 3 Fem)g P )

NEXy K ly—z|=1
z,yEAp

=2 3 Y Bl fr ()

N€Xn i ly—z|=1
z,yEAy

-5 3 Fweln)gB )

n€Xn K |y—a|=1
z,y€An

= <Ln7Kf7 g>]Pn,K

]

Since the measure P, x is reversible, given two neighbor sites x and
y in A, the probability of a particle jumping from x to y, with x storing
r+ 1 particles and y storing j particles, is equal to the probability of the
reversal phenomenon (which is a particle jumping from y to z, with y
storing j+1 particles and x storing r particles). In mathematical terms,

cr+DP,x(n:ne=r+1n,=5)=cli+1)Purx(n:n,=j+1,n.=r).
(3.8)
This result can be generalized, such as stated below.

Proposition 3.5. Let x and y be two (not necessarily) neighbor sites in
A, given the fixed numbers n, K. If r,j are non-negative integer num-
bers such asr + j+ 1 < K, we have

(r+ DPp (e =r+1,my=7)=cl+ DPur(ny =7+ L0 =7)

Proof. The idea of the proof is going from P, x to P,, taking advantage
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of the last one being a translation invariant measure product. By prop-
erties of conditional expectation, we will get the desired result. From
(3.5), we get

c(r+1)P, x(n, =r+1,n,=j)
:C(T+1)Pp<77x =T+1ﬂ7y=j ‘an:K>
z=1

]P)P(nx =r+1,n =17 Z::1 N = K)
PP(ZZ:l UE K)

=c(r+1)

The second equality comes from the definition of conditional probability
of events. Note that the following is true:

[Wx=T+1ﬂ7y:]aZ77z:K] = [7750 :r+17ny:j7znz :K_T_j_l .

z=1 z=1
2#T,Y

Because of the identity above, we have

)PP<771‘ =r+1mn, :j’zzzlnz = K)
Pp(zzzl N = K)

IP’,,(nx:T+1,ny:j,zzzlnz:K—r—j—1)
zF#x,Yy

Pp(Z::Nk = K)

Pp(ZZ:wz =K—-r—j— 1)
= c(r+ V)P, (1, = 7+ 1)P,(n, = j) LY - . (3.9)
PP(ZZ:I Nz = K)

c(r+1

=c(r+1)

The second equality holds because P, is a product measure. Since
p: [0,a*) — R, is a smooth (strictly) increasing bijection, we may
reparametrize the above family of measures by o = a(p):

c(r + 1>Pp<77x =7+ 1)Pp(77y =j)=c(r+ I)Pa(na: =T+ 1)Pa(77y =7)
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= c(r+ Dpa(ne =7+ Dpalny, = j).

Applying (3.1), we get

c(r + Dpa(ne =7+ 1 palng = 7)

1 a1 1 o’
:C(T+1><Z(a) 0(1)"'C(T+1)><Z(a) 0(1)---0(]'))

r

=c(j + 1)(Z(la) c(1) .Of . c(r)) (Z(la) c(1)- -Oé-JC(j + 1))

Reparametrizing by p = p(a),
c(r+1)P,(n. =7+ 1)P,(ny = j) = c(j + 1)Py(ne = r)Pp(n, = j+1). (3.10)
Replacing (3.10) in (3.9),

Pp(ZZ:lnz:K_T_j_l)

ZF#x,Yy
PP(ZZ:l == K)

Pp(Z::1772 =K—r—j-— 1)
2F#x,y

Pp(ZZ:l . = K>

Pp<77x27“,77y=]'+17222177z:K—T—j—1>

zF#x,Yy
Pp(ZZ:lnz = K>
Py( =y =+ L0 me = K)
Pp(zzzlnz = K)

c(r + 1)PP(771 =T+ 1)]P)p(779 =)

=c(j + 1)Py(ne = 1)Pp(ny = j +1)

=c(j+1)

= c(j +1)

The second equality holds because P, is a product measure, and the
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last one comes from the identity

e =romy =413 0= K| = [ =y =41, ne = K—r—j-1].
z=1 z=1

ZFL,Y

The definition of conditional probability of events and (3.5) lead to

Pp(”ﬂﬁ =TTy :j+ 172::177z = K)

=c(j+ 1)Pp(m =7,y :j+1‘ > .= K)
z=1

c(j+1)

=c(j+ )Py k(N =1my =7 +1).

]

Let E, x be the expectation with respect to P, . We shall use (3.8)
to prove the following:

Proposition 3.6. If x and y are two different sites in A, then

En i lc(me)ny = 7|Pux(ny =7) = c(r + 1)P, (9, =7+ 1),

where E, | - |n, = r] is the expectation with respect to P, k[ - |n, = 1.

Proof. Given two different sites  and y in A,,, we may write the event
[ny, = r + 1] as a union of disjoint events (some of them may have zero
probability).

y=r+1] =) =r+11 =l

=

0

J

Thus, we have

K
P r(n,=1+1) :Pn,K<U[77y =r+1mn :j])

J=0
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K
= ZPn,K<ny =r+1,n :])
=0

Multiplying both sides of the equation by ¢(r + 1)

c(r+ 1P, k(n, =r+1)

]~

c(r + V)P (ny =7+ L1z = j)
0

.
Il

[~

C(] + 1>]P)n,K<77y =T = ] + 1)
0

<.
I

Pn,K(nx =Jj+1Ln = 7)
]P)n,K(ny =)

C(.] + 1) Pn,K(ny = T)

M-

i
o

K
gy =7) Z c(j+ 1Py (e =Jj+1n, =71).

Jj=0

I
<0

The second equality comes from (3.8), in the third one we multiplied
and divided by the positive number P, (7, = r) and in the last one,
we took the constant P, (1, = ) out from the summation and applied
the definition of conditional probability of two events. Note that ¢(0) =
P, k(. = K+ 1|n, =1) =0, then

]~

c(J+ 1Py k(e =7+ 1n,=1)

=0
K-1
=Y c(J+ )P, =Jg+1n, =7)+c(K+1)P,x(n, = K+ 1y, =)
j=0
K-1
= cG+ )Py k(n,=j+1n,=7)4+0
7=0
K
=04+ > c(j)Pur(n. = jln, =)
j=1

= C(O)]P)n,l((nx = 0|77y = T) + Z C(j)Pn,K(nx = j|77y = T)

K
j=1
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K
ZC Ne = jlny =1).
j=

In the third equality, we only changed the summation index. Replacing
the summation in the expression of ¢(r + 1)P,, x(n, =r + 1),

c(r+1)P,x(n,=r+1)

=P, x(n,=71) Z c(J)Pnx (N = Jlny = 1)

J=0

=P,k (ny = 1)Epn k[c(n)|ny = 7].

In the last equality, we used the definition of E, x| - |n, = r]. O

As in the infinite volume process, we can define the Dirichlet form
for the finite volume process by its action on functions ¢ : ¥ — R:

D, i () := —Eni [¢(1) (Ln,x$) (1)].
The Dirichlet form D,, x(¢) can also be written as

Proposition 3.7.

=1 Y Buk[eln) (60) — o)),
ly—=z|=1

Proof. ExpandingD,, x(¢)

Dy (¢) = —E, k [0(0)(Lnxd)(n)]

— B, [oln) Z_l () (B07°) = 6(n))]
iy
_ nK[ > cln)20(m) (6(n) — 6(n")) |
ly—z|=1

z,yEAn
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B iEn,K[ > e(na) (6(n)” = 26(n)e(n™) + ¢(n)2)}

ly—z|=1
1k, [;— ) (6(n)’]
z,yEAn,
" %En,K [l zlz c(n.)(— 2¢(n)¢(nm’y))]
z,yEAn
e, [| §|; c(n.) (6(n)?]. (8.11)
z,yEA,

In the second equality we used the definition of (L,, x¢)(n), in the third
one we put—2¢(n) inside the summation and the fourth one comes from

20(n)? = ¢(n)? + ¢(n)?. Next, we shall use a convenient manipulation in

(3.11). Writing (3.11) as a sum, we get

Eox[ X e em)’] =7 XX Baxneln) (o)
ly—=z|=1 NES, K |y—z|=1

Since ¢(0) = 0, the terms with 7, = 0 do not contribute to the sum in
the right side. Then we can apply Remark [3.3]and we get

1S Pl (6)’

€K |y—z|=1
z,yEAy

=1 3 S R, ()’

ne€Xn K ly—z|=1
z,yEAn

LSS B e(or),) ()

ly—z|=1n€Xn K

T, YyeEAy,
In the second equality we interchanged the sums. For each configura-
tion n € 3, x which contributes to the sum G.e., 7, > 0), we may asso-
ciate exactly one configuration ¢ € ¥, x with , > 0 such that n = &¥~.
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Then, replacing the variable 7 in the second summation by £¥*, we have

% Z Z Pn,K(Tlm’y)C(@m’y)y) (925(77))2

ly—z|=1 1€y K
T yEA

=1 Y X Rl@e((@),) (vle)”

Iy :E‘ 1 gy lezn K
z,YEAp

Since each configuration ¢ has &, > 0, Remark[3.1]leads to

LYY Bl (@), e

lz—y|=18&YT€Xn Kk
T yEA

= LS Y Pas(©)el&) (66)”

|m y|=18&Y*€X, Kk

z,YyEAy
Note that
> Paklé o)) = 3 Pux(€)e(€,) (o(6))".
&'y IEEn K gezn K

Indeed, in both sides of the equality above, the configurations which
contribute to the sum are exactly the same: the ones with ¢, > 0, and is
trivial that £¥* € ¥ in this case. From this remark, interchanging the

sums:

1YY Pasl@el&) (616

y z|=1&Y*eX, Kk
a:yEA

=1 ST ST Pkl (0ler))

|y z|=1£€X, Kk
wyeA

=1 Z S Pu(€)e(€,) (o(657))"

56271}( ‘y x| 1
z,yEAy
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Exchanging = and y leads to

- Z > Puklé P(™)) Z S Puk(©)cl&) (6(6™))

EGEnK ly—z|=1 §€EnK |lz—y|=1
z,yEAn YAy,
1 2
= 1B Y cln)(6(n™)) |
lz—y|=1
z,YyENy

The second equality comes from the definition of E,, x| - ], with a change

of the name of the variable. Then, we have

iEnK[ Z C(%)(ﬁb(m)z] = iEnK[ Z c(nx)(gzﬁ(n’”’y))Q] (3.12)
ly—z|=1 ly—z|=1
z,y€A, z,yEAy,

Finally, applying (3.12) in (3.11), we get

Dusc(9) = {Enic| 32 eln) (6(m)’]

ly—=[=1

4 %LE"K[ > ena)(— 2¢(77)¢(77”))}
Y vehn

e[ 3 (o))
ehn

= B 3 ) (6n)’]
L,

F B[ 32 e~ 20m)e0r)]
ly—=z|=1

e, [| > clu)(otr ")’]
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=1 2 Bukleln) (40 — o).
|

y—z|=1

z,YyENy
The last equality comes from the linearity of expectation, which con-
cludes the proof. O

We define L§ (X, k) as the vector space R** with inner product
with respect to the measure P, 5, which means, given functions f, g :
Ean — R,

9w = D Fg)Pux(n).

TIEEn,K

From Proposition (3.4}, we get that the linear operator L,, - : L2 (3, k) —
: P, i \&im,

Ly (¥, k) is self-adjoint with respect to the inner product (-, -) and

Pr K
the process defined by the generator L, x on the finite state space ¥,
is an ergodic, reversible finite state Markov chain. The Spectral Theo-
rem from Linear Algebra assures that every eigenvalue of L, x is a real
number. Now we will prove another results regarding the eigenvalues

of the generator L, k.

Proposition 3.8. The operator L, k in L%n . (Xn,K) is negative definite,
i.e, if 5 is an eigenvalue of L, k, then 3 < 0.

Proof. Let 3 be an eigenvalue of L, x. Consider an eigenfunction ¢ :
Y,k — Rwithrespect to 3,1i.e., L, x(¢) = 5-¢. Since cis a non-negative
function, Proposition [3.7]leads to

Dox(@) = 3 Buxlen)(6(r) - o)) 2 0.

ly—z|=1
x,y€An

On the other hand, by the definition of D,, x(¢), we get

Dn,K(¢) = _En,K [gb(Ln,qu)} - _En,K [QS(ﬂ : gb)} = _ﬁEn,K [¢2} :

Therefore, —SE, x [¢?] > 0. Since E,, x [¢*] >0, 8 < 0. O

In order to define the spectral gap, we prove the following:
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Proposition 3.9. 0 is a eigenvalue of L, x with algebraic multiplicity
equal to 1. Moreover, the eigenfunctions with respect to 0 are exactly the
constant functions.

Proof. Let ¢ : ¥, x — R be a constant function. By the definition of
L, i, we get

(Lagd)) =3 3 cow)[60r?) o] =3 32 en)-0=0,
ly—a|=1 ly—z|=1

Vn € ¥, k. Therefore L, x(¢) =0=0- ¢, i.e., 0is an eigenvalue of L, x.
Now let f be another eigenfunction with respect to the eigenvalue 0,
i.e., L, xk(f) =0- f =0. The definition of D, x(¢) leads to

D (¢) = —Ep i [6(Lnxd)] = —Enx[¢-0] = 0.

On the other hand, from Proposition [3.7| we have

0= Duse(®) = 7 3 Busc[ela) (607°) = 6(n))7]
ly—z|=1
T,y€EA,

which is the same as

% ST Puxe) (0(r™Y) — o) = 0.

ly—z|=1n€%n K
z,yEAy

Since the left side is a sum of only non-negative terms,

P, i ()e(n.) (6(7Y) — ¢(n))* = 0,¥n € Ty e, Var,y € Ay, : |y — | = 1.

Let n € ¥, x and = € A, such that , > 0. Then P, x(n)c(n,) > 0, which
leads to

(6(n™) — 6(n))* = 0= ¢(1™) — ¢(n), ¥y € An : |y — 2| = 1.
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This means that if 7,7, are two configurations in ¥, x such that we
can go from 7, to 7, in a single jump, then f(n;) = f(n2).

Let &, & be two arbitrary configurations in ¥, ;. Since the process
defined by the generator L, x is an irreducible Markov chain, we can
go from &; to & in a finite number of jumps. That means there is a finite
sequence of length k ny = &;,...,n = & such that we can go from 7, to
nj+1 1n a single jump, Vj =0, ...,k — 1. Therefore,

f&)=fm)=...= fm-) = f(&)

Since &1, & are two arbitrary configurations in ¥, x, we get that f is
constant. Then, the only eigenfunctions with respect to the eigenvalue
0 are the constant ones and the geometric multiplicity of 0 is 1. From
the reversibility of the operator L, x in L§ , (¥, k), we get that it is
diagonalizable, then the algebraic and geometric multiplicities are the
same for every eigenvalue. In particular, the algebraic multiplicity of 0
is 1. O

We will summarize the last results in the following proposition.
Proposition 3.10. The following assertions hold:
a) There is an orthonormal basis of real-valued eigenfunctionsto Ly (X, k).

b) Denote the eigenvalues of the operator L, x by 3;, 0 < i < |¥, k| —1.
Then they may be written in descending order, such that

0= 050 > B = ... =B, k-1

¢) Denote the eigenfunctions of the operator L, x by ¢;, 0 < i <
|X.. x| — 1, and the constant function equal to 1 by 1. Then ¢, = 1.

Proof. a) By Proposition 3.4} since the operator L, x is self-adjoint with
respect to the inner product (-, -)p, ,., the Spectral Theorem assures
the existence of an orthonormal basis of real-valued eigenfunctions
to the vector space L3 , (¥, k)
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b) Since the eigenvalues are real numbers and R is a ordered field, they
can be written in descending order. By Propositions 3.8/ and we
have

0= 050 > B = ... 2B, k-1

¢) By Proposition [3.9] 1 is a eigenvector corresponding to the eigen-
value 3y = 1. It only remains to prove that the norm of 1 with respect
to the inner product (-, -)p, . is equal to 1. Evaluating (1,1)p

n,K?

L, = > IIMPux(n) = Y 1-1-P,x(n) =1

nezn,K nezn,K
[

We define the spectral gap « of the process as the absolute value of
the second largest eigenvalue, i.e., v = |f1| = —f1 > 0. An very useful
result that will be used in order to evaluate the spectral gap is the
following.

Proposition 3.11. The spectral gap v = — [, > 0 satisfies

y = min Dn,K(f)
fe]REn,K Var[@n’K (f) ’
Varg,, . (f)7#0

where Varp, . (f) = En7K[(f_En7K[f])2} = (f—Enrlf11, f—Enx[f]D)p, -

Proof. From Proposition 3.10} the vector space L (X, ) contains an
orthonormal basis of eigenfunctions ¢;,0 < ¢ < |¥, x| — 1. Therefore,

|En,K|_1

F= Y (fre0p. o (3.13)

j=0

From Proposition|3.10, ¢, = 1, and we have

Evilfll = (X f@)-17@))eo = (Foode,vo  (314)

ﬁGEn,K
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Subtracting (3.14) from (3.13),

|Zn,K|_1

f_]En,K[f]]- = Z <f7(70j>]P)n,K<l0j'

J=1

Computing the inner product (-, ), , of each side of the equation above
with itself results in

<f - En,K {f}]w f - En,K [f]1>IPn,K

|30, k|1 [3n, k|1
= < Z <f7 ¢j>Pn,K¢j7 Z <f7 ¢m>Pn,K§0m>P
j=1 m=1 K

[Zn, x|=1 |30 k|1

- Z Z <f7 (pj>Pn,K <f7 Spm>JP’n’K <90j, Q,Om>[P>n’K.

Since ¢;, 0 < j < |¥, x| —11is an orthonormal basis of L]Qpn’K(Zn,K), we
get <<10j7 90771)71' = 5jm' Recalling VarPn,K (f) = <f_]En,K[f]1a f_]En,K[f]1>IP’n,K7

[Zn, k|1 [Xn, k|1
Vare, (f) = > (feennlfs @i = > (f.00)p,.)"
j=1 j=1

Applying the linear operator in both sides of (3.13)

[Zn, k| -1 [Zn, k|1
Lyx(f) = Z (fs i) xc L (05) = Z (fs05)p, Bipj.  (3.15)
J=0 J=0

The definition of D,, x(f) produces

Dn,K(f) = _En,K [f : Ln,K(f)] = _<f7 Ln,K(f»IP’n,K'

From (3.13) and (3.15), we get

[, k|1 [n,x]-1

Do) == Y (et 3 0i)enibivs)

P
j=0 j=0 e
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En, [ =1 5, k=1

= — Z Z Bj<f; ij>]P’n7K <f7 90m>Pn,K <90j7 Som>Pn,K'

§=0 m=0

Again, from the orthonormality of the eigenfunctions,

|20, k|1 [2n, k|1
Dox(f) = = > Billoi)eunlfreibie = Y. (=B 0i)p,0)"
j=0 Jj=0

Since 3y = 0 and the eigenvalues are in descending order,

[En,x|-1
Dasc(f) = 3 (B eiden)’
[En, k-1
Z (=B S, 05)p0 k)
|Zn, k-1

= =B > ({f.e1)e..)

Jj=1

= VvarPnA,K (f) )

v

which is the same as

Dn,K(f)
~ Varg,  (f)

It remains to prove there is equality for some non-constant function
f € R¥*x , Choosing f = 1,

X, x| =1 ¥, [ =1

VarPn,K(f) = Z (<f’ ()O.j>]P}n,K)2 = Z (<Q01790j>Pn,K)2 =1,

J=1 J=1

and
[Xn, k|1 S0,k |—1
Dk (f) = Z (=B fr0i0pa i)’ = Z (=6 {p1, 90p i )* = 7.

In other words, the minimum of D, x(f)/Varp, . (f) is attained when
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f=e1 O]

Actually, the orthonormal eigenfunctions, the eigenvectors and the
spectral depend on n and K, but we do not write them in function of
n and K for sake of the notation. We will only make this dependence
explicit for the reciprocal of the spectral gap, which will be denoted by
W(n, K), ie.,

W(n,K) = 1/v > 0. The following result gives a way to evaluate the
spectral gap.

Proposition 3.12. Let f : ¥, x — (—00,00). Then
En i [(f = Bux[f)?] < W(n, K)Dy x(f). (3.16)

Proof. If f is constant, then E, x[(f — E, x[f])?] = 0. By Proposition
D, x(f) > 0. Since W(n, K) > 0, we have

B [(f = Enx[f])?] =0 < W(n, K)Dy k(f).

If f is not constant, we can apply Proposition [3.11]and get

1 < Dn,K(f)
W, K) = Bnx|(f — Enxlf])?]

which is the same as

Bk [(f = Bnx[f])?] < W(n, K)D,k(f).

]

The aim of this chapter is to determine for a class of zero-range pro-
cesses the spectral gap bound W (n, K) < Wyn?, where W, is a constant
which does not depend on n and K. To establish such a bound, we will

impose a third assumption:

Hypothesis 3.3. Thereis ky € N and ay > 0such that c(k)—c(j) > as
forall k> j + k.
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Notice that, under Hypothesis and a* is actually infinite.
We are now in a position to state the main theorem of this chapter.

Theorem 3.1. Given the Hypothesis[3.1|and there is a constant W,
independent of n and K such that (3.16) holds with W (n, K) = Wyn? for

the corresponding nearest-neighbor zero-range process. This implies a

spectral gap of at least {Wyn?}~! on a cube of volume n°.

In the next section, we will present the proof’s structure for this
theorem.

3.2 Summary of the Proof

For simplicity, we will prove Theorem for dimension d = 1. We
will show that there is a constant 1/, independent of n and K, such
that holds with W (n, K) = Wyn?. In other words, we will prove
that there is a constant 1/, such that

En i [(f — Enx[f])?] < Won® Dy i (f), (3.17)

Vn e NNVK € NU{0}, Vf : ¥,k — (—00,00). Let’s resume the proof of
(3.17). Initially, we define

W(n) = sup W(n, K).

KeN

Therefore, is true that

Using induction and some estimates, we will obtain in the end of the
proof that Ve > 0, there are constants n(c) and C(¢) such that W (n)
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satisfies
W(n) < (14 alBy)W(n—1)+ Lo n, for n > 2,
-1
W(n) < (1 - %) [W(n — 1)+ 2804 BO(e)],  forn > nole),

(3.19)
where a; and By are positive constants, which produces W (n) < Wyn?.
Let’s show that the recursive inequalities above actually leads to the
desired estimate.

Proposition 3.13. If for all = > 0, there are constants ny(c) and C(¢)

such that
W(n) < (14 aiBy)W(n—1)+ Lon, forn > 2,
W(n) < (1 - %)* [W(n S 1) 2B BOC(e)], for n > no(e),

where a; and By are positive constants, then there is a constant W, such
that W(n) < Wyn?, ¥n € N.

Proof. Let e = B;' > 0. For n > ny(c), we have

SBO -1 TLBO
W(n) < (1 - T> [W(n —1) BOC(E)}
. 1\-1 TZBO
= (1 — E) [W(n — 1) + T + BOC({:‘)}
_on nBy
- n_l[W(n-1)+T+BOC(e)]
Dividing the inequality by n
Wi(n) Wn-1) n C(e)
< A .
n ~ n-1 +B02(n—1)+Bon—1
Let y(n) = W(n)/n, Vn € N. Then
C
y() < yln — 1)+ Bus s By )

o2n — 2 n—1

There is ny > no(e),n; € N such that if n > n;, thenn/(2n —2) < 1 and
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C(e)/(n — 1) < 1. In these conditions

n_ B, C(e)

By
2n — 2 n—1

<B0'1+BO'1:230,
which leads to
y(n) <y(n—1)+ 2B,.

Therefore, the sequence y(n) is bounded above by a arithmetic progres-
sion with initial term of y(n;) and common difference of 2B,. If n > n,,
we get

y(n) < y(n1) +2Bo(n —ny).

Multiplying the inequality above by n, we have
ny(n) < ny(ny) + 2By(n — ny)n.
Because of the definition of y(n),

W(n) < EW(m) +2n%By — 2Bynin < nEW(nl) + 2n?B,.
n 1

There is ny > ny,ny € N such that if n > ny, then nW(n,)/n; < n?By. In
these conditions,

W(n) < —W(ny) + 2n2By < n2By + 2n2By = 3n?By.
ni
If n < n,y, we know that
2 By
W(n) < (14 aiBo)W(n—1)+ 5 M
Therefore, W (n) < x(n), where z(n) is the solution of

B
z(n) = (1+aiBo)x(n—1) + Ton,for n>2.

If n < ny, x(n) will be a finite number, then the same will hold with
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W(n) Define WO = max{W(l), R W(ng), ?)Bo} If2 <n < ng,
W(n) S WO S WonQ.

If n > no,
W(n) < 3Bon? < Wyn?.

Therefore, we have W (n) < Wyn?, Vn € N. N

Our efforts now will be to use the induction hypothesis to set up both
recursive inequalities above for W (n). The initial induction case n = 2
is a consequence of the one site spectral gap and is further discussed in
Section 4 of the paper [4]. For sake of clarity, we shall present the idea
of the proof of Theorem [3.1]in three more sections. Before we begin, let’s
make a general remark in order to deal with conditional expectation.
Notice that, for all f : ¥, x — (—o00,0), E, x| f ] is a finite sum of real
numbers. Since P, x is a probability measure on a finite state space,

we have

Remark 3.6. All the (functions of) random variables in the rest of this
chapter are integrable. More generally, all the (functions of) random

variables in the rest of this chapter are in LP(P,, ), for all p € N.

The remark above is a important one, since the conditional expecta-
tion is a tool that will be used frequently in the following sections and
it only makes sense when we are dealing with integrable (functions of)

random variables, according to

Definition 3.1 (Conditional expectation). Let (2, %,, P) be a probabil-
ity space. Given are a o-field F C %, and a random variable X measur-
able on .7, with E[|X|] < co. We define the conditional expectation
of X given .7, denoted by E[X|.Z|, to be a random variable Y which
satisfies

() Y € 7, ie.,Y is measurable on %;

(b) forall Ac Z, [, XdP = [,YdP.
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Intuitively, given a random variable X, E[X|.Z] is a “mean” of X on
%, being the random variable on .# which is closest to X, see [2] for
more details about the subject. In particular, recalling that the o-field
generated by 7; is denoted by o(7;), we shall discuss the properties
of the conditional expectations E, x| - |o(n:)], which will denoted by
E. k[ - |m], for the sake of simplicity. Two properties related to condi-
tional expectation which will be used in this chapter are:

Property 3.1. Given are a probability space (Q2,.%,,P), a o-field
F C %,and a random variable X measurable on .%,, with E[|X|] < oo,
then

E[E[X|Z]| = E[X].

Property 3.2. Given are a probability space (2, %,,P), a o-field
F C %, arandom variable X measurable on % and a random vari-
able Y measurable on .7, with E[|Y|] < cc. If E[|XY|] < oo, we have

E[XY|Z| = XE[Y|Z).

An immediate consequence of both properties is the following.

Property 3.3. Given are a probability space (22,.%,,P), a o-field
F C Z,, arandom variable Z measurable on .7 and a random variable
Y measurable on Z, with E||Y|] < co. If E[|Y Z|] < 0o, we have

E[(Y — E[Y|Z])Z] = 0.
Proof LetY :=F [Y|-#]. Substituting X by Z in Property
YZ = ZE|Y|#] = E[Y Z|.7].
Taking the expectation in both sides of the equality above

E[YZ] = E[E[Y Z|#]| = E[Y Z].
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The last equality comes from replacing X by Y Z in Property Then
E[(Y — E[Y|.Z))Z) = E[(Y —=Y])Z]| = E[Y Z] — E[Y Z] = 0.

]

Next, we will use the properties above in order to obtain a upper
bound for the variance which appears in the left side of (3.17), which
will be given as a sum of two terms. We begin adding and subtracting
the term E, x|[f|n], resulting in

f=Enklf] = (f =Enxlflm]) + (Enxlflm] —Enilf]).

Squaring the identity,

2

(f = Euilf])? = ((f = Englflm]) + Eunxlflm] —Enklf])
= (f = Enilflm])? + Enxlflm] — Enxlf])?
+2(f = En x[fImD (Enx [flm] — En k[ f])-

Taking the expectation in both sides of the equality above

En,K[(f - En,K[f])2] = En,K[(f - En,K[fMl])z}
+ B g [(En i [fIm] — En i [f])?]
+ 2B, k[(f = Bk [fIm])(En x[fIm] — Enrx[f])]-

By definition of conditional expectation, E, x[f|n:] is measurable on
o(m). Since E, [f] is constant, E, x[f] is measurable on o(r;) (for it
is mensurable on any o-field). Therefore, E, «[f|mn] — E. x[f] is mensu-
rable on o(n:). Replacing Y by f, Z by (E, x[f|m] — En x[f]), # by o(m)
in Property [3.3], we get

B [(f = En i [fIm]) (B g [fIm] — Bk [f])] = 0.

Because of Remark [3.6] (f — E. x[f|m]) and (E, x[f|m] — En x[f]) are
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in the Hilbert space L*(P, k). A geometric interpretation of this result
is that (f — E, x[f|m]) and (E, x[f|m] — E, x[f]) are orthogonal in this
space. In this way, the variance E, [(f — E, x[f])?] may be written as:

E x[(f — Enx[flm])?] (3.20)
+ Bk [(En i [fIm] — En,x[f])%]. (3.21)

We will devote the next two sections to bound (3.20) and (3.21).

3.3 Boundedness of expression (3.20)

In this section, we will bound (3.20) by an expression with D,, x(f),
leading to a result close to (3.17). We begin proving

Proposition 3.14. If n € 3, i, r €{0,.... K} and £ € ¥,,_1 x_,, then

Pn,K((U% ce. 7nn> = £|771 = T) = Pnfl,K7T<€)'

In particular, we have

P i (r, &) = Pn,K(Ul =7, (... 1) = 5)
= Pric(m = r)Pui ((2, .. 1) = Elm =7)
P (m =1)Pr_1k—r(§).

Proof. The idea of the proof is going from P, x to P,, taking advantage
of the last one being a translation invariant measure product. By prop-
erties of conditional expectation, we will get the desired result. Since
Pox ((n2,...,n,) = &|m = r) is a conditional probability of two events,

Pk ((n2,. - mn) =&m =1)
. IP)n,K(nl =T, (7727 s 7777l) = 5)
ik (M =1)
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IP)p<771 =T, (7727"'777n) = f‘ ZmeAn Ne = K>
Pp(m = 7| 2aen, e = K)
e\ (

:P ( T, ’I’/Q,...,nn):§72x6Ann$:K) (3 22)

P, (771 =T, ZzeAn Ny = K)

The second equality comes from (3.5), the third one is true because of
the definition of conditional probability (of events) and the last one is

obtained eliminating the term IP’,)(ZI@” e =K ) Since we are in
case d = 1, (3.22) may be written as

IP>p<771 =T, (772a"'777n) = 5722:1 Ny = K)
IP>p<771 =T g e = K)

Note that the following is true:

= e =K| = |m=r>n=K-r|
=1 =2

SRS S
=1
= |:771:ra(n27---7nn):é,inx:K—T}.
r=2

Provided by the the identities above, we have

]P)p<771 =T, (7727"'77771) = 5722217736 = K)
Pp<771 = T’ ZZ:l ’[’]x — K>
PP(”1 =7 (5 7) = &2y e = K”)

]P)p (771 =T, ZZ:Q Ne = K — T’)
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_B(m=1P, (ng, ) =6 = K — 7~>
By (m = B, ( Tiym =K —r)

B Pp(ﬁbw--mn) =& ol = K—r)
PP(E;‘:gnx =K — r)

ZPp<(n2,---,nn) =§’2n:nx=K—r>-
=2

The second equality holds because PP, is a product measure, the third
one is obtained eliminating the term P,(; = r) and the last one comes
from the definition of conditional probability (of events). Since P, is a

translation invariant measure, we get
Pp((m,-..,m) = 5‘ > = K—T’>
=2

:}Pp((m,...,ﬁn—l) :f)nzjlm :K—r>
:Pp((m,...,ﬁnfl) :5} 2. WZK_T>

CCEAn—l

= Pn—l,K—r (5)

The second equality holds because A,_; = {1,--- ,n — 1} and the last
one comes from (3.5). O

Proposition 3.15. In the notation of this chapter, the following equality
holds:

En 1 xr[f(r,8)] = En,K[le =].

Intuitively, the proposition above may be explained in this way:
E, k[ - ] is a mean over all the possible configurations of K particles
in n sites, where each one of the n random variables 7,7, ..., 7, is un-
known. However, if we know that the value of n; is exactly r, we will
obtain a mean over all the possible configurations of K — r particles in

n—1 sites, where the unknown random variables are 7., ..., 7,. We note
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that E, x[f|m = r] is a number, for it is the expectation of the proba-
bility measure P, x| - |71 = r]. Now we shall prove the validity of the
proposition.

Proof. The proof comes from a summation manipulation, along with
Proposition and conditional probability properties. Writing the
left side as a summation:

Enfl,Kfr[f(n 5)] = Z Pnfl,Kfr<§>f<r7 5)

geznfl,Kf'r

_ Z IP)TL,K (771 - T)Pn—l,K—T (5) f(T', 5)

geznfl,Kf'r ]P)H,K(nl - r>
Z ]P)n,K<r7 f) f(T’ 5)
£€Zn—l,K—'r ]P)TL,K(T]:L - r)
Py, (1)
Z ﬁf@?)'
NESn K n,K m =
m=r

The second equality was obtained multiplying and dividing by the pos-
itive number P, k(1 = r), the third one comes from Proposition [3.14]
and replacing the variable ¢ by n = (r,{) produces the last one. There-
fore

S Pl oy S Bl = i)

neTmx P, i (m =) ey
m=r ni=r
= > Pux(lm =r)f(n)
nezn,K
= En,K[ﬂnl = T]'

The definition of conditional probability of events leads to the second
equality, the third one holds because if 7 is a configuration with n; # r,
then P, x(n|m = r) = 0 and the last one comes from E,, [f|7 = r] being
the expectation of f with respect to P, x| - |1 = 7. O

Now we will produce a bound above for the first term in the right
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side of (3.20). Property leads to

En i [(f = Enr[fIm])*) = Enx [Enr[(f = Enxlflm])]|m]-

We shall obtain a equivalent way of writing the conditional expectation
in the right side.

Proposition 3.16. In the notation of this chapter, the following equality
holds:

En,K[(f - En,K[f|771])2|771] = En—LK—m[(f(Th, ) — En—1,k—m [f(7717 )])2]

Intuitively, the proposition above may be explained in this way:
E, k[ - ] is a mean over all the possible configurations of K particles
in n sites, where each one of the n random variables 7,7, ..., n, is un-
known. However, if we know the value of 7;, we will obtain a mean
over all the possible configurations of K — 7; particles in n — 1 sites,
where the unknown random variables are 7,...,n,. We note that
En1,i—n [(f(m,) = Bue1 o [f (01, )})2] is a random variable, since it
is a function of the random variable 7;. Now we shall prove the validity

of the proposition.

Proof of Proposition The idea of the proofis showing that our can-
didate to conditional expectation satisfies both conditions of Defini-
tion (3.1, Since E,_1 x—, [(f(m1,*) = Ene1,x—n [f (m1, -)])2] is a function of
n1, it is measurable on o(7,), therefore satisfies condition a) of Defini-

tion (3.1l To show that condition b) also holds, we note that 7; only takes
values in the discrete set {0, 1, ..., K'}. In this way, o(7,) is generated by
the events [, = 0], [;1 = 1],..., [ = K], which are disjoint. Therefore,
it is sufficient to consider the case A = [, = r], where r € {1,2,..., K}
is a fixed number:

/AEn_l’K_m [(f<7717 ) - En—l,K—m [f(nlw )])2] anK
= /Enl,Km (O, ) = Boerem [F (s )]) ] 10 = 1) dPy i
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- / Eorseor (£ ) = Encr s £ )] 1 = 7)dP .

In the first equality, we only adopted the notation of indicator function,
and in the second one, we replaced 7; by r in the integrand. Notice that,
since r is fixed, B, 1 g, [(f(r,") = Eno1,x—[f(r, )])2} is constant and we
can take it out of the integral:

[ Bt (5029 = Baa e £ L = 1)
:Enfl,Kfr[(f(rf)_]En 1K7‘ 2 /1771_7'd]P)nK

= Eo1x—r [(f(r,) = By, x— [f(r, )])Q}PnK (m=r)
= ( Z Pr1,x-r(§) (f(n §) = En1x-[f(r, 5)]) >Pn,K<771 =)

geznfl,Kf'r

Since the expectation of the indicator function correspondent to a event
A is equal to the probability of A, we have the second equality. The
third one comes from the definition of E,_; x_,[ - |]. We know that

(f(ra f) - En—l,K—T [f(T‘, f)])z
= (f(r, )" = 2f(r, )1 [ (1, )] + (Bner - [f(r,©)]) .

Therefore, we have

> Puik (.6 = Eurie o [ (1, €)]) ) Prsclm = 7)

£eXn_1,Kk—r
= > Pax(n =1Pucsk—r(&)(F(r ) — Enmr ke [f(r,6)])*
£€EX 1, K—r
= Z Pn,K(T}l = T)Pn—l,K—r(f) (f(7"> 5))2
£EX 1, K—r
-2 Z IP>n,K(771 = T)Pnfl,Kfr(f)f(n g)Enfl,Kfr[f(ra f)]
§€Xn_1,K—r

+ > Puk(m = 1) Pacik—r (&) (Buor k(. 6)]).

56277,71,[(77'
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In the first equality, we put the term P, x (7, = r) inside of the summa-
tion and in the second one, we wrote

(f(r,€) = Encr s [f(1,6)])°

as a sum of three terms. Next, we shall make claims about each sum-

mation in the last expression.

Claim 3.1.

> Pl = a9 = [ 1 = P

£€EXn_1,K—r

Indeed, Proposition leads to

S Pukln =nPuik—(O(f(n6) = D Bux(r&)(f(r.6)"

gez'n,—l,K—r fezn—l,K—r

Since the terms in the summation of the right side are exactly the ones
withn, =7

Z ]P)nK(T 5) Z PnK -1

£ed, 1 ,K—r UGEHK
m=r

+ 3 Pux(n)(f(m)*.0

nEEn,K
m#r

= > Pk () 1m =)

77€2n K

= [ 100 = e

The second equality comes from the definition of indicator function and
the definition of integral with respect to a measure produces the third
one.
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Claim 3.2.

-2 Z ]P)n,K(nl = T)Pn—l,K—r(g)f(rv f)En—l,K—r [f(?", 5)]

fezn—l,K—r

_ / —2f (B ic[flm = L0y = 1)dP, .

Indeed, taking the constant E,_; x_.[f(r, )] out of the summation,
we get

-2 Z Pn,K(Tll = T)Pn—l,K—r(g)f(Ta f)En—l,K—r [f(?“, 5)]

56271—1,1(—7‘

= 2K, 1k [f(r,§)] Z Pk (m = 7)Pp_1,x—(§) f(r,§)

£€En_1,K—r

= —QEn—l,K—r [f(rv 5)] Z anK(T’ f)f(r’ 5)

gEanl,Kfr

= 2B, 1k [f(r, )] D Pux(n)f(n)-1

NEXL K
m=r

— 2B 1k [f (O] D Pusc(n)f(n) -0

IS %
m#r

= _ZEn—l,K—r [f(T’, 5)] Z ]P)n,K(n)f(n)l(nl = T‘).

nezn,K

Proposition [3.14] produces the second equality, the third one holds be-
cause the terms in the summation are exactly the ones with ; = r» and
the last one comes from the definition of indicator function. Because of
the definition of integral with respect to a measure, we have

— 2Bk [F O] S Puk(n)fp)Lm = 1)

TIEEn,K

- _QEn—l,K—T[f<T’ f)] /fl(rh = r>d]P)”’K
_ / ~2f Btk [f(r, )L = 7)dPy i
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- / _2f]En,K[f|n1 = T]l(?h = r)deK'

In the second equality, we put the constant —2E,,_; x_,.[f(r, {)] inside of
the integral, and Proposition leads to the last one.
Claim 3.3.

Z Pn,K(Ul = T>]P)n71,Kfr (g) (Enfl,KfT[f(Tv é)])Q

ﬁeznfl,Kfr

_ / (Eus[flm = r])*1(m = r)dP, x.

Indeed, taking the constant (E,_; x_,[f(r, & )])2IP’”7 x(m =) out of the
summation, we get

Yo PuxOn=r)Puik (&) (Enr k- f(r,6)])°

gezn—l,K—r
2
= (En1 ik [f(r,)]) Pr g (m =7) Z P 1-r(§)
éezn—l,K—r
:(En 1,K— T[f( 5 ]P)nK )]-
:(EanT 2/1771—7”611[)711(
:/(En 1K7‘ )21771_Td]P)nK

= [ (Bulrin = rwm = 1)P,

Since P,,_1 k[ - | is a probability measure, we have the second equal-
ity. The third one holds because the probability of a event B is the
integral of the corresponding indicator function. In the fourth one, we
put the constant (E,_i x_.[f(r, 5)])2 inside of the integral and the last
one comes from Proposition|3.15, Finally, summing the left sides of the
three claims, we get

S Pakln = 1)Pur ko (O)(f(r,6)°

562n717K77‘
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-2 Z ]P)n,K(nl = T)Pn—l,K—r(g)f(rv g)En—l,K—r [f(?", 5)]

gezn—l,K—r

-+ Z Pn,K(nl = ’I“)]P)n_l,[(_r(g) (]En—l,K—r[f(rv 5)])2

éezn—l,K—r

— / A1y = r)dP, k

i / 2B il = 110 = )P

T / (Encflmn = r]) 10 = r)dPy

= [ (7 = Buclflm = 1) 1000 = 1)dPuc
- /A (f = Enxclfm]) dPo.

The definition of the event A produces the last equality. Therefore,
condition b) of Definition also holds. N

Taking the expectation in both sides of Proposition |3.16] we get

En i |:En,K [(f - En,K[f|771])2‘771H

- En,K [En—l,K—m [(f(nlu ) - En—l,K—m [f(nh )])2]] :
Equation leads to
En—l,K—m [(f(nlv ) - En—l,K—m [f(nla )})2 < W(n - 1)Dn—1,K—T]1 (f(nlu ))

Taking the expectation in both sides of above, we have

B [Enct—s [(£0m,) = Eucsen (£, 1)) ]|
< B i [W(n —1) Dy gy, (f(m1,-))]-

Therefore, we obtain

E, i [(f = Enxlflm])’] < Euwx [W(n—1)Du s gp (fm,)]
= W(n — 1)]En,K [anlnym (f(?’]l, ))] .
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We will prove the following result about E,, x [Dy—1 x—y, (f(m1,-))]:
Proposition 3.17. In the notation of this chapter, the following equality
holds:
E, x [Dn—l,K—m (f(m, ))} < Dy, x(f)
The first step of the proof is writing the Dirichlet form as a sum of
non-negative terms. Next, we will use a convenient manipulation to

complete the summation in the left side of this proposition, obtaining
the expression in the right side.

Proof. Writing the expectation as a sum,

En,K [Dn—l,K—Wl (f(nla ))} = Z Pn,K(n)Dn—l,K—m (f(nla ))

NEXn K
K
— Z Z Pro, i (1) Dy, 56—, (f (01, )
r=0 neX, ik
m=r
K
= Z Z PH,K(U)Dn—l,K—r (f(?“, ))
r=0 neX, i
m=r
K
= Z anl,Kfr (f(ra )) Z EDWK(U)
r=0 nEXn K
m=r

- Z D15+ (f(r, '))Pn,K(m =r).

In the second equality, we decomposed the summation according to the
values taken by 7;. In the third one, we replaced n; by » and in the
fourth one we took the term D,,_ i, (f(r,-)) outside of the second sum-
mation. Then,
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r=0 z,y=1
lz—yl=1

K 1 n—1

r=0 T,y=1 £€X,_1 K—r
lz—y|=1

<& (10 07%) ~ .0

Proposition produces the second equality and in the third one, we
wrote E,_; x_,[ - | as a summation. In the last one, we took the constant
1/4 outside of all the summations and put the term P, x (7, = r) inside
of all the summations. Proposition leads to

}lz Z Z P i (m =7)Pp_1 k- r(f)dfa:)(f((ﬁ f)my) — f(r, §)>2

r=0 T,Yy= 1 fezn 1,K—r
lz—yl=1

SIS Y Y Bk 0ede) (£ ) - 0)

r=0 my:l Eeznfl,Kf'r
\x—y|=1

S Y Pl el () - 16)’

Y= r=0 56271 1,K—r
Iw—ylz1

=1 3 S Bkt () - £

xyy:2 776277,,I(
lz—yl=1

:_ZJE”K[ 1) (f () f(”)ﬂ'

|z—y[=1
x,y=2

n—

1
T4
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In the second equality, we interchanged the first two sums. In the third
one we replaced the variable (r, ¢) (where the range of the indices x and
y with respect to £ is {1,...,n—1} ) by the variable n (where the range of
the indices z and y is {2, ...,n} ). The last one comes from the definition

of E, k[ - |. Notice that, since c is a non-negative function,

0.< B eln) (£ (0)*2) = 1)) | + Euvseelm) (£ () — 1)) .

Adding Y7 _,E, [C(Ux) ( f((m)=)—f (7])) 2] in both sides of the inequal-

lz—yl=1
ity above

> Eu[eln) (£(07) ~ £0)

z,Y=2
lz—y|=1

< zn: Enic[clm) (£ ((0)) = f (")ﬂ

z,y=2
lz—y|=1

+E,x [0(771) (f((ﬁ)l’z) - f<77))2]
+E,x [0(772) (f((T])Q’l) - f<77>>2]

=Y Bk ) (£ () = 1) .

z,y=1
lz—y|=1

Then, we have

n

E,x [Dn—l,K—m (f(7717 ))] - 411 Z i [C(%) (f((n)x,y) a f(ﬁ))Q]

|z—y|=1,z,y=2
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Since

Enic[(f = Enxlflm])’] < Wn —DEnr [Duerm (F0m. )],

we conclude that

B,k [(f = EnxlfIm])?] < W(n—1)D x(f). (3.23)

3.4 Boundedness of expression (3.21)

In this section, we will make use of three lemmas in order to bound
(3.21). From Property 3.1} this term can be written as

B,k [(Bni [flm] — En,K[f])2] =Enx [(En,K[fml] — En i [En,x [f|m]] )2},

which is the variance of E, x[f|n:]. Notice that E, «[f|m] is a function
of a single site. The first and second lemmas bound the variance of a
function H depending on a single site. Next we will apply both lemmas
to the one variable function H () = E, x[f|m], obtaining a sum which
deals with E,, x[f|m = r + 1] — E, x[f|m = r]. The third lemma gives
a simpler expression for this difference and will eventually produce
a bound for the second term in the right side of (3.21I). In order to
enunciate the first two lemmas, for each fixed K and n, let P, ;- be the

one site marginal of the canonical measure P,, x:
P () = Puclm =) =Py (m = r| 3 m. = K).
rz=1

The expectation with respect to P, ;- will be written E, .. On {0, ..., K},
consider the birth and death process which jumps from r to r + 1 with
rates p(r + 1) given by

plryr =1) =c(r), r > 1,
plrr+1) =K, g [e(m)] = Enletm)lm =r], r < K- 1
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Intuitively, p(r,r — 1) is the probability of a particle jumps from site
1 to site 2, which depends only on 7;. On the other hand, p(r,r + 1)
is the probability of a particle jumps from site 2 to site 1. Since this
probability depends on the number of particles stored in the site 2, it is
the expected value of the random variable 7, given 7, = r.

We denote the generator of this process by .7, x. We shall verify
that

Proposition 3.18. P} , is reversible for £, .

Proof. Writing the event [, = r| as a union of disjoint events
K—r
[m=r]= U[m =71 = jl,
=0

and recalling p(r,r — 1) = ¢(r), we have

=

-

By g (r)p(ryr = 1) = Pagc(m = r)e(r) = p_ e(r)Puc(m = r.m = j).

Il
o

Equation (3.8) ensures that reversibility of a jump between sites 1 and
2:

=
=
J

T

c(r)Ppxm=r,m=j)=> cG+1)Poxim=r—1m=j+1).
j

Il
=)
Il
=)

J

Since P(AN B) = P(A)P(B|A), we get

=

-r

cG+ P k(m=r—1n=7+1)

i
o

K—r

Z C(] + 1>]P)n,K(771 =r-—= 1)Pn,K(772 =7+ 1‘771 =7r— 1)
j=

=
!

Pox(m=r—=1) > c(+DPrx(n=j+1m=r—1).

J

Il
=)
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Note that P, k(7. = j + 1|m =r —1) =P, k—(—1)(n2 = j + 1). Therefore,

K—r
Bl =~ 1) S e+ D =+ U =7~
7=0

K—r
:]P)nK 771—7“—1 ZC an(rfl)("h:j—{_l)'
7=0
Writing the summation as a expectation

K—r
Pnx(m =r—1) ZC P k—-1)(n2 =7 +1)
7=0

=Pox(m =7 —DE, s _nlc(n)]
—IP’}LK(T—l) (r—1,r),

by the definition of the birth-and-death process. O

If H : ¥, k — Ris a function of only one site (let’s say, H(n) = H(m)),
then
Dy xc(H) = =(1/2)B,, [HZ, 1 H],

which will be called the one-coordinate Dirichlet form and it will be
denoted byD), (H). In order to estimate a spectral gap for zero-range
processes, the method studied here requires that the associated birth
and death processes with generator .Z, x exhibits a spectral gap with
magnitude independent of n and K. In the Lemma 4.1 of section 4 of
the paper [4], it is proved the following one site spectral gap lemma.

Lemma 3.1. Under hypothesis and there is a constant By =
By(ay, as, ko) such that

Ei,KKH - E}@K[H])ﬂ < BODTIL,K(H)>

foralln >1, K > 1and Hin L*(P,, x).

This lemma applied to the function E,, x[f|7:] shows that the second
term of (3.17) is bounded above by ByD,, ;(E, «[f|m]). Applying the
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following lemma to the one-variable function H(n) = E, x[f|m], we
shall simplify the one-coordinate Dirichlet form D)) ; (B, x[f|m]).

Lemma 3.2. For every H = H(n) em L*(P), ), we have

=

Dl (H) = (1/2) S Pl = 1+ De(r + 1) (H(r + 1) — H(r))™

r

Il
=)

Proof. We will prove Lemma taking advantage of the following re-

mark

Remark 3.7. If © # 1 and y # 1, then n, = (n*¥);. In this case, if
H = H(m), then H(n) = H((n"")).

Expanding D, ,(H):

1
DTIL,K(H) - _§E111,K [Hgn,KH]

=1 Y Bakleln) (H) — H)

z,y=1
lz—y|=1

_}1 >~ Eax[eln) (Hr™) — Hn)]

z,y=2
lz—y|=1
1

+ 1B [ctm) (H(n'?) = H))']

1

+ 1B [elm) (H (™) — H(n)].

Remark 3.7 leads to

DY Bkleln) (HO) — H)

T,y=2
lz—y|=1

=1 > Ealetn) (HO) — H(n)’]

z,y=2
lz—y|=1

=0.
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Since H = H(m), (n*?); = m —1 (if there was a particle at the site z = 1)
and (n*'); = n; + 1 we have that

H((n")1) =H(m—-1),  H(0n*")1)=H(m+1).

Note that, if 7, = 0, then ¢(n;, = 0) and this case does not give contri-
bution to E, « [¢(n:) (H(n"2) — H(n))"]. Therefore, in the computation of
this expected value, we will assume n; > 1.

The Dirichlet form may be then written as

Dl (H) = iEmK [e(m) (H(n*?) — H(n))"]

iE [%KHWﬂ—HWW}
(00 -0)
Lol () 0)
= (B lelm) (Hm — 1)~ Hm)’
+iEnK[C )(H(m +1) — H(m))].

Next, we will evaluate each of the two expectations obtained in the
last expression. Writing the first one as a sum and manipulating the

indices:
TEncle(m) (Hm — 1)~ Hm)’
- i ;Klm (m = r)e(r)(H(r — 1) — H(r))?
- iKlpnyK(m =7+ e(r + ) (H(r +1) — H(r))",

r=0

which is one half of the expression in the right side of the Lemma
In order to evaluate the second expectation, we shall take advantage of
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Property [3.1}

B elm)(H((m — 1) ~ H(n))’)
- iEn,K [En,x [c(m2) (H (m +1) — H(771>)2\771H'
Since the random variable (H(n +1) — H (771))2 is measurable on o (),

Property [3.2]leads to

;LEn,K [EH,K [c(m2) (H (1 +1) — H(m))Q\mH
1

2
= 7B [Enicle(n)Im] (H(m + 1) = H(n))"].
Writing the first expectation as a summation:

Bt [Boiclem2) ) (H O + 1) — H (1))

W

1 2

ZZ 7]1—7" [C(T}Q)‘T}l:T](H(T—l—l)—H(r)) .

From Proposition we get
Prc(m =7r)Enxlc(m)lm =r] =Pux(m =r+1c(r+1).

Therefore,

=

-1

P (m = 1B x[c(no)lm = 7] (H(r + 1) — H(r))”

A
.

Il

o

—_

i Z B (m =+ Delr + V)(H(r +1) — H(r)’,

r=

W

which is one half of the expression in the right side of Lemma
Replacing the expressions obtained for both expectations, we conclude
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that

K-1
2

> Pux(m =r+1)c(r+1)(H(r+1) - H(r))".

T

D’}L,K(H) =

N | —

]

Next, our intention is to apply Lemmas and [3.2] to the one vari-
able function H(n,) = E, x[f|m].- In this way, we derive a simpler ex-
pression for the difference

Enx(flm =r+1] = E, x[flm = 1], (3.24)

taking advantage of the reversibility of P, x. First, we will prove the
following:

Proposition 3.19. Fix 2 < x < n and a non-negative integer r. In the
notation of this chapter, the following equality holds:

1

Bl =741 = G e el (7 et m =)

Before entering the proof of above, we notice that the jump corre-
sponding to the symbol n*! is, in general, not allowed in the dynam-
ics (which permits only nearest neighbor jumps). Nevertheless, such

movement of a particle can occur by a finite sequence of jumps.

Proof of Proposition[3.19] To not carry on the notation, we will denote

X= Z]n—l,K—(T—l-l)-
From the definition of P} (- ) and Proposition |3.15, we have

]P)}L,K(r + De(r+ VDE, k[flm =r + 1]
=Pox(m =r+1cr + DEn1 k(1) [f(r + 1,8)]

=Pox(m=r+Declr+ 1) fr+1OPu1x—+1)(E).
ces
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In the second equality, we wrote E,_; x_(-+1)[ - | as a sum. Putting

the constant P, x (7 = r + 1)c(r + 1) inside of the sum, we get from
Proposition [3.14}

PH,K(nl =T+ 1)0(7” + 1) Z f(?“ + 17 é)Pn—l,K—(r—O—l)(g)

¢ex
= Z f(’f’ + 17 g)C(T’ + 1)]P)n7K(771 =r—+ 1)]P)nfl,Kf(r+1) (5)
¢ex
=3 fr+1,8c(r + DP,x(r+1,9).
cex

Next, we will take advantage of the reversibility of P, ;, more particu-
larly in a jump between two sites. In order to make that jump explicit,

we will replace the variable ¢ by (7s,...,7.,...,1,) and apply Proposi-
tion [3.5

Z fr+1,8)c(r + V)P, g(r 4 1,€)

£ex

= Z f<r+177727---777x7-'-777n)

Xc(r+ 1Py x(r+1,m2 o sNey v oy M)
= Z f(7"+1>772a~-->77x7---a77n)

(772 ----- nn)ei

X e+ D)Pprc(rymay .o oyne + 1,000 00).

From the definition (n)>!, we have:
Z f(T+ 1,7’]2,...,7’]17,...,7']71)0(7]$ + 1)]P)n,K<T)7727"'7771 + 1777771)

- Z f((r’nz""anx‘i‘1,--->77n)x’1)

(772 ~~~~~ nn)ei

X e+ 1Py (r,ma, .o, + 1,000, 0).

Putting an extra particle in the site z, for each configuration
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E=M2y ooy NayeyM) € = Yn-1,K—(r+1), We can associate exactly one

configuration (7s,...,7m, +1,...,1,) € X1 k—,. In this way, we get

o e+ L))

Xy + D)Pp (1 m2y oo + 1,000 10)

— Z f((T’nz""777$>~--,7]n)w’1)

(772--4777n)€2n71,K7'r

X cNe) Pk (T, M2y ooy My e o M)

In the summation above, each configuration € ¥, i is counted exactly
once when 7; = r and it is not counted when 7; # r. Therefore,

Z f((?" N2y ooy Ny e o 777n)x71)c(7790)Pn,K(r7 N2y e ooy Ny vt 77771)

M2+ )EXn—1, K —r

= > fPema)Buk(m) -1+ Y f(n"N)e(na) Bk (n) - 0.
nean nezn,K
m=r m#r

The definitions of indicator function and E, x| - | lead to

Z f(nx’l)c(nx)Pn,K(n) 14 Z f(nwyl)c(nz>Pn,K(77) -0

ﬁGEn,K WEZn,K
n=r m#r
S e P ()1 = 1)
nEEnA,K

= B [f (17 )e(na) 10 = 7).

Therefore, we know that

Py i (r+ 1)c(r + DEpk[flm =7+ 1] = En g [f (") e(na)L(m = 7)),
which is the same as

1

E, k[flm=r+1] = P}lK(r el 1 1>]En,K[f(77m’1)C(nx)l(771 =r)].
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Now we shall prove the final lemma in this section.

Lemma 3.3. Let M(n) be the function defined by

Pk,x(m) 1

M =
() P#,K(Ul +1ec(m+1)n—1

c(nz).

r=2

Then, for every 0 < r < K — 1, the difference

En k[flm =r+1] = E, k[flm = 7]

is equal to

n

> B [e(na) (f(n™") = f() Ll = r)]

x=2

+ Ep i [M(n); f(n)|m = 7],

1 1
Bl (r+ De(r + D n—1

where E,, k[g; h|lm = r] = E, k[gh|m = 1] — E, xlglm = r] - Ep k[h|m = 7]
is the conditional covariance of g and h.

Proof. Notice that the left side of the expression in Proposition [3.19
does not depend on z. Therefore

1 n
Enx[flm=r+1]= szn,K[ﬂTh =r+1]
=2

1 ¢ 1
T n-—1 ;P}%K(T—i— De(r+1)

X B e[ £ (0™ e(na) L(m = ).

In order to obtain the first term in the right side of the expression of
this lemma, we will apply the trivial identity

Famhy = (f@™) = f) + f(n).
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Replacing this identity in the expression of E,, x[f|n = r + 1]

n

1 1
Ensclflm =r+1] = 2= 2; Pl (r+ e(r+ 1) (8.25)

X En,K[f(nLl)c(nx)l(nl =7)]

n

1 1
Tl ; P (r+ 1)c(r + 1) (3.26)
X e | (1) = £) + F0) )elne)L0m = 17)]
h P}L,K(r +11)c(r +1)n 1 1 ;E”K[(f(nml) - f(n))C(nx)l(m = 7")}
1 < 1
T n—1 ; P;,K(T FDe(r + 1)En,K[f(77)C(77x)1(7h =r)]. (3.27)

We shall simplify the last term above. Writing E,, x| - | as a sum:

n

n . L ;:; P,k (r + 11)c(r T 1)E”’K[f(")c(”$)1(771 =)

- 1
= B e w2 e n = )Pt

nezn K

Interchanging the order of summation and multiplying and dividing by
the positive number P, x(n; = r):

1
Z:; P} i (r+ De(r +1)(n — 1) ; Fn 1(m = r)Pn k()
R e 1>c<1r+1><n_ oy ()1 m = )P se(n)
. 1
- n:%:‘K ; Pl (r+ D)e(r + 1)(n — 1)f(77)°’("w)
1(771 = T)Pn,K(n)
- ( Pnx(m =) )P”’K(m =)

Next, we will prove the following:
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Claim 3.4. If n € ¥, k, then

Indeed,

Therefore,

1(m = r)Puk(n) B P.x (0] N m =1]) B .
P (m =1) B P ix(m =) =Pnx(nlm =r),

leading to the desired result. From the remark, the definition of P} ,(r)
and taking all the terms which do not depend on x out of the second

summation
1
; Z; P el T D oy (etne)
1(m =1)P, k(1)
% ( IF’nK(m =r) )P”’K(m =)

- Z Z Pl ’l“ + 1 r+ 1)(n — 1)f(n)c(nx)Pn,K(n|T/1 = T)]P)'}‘L,K(r)

NEX, Kk T=2
P k(1) 1 ¢
- ngﬂ;}{ ]PWK<77|771 = T)f(ﬁ) <]P)£7K<T + 1)0(7‘ + 1) n—1 zz:; C(Wz)) :

The definitions of M (n) and E, x| - |1 =] lead to

P}LK(T)
3 Bustaln =70 (g n_lZ )

neEn,K

= > Pux(nlm =r)f(n)M(n)

UGZn,K

=E, x[f(m)M(n)lm = 1].
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Therefore, we know that

" i 1 ; Pk (r +11)C(7’ + 1)E"’K[f(n)c<nz)1(”1 =)l

=E,x[f(n)M®n)m = r].

Replacing this summation in (3.27)

Ep x| flm =r+1]
B 1 1
CPL(r+De(r+1)n—

+ B i [f ()M (n)[m = r].

D B [(F0n™) = F(n)e(ne)L(m = 1)]

(3.28)

The covariance in the right side of the expression of Lemma |3.3|may be
written as

By & [M(n); f(n)|lm = 7]
=E,. k[f(n)Mn)|m =r] — Epx[f(n)|m = 7|Enx[M(n)|m = r].

We now evaluate E,, [M (n)|m = r|. From the definition of M (n), we get

B i [M (1) |my = 7]

— 4n, T 1 —
FLPL e+ De(m + )n— 1=
P! () R
K Pl g(r+1c(ri+1)n—1 c(ne)jm =

[\

xr=

In the last equality, we replaced 7; by . Note that the term to the left
of the summation is constant. From the linearity of E, x| - |71 = r] and
the definition of P} ;( - ), we have

PTIL,K(T> 1 <
PP o (r+ De(r + 1) n— 1

E

c(ne)|m = 7’}

=2
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]P);!-Z,K (r) 1 -

- P}L’K(r +De(r+1)n—1 ;En,K[C(%)Wl =k

Putting the constants inside of the summation and the definition of
P ()

P k(1) 1
P x(r4+1e(r+1)n—1

S Encle(ne)n =7

_ i 1 Pox(m =7r)E,klcn:)|m =r]
—n—1 P,x(m=r+1c(r+1) '

Proposition [3.6] produces

n

—n—1 Pyxlm=r+1c(r+1)
= 1 Puglm=r+1clr+1)
—n—1P,x(m =7+ 1)c(r+1)
"1
- - 1,
r=2 n-=
which leads to
E, «[M(y)| r]i L 1
n, K n)m=r|= n—1 = L

Therefore, the covariance is

Mm)|m =r] =By x[flm =7r]- 1. (3.29)

Finally, subtracting E, [f|m = r] in both sides of (3.28) we get from
(3.29) that

E,x([flm =r+1] —E, g [f|lm =]
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n

En i [(f(n™") = f())c(ne)L(m = )]

=2

ni[flm = 1])

- 1 1
CPL(r+De(r+1)n—1
+ (B [f ()M ()| = 7]
- 1 1
Pl (r+De(r+1)n—1

+ En, g [M(n); f(n)|m = 7].

8

=

From Lemmas [3.1] and we have

2

Eo i [(Bn i [flm] = Eni[f])7] < BoDyp se(Enic[flm])

K-1
< 2By Y Bhilr+ el + 1) Bkl =+ 1] = Bl = 1))
r=0

Lemma [3.3]leads to

Enx[flm =7 +1] = Eprx[flm = 1]

1 1 & . B
= BT ;En,K[(f<n )= fm)e(na) I (m = )]

+Enx[M0); f(n)|m = 1] = a1 + as,

with

1
N IP)}LK(T +1

a1

Je(r+ 1) n i =D B [(FO0) = F () ena) I (m = 1)

az = En x[M(n); f(n)|lm = r].

Remark 3.8. If a,, a; are real numbers

(ay 4 az)* = a® + a3 +2a1a; < a® + a3+ (al +a2) =2(a? +ad).
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Therefore, we know that

nic [(En Kmm]— wilf)?] < BoD} i (B[ flm))

-1
< —BO Z]PnK r+ e(r + 1) (B glflm =+ 1) = En g [flm = +1])°
= —BOZ]P)”K (r+ De(r +1)(ar + as)?,
where a; and a, have been defined above. From Remark [3.8, we get

—BOZP (r+ 1)e(r + 1)(ay + as)?

K-1
1
< BOZ]P’nK r+1)e(r +1)2(a® + a2)
K- K—1
Z r+1)a1+BOZ]P’nK (r+ De(r + 1)a3
=0 r=0

Replacing a; and a,:

B ic [ (Bo i [fIm] — B [£])]

K—1

1 2
< B P! 1 1
> 0 ; n,K(r -+ )C(T' -+ )(P;{’K(T + ].)C(T + 1))

(S B () — f) el = 1)])

B0 3 B4 D+ 1) MO0 fls = 1]

K-1 1

:BO;IPH r+ Delr + 1)

< (B [ Z clna) (F™) = F) 1 = )] )’

K-1

T By SR (4 Vel + 1) (B s [M(n): f(n)lmn = 7).

r=0
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We will denote the factors which multiply B, by:

1
Ailn, K f) o= Lo Pl (r+ De(r 1+ 1)
X <EnK[ni ! > clna) (f(n™) = F(m) L(m = T)DQ
Ao, K, ) o= S B e+ Vel + 1) B e [Mn): )l = 7))’

In this way, we obtained the desired bound for (3.21):

E. x [(En,K[ﬂm] — ]En,K[f])Z] < BoAi(n, K, f) + BpAs(n, K, f).  (3.30)

3.5 Achieving the Recursive Inequalities

In this section, we will apply some results derived in [4] in order
to obtain the recursive inequalities displayed in (3.19), which proves
Theorem [3.1l

Recall that

By i [(f = Eniclf])?] = Boie [(f = Enic[fIm])’]
+ B i [(Bn e [fIm] — Enx[f])°].

From and (3.30), we get
B [(f = Enxlf])’] <W(n—1)Dux(f) + Bo(Ai(n, K, f) + As(n, K, f)).

In the Lemma 3.1 of Section 3 of the paper [4], it is proved that for
every n > 2 and positive integer K,

Al(n7 K7 f) < (n/2>Dn,K(f>

In the Lemma 3.2 of Section 3 of the paper [4], it is proved under Hy-
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pothesis [3.1]and [3.3|for n > 2 that
As(n, K, f) < aiBoW (n — 1) Dy i ()

This inequality for A,(n, K, f) shall be used to perform the iteration for
small values of n. On the other hand, in the Proposition 3.1 of section
3 of the paper [4], it is proved under Hypothesis and that for all
e > 0, there exist finite ny(¢) and C(¢) such that

As(n, K, f) < CE) Do (f) + en B i [(f — Enrxlf])°].

for n > ng(e). The estimates above produce

nB()

Enc[(f = Eaxlf)] < [(1+ alB)W(n = 1) + 22| Do),

for n > 2 and

Enx[(f — Enklf])’] < [W(n —1)+ (”TBO) + Boc(g)} Dy i (f)

+ gTBOE“vK [(f = Enxlf)];

for n > ny(e). Therefore, if n > 2

B
<[+ aBJW(n—1)+ %

B i [(f = Enxlf])’]
Do (f)

which leads to
Wi(n) <[1+aiBo)W(n—1)+ —.

Moreover, if n > ny(e),

Enic[(f = Buclf)*] (1= 22) < [Wn = 1)+ 22 4+ BC(e)| Duic(F),
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which is the same as

B [( ~ Enslr)]) < (1= 222) 7 [Win— 1)+ 22 4 BCE)] D),
which leads to
el < (-5 v " o]
and we conclude that
Wn) < (1- %)_1 Win 1)+ ”TBO + BC(=)].

Therefore, because of the two recurrence relations above for the se-
quence W(n), we get W(n) < Wyn? for some universal constant V.
This concludes the proof of Theorem
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