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Resumo

Neste trabalho, estudamos o limite hidrodinâmico para o processo de exclusão sim-
ples totalmente assimétrico (TASEP) o qual converge para a solução da equação de Burg-
ers; esta convergência pode se ver por meio de dois fatos e para prová-los precisaremos
de noções como a partícula marcada, partículas de segunda classe e o fluxo e também
alguns resultados sobre estas como a lei dos grandes números e acoplamento. A prova
do resultado principal se dividirá em duas partes: o caso shock e o caso rarefação.

Palavras-chave: TASEP, equação de Burgers, limite hidrodinâmico, acoplamento,
partícula marcada e partícula de segunda classe.



Abstract

In this work, we study the hydrodynamic limit for the totally asymmetric simple
exclusion process (TASEP) which converges for the solution of Burgers equation; this
convergence can be seen by means of two facts and to prove them we will need notions
such as the tagged particle, second class particles and the flux and also some results on
these as the law of large numbers and coupling. The proof of this main result will be
divided into two parts: the shock case and the rarefaction case.

Keywords: TASEP, Burgers equation, hydrodynamic limit, coupling, tagged particle
and second class particle.
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Introduction

The Totally Asymmetric Simple Exclusion Process (TASEP) is a prototypical stochas-
tic model of transport in one dimension. Initially was introduced the ASEP around 50
years ago in parallel in biology [9], [8] and probability theory [13], it has been exten-
sively studied by a variety of methods. The ASEP and TASEP are good models of many
physical systems, such as traffic on highways [5], transport in narrow channels [2] and
motion of motor proteins on microtubules [4], among others.

The TASEP is defined on a one-dimensional lattice (in our case Z), whose sites may
be occupied or not by a particle. During time evolution particles are allowed to hop from
the site they occupy towards the site directly to the right, say from site i to i+1, provided
this latter site is empty (not occupied), each particle waits a random exponent mean one
amount of time. We make an graphical construction for this process, which will help us
to understand some definitions and proofs.

The inviscid Burgers equation is a first order quasilinear hyperbolic equation, which
we will study their solution for some initial conditions and sometimes we obtain cases
for the solution such as shock and rarefaction. In particular, we work with the Riemann
problem which is the Burgers equation with a particular initial condition, namely, the
density has value λ for non positive positions and density ρ for positive positions.

We are establishing that rescaling time and space in the same way for the TASEP, the
density of the particles converges to a deterministic function which satisfies the Burgers
equation, limit known as the hydrodynamic limit. The hydrodynamic limit meets two
important results these are convergence of the density fields and local equilibrium which
says that, respectively, which are the limit for the number of particles dividing by t over
any interval and the local measure for a given process.

This was first noticed by Rost [11], who dealt with an initial configuration which has
only particles at the negative sites and the Burgers equation has initial condition 1 to
the left to the origin and 0 in other case. Ferrari [7] has a proof for a large family of
distributions, this is the purpose of this dissertation, we will present some of the main
ideas and results considered in [7].

The graphical construction of the TASEP induces the definition of other elements,
such as the coupling and first and second class particle, these help to prove the hydrody-
namic limit via law of large number for some of these elements and previous lemmas.

The Chapter 1 introduces the graphical construction of the TASEP and shows the
its invariant measure. Also the Burgers equation, the motivation, some examples with
their respective solutions and characterization of some solutions via some criteria. At
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the end we have the the Burke’s theorem for the (M,M, 1) process. It was used for the
proof the law of large number for the tagged particle, a very important fact.

The Chapter 2 starts with a heuristic derivation for the hydrodynamic limit. Subse-
quent, we have the theorem including the hydrodynamic limit. On other hand, defined
the tagged particle, first and second class particle, flux and tagged and isolated second
class particle. Also, the graphical construction of the coupling and the law of large num-
ber for some of the above elements. Finally, using all these elements and results is prove
the hydrodynamic limit for the increasing shock and rarefaction fan cases.



Chapter 1

TASEP and Burgers Equation

We start by introducing some required notions to our subject.

1.1 The Totally Asymmetric Simple Exclusion Process

We construct now the Totally Asymmetric Simple Exclusion Process (TASEP), which
is a standard particle system in Probability and in Statistical Mechanics. The TASEP
is a Markov process taking values on {0, 1}Z, where particles jump only to a fixed direc-
tion. Here, we fix once and for all that particles move only to the right at rate 1. More-
over, a particle cannot jump to an occupied site. We will denote this Markov process by
{ηt : t ≥ 0}. In general, we define the TASEP with respect to a given initial configuration,
which may be random.

1.1.1 Construction of the TASEP

We will denoted by η an element on the space {0, 1}Z, which represents a config-
uration of particles. By sites we mean elements of Z. We denote by ω a realization
of independent Poisson processes of parameter one indexed on Z, where each element
(x, t) ∈ ω we indicate as a arrow from x to x+ 1 at time t, see Figure 1.1.

For a fixed time T > 0, by the Borel-Cantelli Lemma, we have that for almost all
ω there are infinitely many xi ∈ Z such that (xi, t) /∈ ω for all t ∈ (0, T ). We can then
take a partition {xi}i∈N of Z such that do not exist arrows connecting the finite boxes
[xi + 1, xi+1] ∩ Z on the time interval [0, T ]. Since the boxes are of finite length, we can
label the arrows inside each box by order of appearance in time, i.e, (xi, t) < (xj , s)↔ t <
s and if t = s, (xi, t) < (xj , s)↔ xi < xj .

The Markov process can be constructed as follows. Consider ω that satisfies the above
property and η an initial configuration of particles, where η(x) = 0 means the site x is
empty and η(x) = 1 means the site x is occupied. The state ηt will be a function of ω and
the initial state η obeying the following rule: for a given box with the property above, we
take the first arrow (x, t) if we have in the time t− that there is a particle at x and no
particle at x+ 1, then the particle follows the arrow x→ x+ 1 so in the time t there a is
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η = η0

time t = 0

ω

Figure 1.1. ω is the Poisson process represented by the arrows, η
is the configuration initial (dots) of the particles.

particle at x+1 and no particle at x. If this arrow does not satisfy the previous condition,
then we ignore this arrow. We can continue with this process for all the arrows in the
box. We repeat this process for each box in order to obtain a particle configuration (see
Figure 1.2 for an illustration) depending on the initial stateη and the Poisson realization
ω, which we denote by ηt[η, ω], where 0 ≤ t ≤ T . For greater times that T , let us say
between T and 2T , we consider the initial configuration ηT and the same arrows of ω
with times in [T, 2T ] and repeat the above process successively. As any time interval
[kT, (k + 1)T |]. In general, we have constructed the process

(ηt[η, ω] : t ≥ 0) .

η = η0

time t = 0

time t

ω

ηt[η, ω]

Figure 1.2. ω is a realization of the Poisson processes, η and ηt
are the initial configuration and the conciguration at the time t,
respectively.

This process satisfies almost surely the property ηt+s[η, ω] = ηs[ηt[η, ω], τtω], where
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τtω : = {(x, s) : (x, t + s) ∈ ω} has a same distribution as ω and it is independent of
ω ∩ (Z × [0, t]), by the properties of the Poisson process ω. This implies that the process
ηt is Markovian.

1.1.2 Random initial configuration

In this case we want to construct, in a same probability space, different TASEP pro-
cess starting from different initial configurations. Let U = {U(x) : x ∈ Z} be a collection
of iid random variables uniformly distributed in [0, 1]. Assume that U is independent of
ω. For each ρ ∈ [0, 1], we define ηρ = ηρ[U ] given by

ηρ(x) := 1{U(x)<ρ} . (1.1)

Note that ηρ(x) has distribution Ber(ρ) for each x ∈ Z, so the distribution of ηρ is
Bernoulli product. Under the definition of ηρ we can define ηρt as follow

ηρt := ηt[η
ρ, ω] ,

as the configuration at the time t considering the initial configuration ηρ. Note that ηρt is
a function of U and ω. Finally, we define

fA(η) :=
∏
x∈A

η(x) .

If ν is a random configuration in {0, 1}Z, then {E[fA(ν)] : A ⊆ Z, A finite} characterizes
the distribution of ν. In particular, the distribution of ηρ is characterized by E

[
fA(ηρ)

]
=

ρ|A|, where |A| is the cardinal of A.

Lemma 1.1. For each ρ ∈ [0, 1], the distribution of ηρ is invariant for the TASEP. That
is, for any A ⊂ Z finite we have that E[fA(ηρt )] = ρ|A|, for all t ≥ 0.

Proof. This result is standard and can be found in [12, Example 6.2, page 79] for in-
stance. We sketch below an alternative proof avoiding to speak about infinitesimal gen-
erators.

Fix ρ ∈ [0, 1] and consider the TASEP type process {ηN (t) : t ≥ 0} on
ΩN = {0, 1}−N,−N+1,...,N with the following dynamics at the boundary: at rate ρ a particle
tries to enter the system at the site −N (doing it successfully only, and only if, that site
is empty at that moment). Moreover, at rate (1− ρ), if there is a particle at the site N at
that moment, this particle leaves the system.

This process {ηN (t) : t ≥ 0} is a finite state one and it possible to check that the
Bernoulli product measure µ of constant parameter ρ is invariant for it by checking that∑

η′

µ(η′)λ(η′, η) = µ(η)
∑
η′

λ(η′, η) , (1.2)

where λ(η′, η) are the above mentioned rates (including the movement to the right of
particles in the bulk, which is everywhere equal to one). In fact, the reader can verify
that checking (1.2) for the aforementioned process corresponds to check that
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ρk(1− ρ)2N−k#{ consecutive pairs 1, 0 in η }
+ ρ1{η(−N)=0}ρ

k−1(1− ρ)2N−k+1 + (1− ρ)1{η(N)=1}ρ
k+1(1− ρ)2N−k−1

= ρk(1− ρ)2N−k
{

#{ consecutive pairs 1, 0 in η }+ ρ1{η(−N)=0} + (1− ρ)1{η(N)=1}

}
,

which is straightforward.

At this point, a coupling argument as in the proof of Proposition 2.1 ahead and the
limit asN →∞ allows us to conclude the measure µ is invariant for the TASEP on Z.

1.2 The Burgers equation

The equation was first introduced by Harry Bateman [1] in 1915 derived in a phys-
ical context and later studied in 1948 by Johannes Martinus Burgers [3]. The Burgers
equation is a fundamental nonlinear partial differential equation occurring in various
areas of applied mathematics, such as fluid mechanics, gas dynamics, and traffic flow.

1.2.1 Motivation

Consider a street starting at point x1 and ending at point x2. Let u(x, t) be the density
of cars at point x and time t. Then, the number of cars between the points x1 and x2 at
time t is given by ∫ x2

x1

u(x, t)dx.

Now, the rate of change in the numbers of cars between x1 and x2 at time t is repre-
sented by

d

dt

∫ x2

x1

u(x, t)dx = f(u(x1, t))− f(u(x2, t)),

where f represents the flow rate off the street. Assuming that u and f are continuously
differentiable functions, we have that∫ x2

x1

ut(x, t)dx = f(u(x1, t))− f(u(x2, t)),

and, therefore,
1

x2 − x1

∫ x2

x1

ut(x, t)dx =
f(u(x1, t))− f(u(x2, t))

x2 − x1
.

Taking the limit as x2 → x1, we get

ut = −[f(u)]x.

Therefore, we can say that the density of cars at point x at time t satisfies the following
partial differential equation (PDE):

ut + [f(u)]x = 0 , for some smooth function f . (1.3)

However, this was done assuming the density of the cars was a continuous function.
We would like to derive some sort of notion to say that a function u which is not even
differentiable will solve the PDE.
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1.2.2 Solution of Burgers equation

Let us consider the PDE, called the one-dimensional forced Burgers equation, given
by 

∂u

∂t
= −∂f(u)

∂x
+ ν

∂2u

∂x2
+ F (x, t), (x, t) ∈ R× (0,+∞),

u(x, 0) : = u0(x) = φ(x), x ∈ R,
(1.4)

where ν ≥ 0 is the diffusion coefficient, F (x, t) is a forcing of system and φ(x) a initial
condition of the PDE. In our case we study the inviscid Burgers equation, i.e, we consider
the particular case in (1.4) where ν = 0, F (x, t) ≡ 0 and f a smooth function, which is a
usual case seen in [10]. Hence, the corresponding system is

∂u

∂t
= −∂f(u)

∂x
, (x, t) ∈ R× (0,+∞),

u(x, 0) : = u0(x) = φ(x), x ∈ R.
(1.5)

Note that this PDE is the same one mentioned in (1.3) with the initial condition φ. We
say that u is strong or classical solution of (1.5) if u is continuously differentiable and u
satisfies (1.5). Sometimes this solution does not exist. Thus, we want to allow solutions
which are not differentiable or not even continuous. In this way we introduce now the
notion of weak solution of a PDE.

We say that a function v : Rn → R has compact support if v ≡ 0 outside of some
compact set of Rn. A function u is said a weak solution of (1.5) if∫ ∞

0

∫ ∞
−∞

[uvt + f(u)vx] dx dt+

∫ ∞
−∞

φ(x)v(x, 0)dx = 0, (1.6)

for all smooth functions v ∈ C∞(R× [0,+∞)) of compact support.

Theorem 1.1. If u is a strong solution of (1.5), then u is a weak solution of (1.5).

Proof. If u is a classical solution of (1.5), then u is continuously differentiable and satis-
fies {

ut + [f(u)]x = 0, (x, t) ∈ R× (0,+∞),

u(x, 0) : = φ(x), x ∈ R.
(1.7)

Moreover, for any function v : R× [0,+∞)→ R with compact support,

0 =

∫ ∞
0

∫ ∞
−∞

[ut + [f(u)]x] vdx dt (1.8)

=

∫ ∞
0

∫ ∞
−∞

utvdx dt+

∫ ∞
0

∫ ∞
−∞

[f(u)]xvdx dt.

Integrating by parts each integral above and using the fact that v vanishes at infinity,
we have ∫ ∞

−∞
[f(u)]xvdx = vf(u)

∣∣∣∞
−∞
−
∫ ∞
−∞

f(u)vxdx = −
∫ ∞
−∞

f(u)vxdx,

therefore ∫ ∞
0

∫ ∞
−∞

[f(u)]xvdx dt = −
∫ ∞

0

∫ ∞
−∞

f(u)vxdx dt,
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and ∫ ∞
0

∫ ∞
−∞

utvdx dt =

∫ ∞
0

∫ ∞
−∞

uvdx
∣∣∣∞
0
−
∫ ∞

0

∫ ∞
−∞

uvtdx dt

= −
∫ ∞
−∞

φ(x)v(x, 0)dx−
∫ ∞

0

∫ ∞
−∞

uvtdx dt.

Then, by (1.8) and the previous calculations we get

0 = −
∫ ∞

0

∫ ∞
−∞

[uvt + f(u)vx] dx dt−
∫ ∞
−∞

φ(x)v(x, 0)dx.

But this is true for all functions v ∈ C∞(R × [0,+∞)) with compact support. Therefore,
u is a weak solution of (1.7).

The notion of weak solution allows solutions which is not necessarily continuous.
However, weak solutions u have some restrictions on types of discontinuities. For ex-
ample, suppose u is a weak solution of (1.5) such that u is discontinuous across some
curve x = ξ(t), but u is smooth on either side of the curve. Let u−(x, t) be the limit of u
approaching (x, t) from the left and let u+(x; t) be the limit of u approaching (x, t) from
the right. We claim that the curve x = ξ(t) cannot be arbitrary, but rather there is a
relation between x = ξ(t), u− and u+.

Theorem 1.2. If u is a weak solution of (1.7) such that u is discontinuous across the
curve x = ξ(t) but u is smooth on either side of x = ξ(t), then u must satisfy the condition

f(u−)− f(u+)

u− − u+
= ξ′(t) (1.9)

across the curve of discontinuity, where u−(x, t) is the limit of u approaching (x, t) from
the left and u+(x, t) is the limit of u approaching (x, t) from the right.

Proof. Let us suppose that u is a weak solution of (1.7), i.e,∫ ∞
0

∫ ∞
−∞

[uvt + f(u)vx] dx dt+

∫ ∞
−∞

φ(x)v(x, 0)dx = 0,

for all smooth functions v ∈ C∞(R × [0,+∞)) with compact support. Let v be a smooth
function such that v(x, 0) = 0, and split the first integral into the regions Ω− and Ω+,
where

Ω− = {(x, t) : 0 < t <∞,−∞ < x < ξ(t)},
Ω+ = {(x, t) : 0 < t <∞, ξ(t) < x <∞}.

Therefore, using v(x, 0) = 0 we have

0 =

∫ ∞
0

∫ ∞
−∞

[uvt + f(u)vx] dx dt+

∫ ∞
−∞

φ(x)v(x, 0)dx

=

∫∫
Ω−

[uvt + f(u)vx] dx dt+

∫∫
Ω+

[uvt + f(u)vx] dx dt. (1.10)
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Combining the Divergence Theorem [14] with the fact that v has compact support and
v(x, 0) = 0 we get that∫∫

Ω−
[uvt + f(u)vx] dx dt = −

∫∫
Ω−

[utv + [f(u)]xv] dx dt+

∫
x=ξ(t)

[u−vν2 + f(u−)vν1]ds,

(1.11)
where ν = (ν1, ν2) is the outward unit normal to Ω−. Similarly, we see that∫∫

Ω+

[uvt + f(u)vx] dx dt = −
∫∫

Ω+

[utv + [f(u)]xv] dx dt−
∫
x=ξ(t)

[u+vν2 + f(u+)vν1]ds.

(1.12)
Note that, by assumption, as u is weak solution of ut + [f(u)]x = 0 and is smooth on
either side of x = ξ(t), therefore u is a strong solution on either side of the curve of
discontinuity, i.e., we have that∫∫

Ω+

[utv + [f(u)]xv] dx dt = 0 =

∫∫
Ω−

[utv + [f(u)]xv] dx dt.

Hence, by this fact with (1.10), (1.11) and (1.12), we obtain∫
x=ξ(t)

[u−vν2 + f(u−)vν1]ds−
∫
x=ξ(t)

[u+vν2 + f(u+)vν1]ds = 0.

Since this is true for all smooth functions v, we have

u−vν2 + f(u−)vν1 = u+vν2 + f(u+)vν1 ,

which implies
f(u−)− f(u+)

u− − u+
= −ν2

ν1
.

Now we know that if the curve x = ξ(t) have normal vector (ν1, ν2), then the tangent
vector is (−ν2, ν1). Hence, by the choice of regions Ω− and Ω+, the derivative of x = ξ(t)
satisfies that dt

dx = 1
ξ′(t) = ν1

−ν2 . So, we can conclude.

For a simples notation, we define

[u] = u− − u+,

[f(u)] = f(u−)− f(u+),

σ = ξ′(t).

We call [u] and [f(u)] the jumps of u and f(u) across the discontinuity curve and σ the
speed of the curve of discontinuity. Therefore, if u is a weak solution with discontinuity
along a curve x = ξ(t), the solution must satisfy

[f(u)] = σ[u], where σ = ξ′(t). (1.13)

This is called the Rankine-Hugoniot jump condition.
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Example 1.1. We consider the Burgers equation with f(u) =
u2

2
. Thus{

ut + uux = 0, (x, t) ∈ R× (0,+∞),

u(x, 0) = φ(x), x ∈ R,
(1.14)

where the initial condition satisfies

φ(x) =


1, x ≤ 0,

1− x, 0 < x < 1,

0, x ≥ 1.

Solving this equation using the method of characteristics, our characteristic equations
are given by 

dt

ds
= 1

dx

ds
= z

dz

ds
= 0

with initials conditions 
t(r, 0) = 0

x(r, 0) = r

z(r, 0) = φ(r).

We see that the solutions of each equation above using this initials conditions are

t = s

x = φ(r)s+ r

z = φ(r).

From these solutions, we arrive at an implicit solution for the PDE which is given by

u = φ(x− ut).

Using the fact that dz
ds = 0, we see that u is constant along the projected characteristic

curves, x = φ(r)t+ r. Then, for r < 0, φ(r) = 1 and therefore, these projected curves are
given by x = t + r for −∞ < r < 0, and u(x, t) = 1 along these curves, this is, u(x, t) = 1
for −∞ < x− t < 0. For 0 < r < 1, φ(r) = 1− r then these projected curves are given by
x = (1− r)t+ r for 0 < r < 1. Moreover, along these curves u(x, t) = z(r, s) = 1− r = 1−x

1−t
for 0 < x−t

1−t < 1. Finally, for r > 1, φ(r) = 0. Therefore, the projected characteristic curves
are given by x = r for r > 1, and u = 0 along these curves.

So, for t ≤ 1, our solution is

u(x, t) =


1, x < t,
1−x
1−t , t < x < 1,

0, x > 1.
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x

t

u = 1

u =
1− x
1− t

u = 0

Figure 1.3. Characteristic curves for t ≤ 1 to the problem (1.14)
and some continuations for some curves.

x

t

u = 1

u =
1− x
1− t

u = 0

x =
t+ 1

2

Figure 1.4. General solution for the equation (1.14) where the red
line is its shock curve.

However, note that the characteristic curves intersect at t = 1. Beyond that time t,
the different projected characteristics are asking for our solution u to satisfy different
conditions, which cannot happen, and we no longer have a classical solution. From the
Theorem 1.2, given that for t ≥ 1 a weak solution of the PDE (1.14) with φ(x) satisfy the
Rankine-Hugoniot jump condition (1.13). That is,

[f(u)] = σ[u]⇔ (u−)2

2
− (u+)2

2
= ξ′(t)(u− − u+)

Then taking into account the solution for u(x, t) for t ≤ 1, we want a curve x = ξ(t) such
that it contains the point (x, t) = (1, 1) and u = 1 to the left of the curve and u = 0 to the
right of the curve, this is, u− = 1 and u+ = 0. In particular we have

ξ′ =
1

2
, with (x, t) = (1, 1).

Therefore, our curve must be given by (x − 1) = 1
2(t − 1) or x = t+1

2 . So, for t ≥ 1, the
other part of the weak solution is

u(x, t) =

{
1, x < t+1

2 ,

0, x > t+1
2 .
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Example 1.2. We consider the Burgers equation (1.14) again, with another initial con-
dition. So {

ut + uux = 0, (x, t) ∈ R× (0,+∞),

u(x, 0) = φ(x), x ∈ R,

and for t = 0, we have

φ(x) =

{
1, x < 0,

0, x > 0.

As before, u is constant along the projected characteristic curves given by x = φ(r)t + r.
If r < 0, then φ(r) = 1 which implies the projected characteristic curves are x = t+ r for
r < 0 and the solution u should equal 1 along those curves. But, also, for r > 0, φ(r) = 0
which means the projected characteristic curves are given by x = r for r > 0 and the
solution u should equal 0 along these curves. This curves have intersection at t = 0.

Clearly, in this case we can not hope to find any continuous solution which solves
this problem. Again, we look for a weak solution, by looking for a piecewise continuously
differentiable function which satisfies the Rankine Hugoniot jump condition (1.13). We
want to find a curve x = ξ(t) such that u− = 1 to the left of the curve and u+ = 0 to the
right of the curve. Hence, we have

(u−)2

2
− (u+)2

2
= ξ′(t)(u− − u+)⇔ ξ′ =

1

2
, with (x, t) = (0, 0).

The weak solution of system (1.14) taking into account the curve solution above x = x
2 is

u(x, t) =

{
1, x < t

2 ,

0, x > t
2 .

Example 1.3. We consider the Burgers equation (1.14) once again,{
ut + uux = 0, (x, t) ∈ R× (0,+∞),

u(x, 0) = φ(x), x ∈ R,

but now impose the initial condition

φ(x) =

{
0, x < 0,

1, x > 0.

Looking at our characteristics, we see that u should be constant along the projected
characteristic curves, x = φ(r)t + r. Here, if r < 0, then φ(r) = 0 and therefore, x = r.
If r > 0, then φ(r) = 1 and therefore, x = t + r. Consequently, we have no crossing of
characteristics. However, we still have a problem. since we must define our solution in
the region on which we do not have enough information.

Let us consider the follow functions u1(x, t) and u2(x, t) given by

u1(x, t) =

{
0, x < t

2 ,

1, x > t
2 ,
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u2(x, t) =


1, x ≤ 0,
x
t , 0 < x ≤ t,
0, x ≥ 1.

Clearly, u1(x, t) is a classical solution on either side of the curve of discontinuity x = t/2.
In addition, from the work of the previous example, it is easy to see that u1(x, t) satis-
fies the Rankine-Hugoniot jump condition along the curve of discontinuity. Therefore,
u1(x, t) is a weak solution of (1.14) with initial condition φ(x) above.

Note that u2(x, t) is a continuous solution of (1.14) with respect to φ(x). This type of
solution which fans the wedge 0 < x < t is called a rarefaction wave.

1.2.3 Entropy Condition

Let us consider a quasilinear equation mentioned in (1.5) of the form

ut + [f(u)]x = 0. (1.15)

This equation can also be written in the form

ut + f ′(u)ux = 0.

The characteristic equations associated to the PDE above are given by

dx

ds
= f ′(z)

dt

ds
= 1

dz

ds
= 0

From these equations, we see that the speed of a solution u is given by

dx

dt
=

dx
ds
dt
ds

= f ′(u).

For an equation of the form (1.15), we only allow for a curve of discontinuity in our
solution u(x, t) if the wave to the left is moving faster than the wave to the right. That
is, we only allow for a curve of discontinuity between u− and u+ if

f ′(u−) > σ > f ′(u+) . (1.16)

This is called the entropy condition. We say that a curve of discontinuity is a shock curve
for a solution u if the curve satisfies the Rankine-Hugoniot jump condition (1.13) and the
entropy condition (1.16). Therefore, to eliminate the physically less realistic solutions,
we only accept solutions u for which curves of discontinuity in the solution are shock
curves. We state this more precisely as follows. Consider the initial-value problem{

ut + [f(u)]x = 0, (x, t) ∈ R× (0,+∞),

u(x, 0) = φ(x), x ∈ R,
(1.17)

We say u is a weak admissible solution of (1.17) if u is a weak solution such that any
curve of discontinuity for u is a shock curve.
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Example 1.4. In general, in the previous examples we have that f(u) =
u2

2
then f ′(u) =

u. In the Examples 1.1 and 1.2, ξ′ = 1/2, u− = 1 and u+ = 0 so we see that the curve
ξ = x = t/2 satisfy the entropy condition (1.16) hence x = t/2 is a shock curve.

Moreover, in the Example 1.3, ξ′ = 1/2, u−1 = 1 and u+
1 = 0, thus

f ′(u−) = u− = 0 ≯
1

2
≯ f ′(u+) = u+ = 1.

Therefore, u1 does not satisfy the entropy condition along the curve of discontinuity x =
t/2. Consequently, x = t/2 is not a shock curve, and, therefore, u1 is not an admissible
solution. The solution u2, however, is a continuous solution. Therefore, we accept this
solution as the physically relevant one.

Example 1.5. We consider the Burgers equation with f(u) = u(1− u),{
ut + (1− 2u)ux = 0, (x, t) ∈ R× (0,+∞),

u(x, 0) = u0(x) = uλ,ρ(x), x ∈ R,
(1.18)

and the initial condition is

uλ,ρ(x) : =

{
λ, if x ≤ 0

ρ, if x > 0,
where λ, ρ ∈ [0, 1]. (1.19)

This problem is called the Riemann problem. There exists a more general equation,
called the viscid Burgers equation, defined as follows

∂u

∂t
= −∂u(1− u)

∂x
+ β

∂2u

∂x2
, (1.20)

where β > 0, but to our goal is to solve the PDE (1.18). Following the characteristic
method we obtain the system 

dt

ds
= 1,

dx

ds
= 1− 2z,

dz

ds
= 0,

with initial conditions 
t(r, 0) = 0,

x(r, 0) = r,

z(r, 0) = uλ,ρ(r).

Then we have that the solution is given by
t = s,

x = (1− 2z)s+ r,

z = uλ,ρ(r),
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and we can conclude that the implicit solution of (1.18) is

u = uλ,ρ(x− (1− 2u)t).

Using the fact that dz
ds = 0, we see that u is constant along the projected characteristic

curves, x = (1 − 2uλ,ρ(r))s + r. We see that for r ≤ 0, uλ,ρ(r) = λ which implies the
projected characteristic curves are x = (1 − 2λ)t + r for r ≤ 0 and the solution u should
equal λ along those curves. Also, for r > 0, uλ,ρ(r) = ρ which means the projected
characteristic curves are given by x = (1 − 2ρ)t + r for r > 0 and the solution u should
equal ρ along these curves. Then, having into account that u− = λ, u+ = ρ and f ′(u) =
1 − 2u by the mentioned above, we have that f ′(u−) = 1 − 2λ and f ′(u−) = 1 − 2λ.
Therefore

σ = ξ′(t) =
λ(1− λ)− ρ(1− ρ)

λ− ρ
= 1− λ− ρ.

Hence we have the shock case when are satisfied (1.13) and (1.16). By construction of ξ
(1.13) follow and the entropy condition (1.16) is given by

f ′(u−) = ρ2 − ρ > σ > f ′(u+)↔ 1− 2λ > 1− λ− ρ > 1− 2ρ,

which is valid when λ < ρ.

0

(1− λ− ρ)t

time 0

time t

density λ density ρ

Figure 1.5. Shock case ρ > λ

We can conclude that the characteristics starting in r and −r go at velocity 1−2ρ and
1− 2λ, respectively, and that also the line shock travels at velocity 1− ρ− λ. Therefore,
a solution of the PDE (1.18) in this case is

u(x, t) = uλ,ρ(x− (1− λ− ρ)t)(x, t) =

{
λ, if x ≤ (1− λ− ρ)t,

ρ, if x > (1− λ− ρ)t.
(1.21)

In the case λ > ρ the characteristics emanating at the left of the origin have speed
(1− 2λ) < (1− 2ρ). In this case that there are many weak solutions in the sense of (1.6).
Two of this solutions are the rarefaction fan or transonic rarefaction and rarefaction
shock show in the Figure 1.6 and 1.7.
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0
time 0

time t

density ρdensity λ

(1− 2λ)t(1− 2ρ)t

Figure 1.6. Rarefaction fan λ > ρ

0
time 0

time t

density ρdensity λ

(1− 2λ)t(1− 2ρ)t

Figure 1.7. Rarefaction shock λ > ρ

For these many weak solutions, only one of them is “physical”, i.e., is the unique
solution for the viscid Burgers equation in (1.20), taking β → 0. This unique solution is
the rarefaction fan solution. Note that the family of characteristics emanating from the
origin travels with speeds (1−2α) for λ ≥ α ≥ ρ. In the left side of the characteristic line
which travels with velocity (1− 2λ) is constant equal to λ, also happens on the right side
of the characteristic with speed (1−2ρ) is equal to ρ. Finally, we have u is constant in the
characteristic with speed (1− 2α), this is u((1− 2α)t, t) = α, observe that the equation of

the characteristic line is x = (1− 2α)t iff α =
x− t
−2t

.

Hence, the solution of the rarefaction case is

u(x, t) =


λ, if x ≤ (1− 2λ)t,
t− r

2t
, if (1− 2λ)t ≤ x ≤ (1− 2ρ)t,

ρ, if x > (1− 2ρ)t.

(1.22)
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1.3 Reversibility and Burke’s theorem

1.3.1 Reversibility and reverse process

In general, Xt represents a continuous time Markov chain with enumerable space
stated E and rates

q(x, y) = lim
h→0

P(Xt+h = y|Xt = x)

h
.

We say that π : E → [0, 1] is a probability measure reversible for the process Xt if
∀x, y ∈ E

π(x)q(x, y) = π(y)q(y, x) , (1.23)∑
x

π(x) = 1. (1.24)

In other words, if the process Xt has π as initial reversible measure then the probability
of look a jump in the direction x → y in a small time is the same that observe of y → x.
For the next propositions we will omit its demonstrations.

Proposition 1.1. If π is reversible for Xt, then π is invariant for Xt.

Proposition 1.2. The Markov process Xt accept π as reversible measure iff π is a proba-
bility and ∀t ≥ 0

π(x)Pt(x, y) = π(y)Pt(y, x), (1.25)

where Pt(x, y) is the transition probability in the time t.

The next proposition establishes that a trajectory, on a reversible measure, have the
same law that a trajectory looking from back for front.

Proposition 1.3. Lets 0 = t1 < t2 < ... < tn < t and x1, x2, ..., xn ∈ E. For si = t− tn−i we
have

Pπ(Xt1 = x1, ..., Xtn = xn) = Pπ(Xs1 = xn, ..., Xsn = x1),

where Pπ represents the distribution of the process starting at the stationary measure π.

We supose that that Xt its defined ∀t ∈ R and Xt is in equilibrium from −∞, i.e.,
Pπ(Xt = x) = π(x) ∀t ∈ R. Therefore, the Markov reverse process of Xt is

X∗t := lim
s↑t

X−s (1.26)

Note that the fact of X∗t to be Markovian follow of 1.3. Also, we can observe that X∗t
have the same jumps that Xt and the definition using the left limit ensures that the
trajectories are right continuous. We can see in the Figure 1.8 a realization of the process
Xt in black and in red the reverse process of this. Note that if the graph of Xt(ω) is
symmetric with respect to axis y then the reverse process coincides with the original
process, i.e., Xt(ω) = X∗t (ω) for all t.

Proposition 1.4. Let Xt a process with invariant measure π. If X∗t the reverse process
with relation to π then

1. π is invariant for X∗t

2. X∗t has the same distribution that Xt in equilibrium iff π is reversible for Xt.
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t

Xt(ω)

X∗t (ω)

Figure 1.8. Ralization of the process continuous Xt with spaces
states in R and their respective reverse process.

1.3.2 Process (M |M |1) and Burke’s theorem

The line (M |M |1) is a Markov process Xt with E = N and their rates are

q(x, y) =


λ, if y = x+ 1,

µ, if x ≥ 1 and y = x− 1,

0, other wise.
(1.27)

The random variable Xt is a number of persons waiting in line to be attended, with the
attention is by order of arrival, one person at a time and are attended immediately. The
first letter M in this process symbolizes that the arrives are Markovian, in this case a
Poisson process with parameter λ, the second M also with respect to the services are
exponential of parameter µ. Finally the “1” is only a part serving.

The next part is find a invariant measure, in this case is it valid to ask: there exist
a reversible measure? An affirmative answer follows by the Proposition 1.1. Taking
in account (1.23) and (1.27) we have π(x)λ = π(x + 1)µ, recursively we obtain π(x) =(
λ

µ

)x
π(0), if x ≥ 1. So, using the second condition of reversibility (1.24)

1 =
∑
x≥0

π(x) = π(0) +
∑
x≥1

π(x) = π(0) + π(0)
∑
x≥1

(
λ

µ

)x
if λ < µ

= π(0)

(
µ

µ− λ

)
.

Hence, we can conclude that for x ≥ 0, if λ < µ,

π(x) =

(
λ

µ

)x(
1− λ

µ

)
. (1.28)

Let us suppose that Xt is defined for t ∈ R and this one is equilibrium, i.e., P(Xt = x) =
π(x) ∀t. We define the process of arrivals and departures, At and Dt, respectively as

At −As =
∑
u∈[s,t]

1{Xu−Xu−=1},
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Dt −Ds =
∑
u∈[s,t]

1{Xu−Xu−=−1}.

Considering the above mentioned we can enunciate the following.

Theorem 1.3. (Burke’s Theorem (M|M|1)) Xt with stationary distribution (1.28), then
Dt is a Poisson process with parameter λ.

Proof. Let be A∗t the arrivals reverse process given by

A∗t −A∗s =
∑
u∈[s,t]

1{
X∗u−X∗u−=1

}.
Similarly, the departures reverse process is

D∗t −D∗s =
∑
u∈[s,t]

1{
X∗u−X∗u−=−1

}.
Using the definition of reverse Process (1.26) and the above definitions we have that
At −As = D∗−s −D∗−t and Dt −Ds = A∗−s −A∗−t. But since π in (1.28) is reversible for Xt,
implies by the proposition 1.4 that X∗t have the same distribution of Xt so, given that
At is Poisson of parameter λ, A∗t is a Poisson process with parameter λ. Therefore the
theorem follow taking in account the inequality of the arrives reverse process and the
departure process.



Chapter 2

The Hydrodynamic Limit

An important subject in Statistical Physics is the comprehension of the hydrody-
namic behavior of interacting particle systems. Roughly speaking, given a discrete sys-
tem that evolves in time, its hydrodynamic limit consists on the limit for the time tra-
jectory of the spatial density of particles (as some parameters are rescaled, in general,
space and time). Proving rigorously such scaling limit is often a mathematical problem
of deep technical difficulty.

2.1 Heuristic derivation of Burgers equation from TASEP

Our goal is to relate the density of TASEP and the solution of the Burgers equation.
To do so let us see first an intuitive way. Using the forwards Kolmogorov equation for
the function f(η) = η(x) we get

d

dt
E[ηt(x)] = E[−ηt(x)(1− ηt(x+ 1)) + ηt(x− 1)(1− ηt(x))]. (2.1)

We fix ε > 0, which will go later to zero, and define

uε(r, t) := E[ηε−1t(ε
−1r)].

Note that the part ε−1r should be integer by definition of ηε−1t then we abuse of notation
writing ε−1t instead of your integer part. Considering (2.1), using the definition above
and the chain rule in this equation we have

d

dt
uε(r, t) = ε−1E[−ηε−1t(ε

−1r)(1−ηε−1t(ε
−1r+1))+ηε−1t(ε

−1r−1)(1−ηε−1t(ε
−1r))]. (2.2)

Assume that there exist the limit u(r, t) := lim
ε→0

uε(r, t) and the distribution of ηε−1t around

ε−1r is approximately product, that is,

lim
ε→0

E[ηε−1t(ε
−1r)ηε−1t(ε

−1r + 1)] = (u(r, t))2.

Assume further that u(r, t) is differentiable in r. Using all this in (2.2) we have that the
right hand side must converge to minus the derivative with respect to r of u(r, t)(1 −

20
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u(r, t)). Hence the limiting u(r, t) must satisfy the Burgers equation. This heuristic
argument may also be a script of a proof of the convergence of the TASEP density to a
solution of the Burgers equation, but we show this convergence in other terms which we
will describe next.

2.2 Hydrodynamic limit

In this section we study the hydrodynamic limit, for this, we will take into account
two concepts. The variations between a system and the exterior are controlled by in-
tensive parameters (do not depend on the mass), we say that the system is in global
equilibrium if such parameters are homogeneous in the system, while in the local equi-
librium these vary on the space and the time, but very slowly, so that we can assume the
equilibrium on a neighborhood of any point.

2.2.1 General case

Consider the Burgers equation given in (1.5) with f(u) = u(1−u) and initial condition
u0 such that there exist a unique entropic weak solution u(r, t) for the above initial value
problem, but first let us see some definitions. Recall

U = {U(x) : x ∈ Z}
: = be a collection of iid random variables uniformly distributed in [0, 1]. (2.3)

Taking into account the initial condition u0 we can define

ζε(x) := 1{U(x)≤u0(εx)}. (2.4)

This is, for each ε > 0, the random configuration ζε is a sequence of independent
Bernoulli random variables whose parameter is induced by u0 for the mesh ε. There-
fore, the TASEP with random initial configuration ζε is given by:

ζεt := ηt[ζ
ε, ω]. (2.5)

Let z ∈ R the translation operator, denoted by τz, is defined by (τzη)(x) = η(bx + zc)
where bzc is the integer part of z.

Theorem 1. Let u(r, t) be the solution of the Burgers equation with initial condition u0.
Let ζε be given by (2.4) and ζεt be the TASEP with initial configuration ζε defined in (2.5).

Then, it happens that
Convergence of the density fields: For all real numbers a < b and for all t ≥ 0,

lim
ε→0

ε
∑

x:a≤x≤b
ζεε−1t(x) =

∫ b

a
u(r, t)dr, a.s. (2.6)

Local equilibrium: At the continuity points of u(r, t) we have that

lim
ε→0

E[fA(τε−1rζ
ε
ε−1t)] = u(r, t)|A|. (2.7)
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In the above theorem we are ignoring the integer parts by simplicity. We recall that
fA(η) is the function which is 1 if η(x) = 1,∀x ∈ A and 0 in other case. When A = 0, the
limit (2.7), is called density profile and has the form

lim
ε→0

E[ζεε−1t(ε
−1r)] = u(r, t). (2.8)

In both equations (2.6) and (2.7) the random variable ζεε−1t is choosing values more finely
with respect u0(εx) and a big time ε−1t as it ε grows, also in (2.7) with this growth the
translation ε−1r causes that the random variable take values far left in comparison to
the original. The convergence of density fields tell us that the Riemann sum of the above
random variable on the interval [a, b], with length of partition ε, is well approximated by
the integral of the density in such interval in a given time. While local equilibrium says
that locally the space marginal of this process, in a finite box around a point, converges
to the measure product with parameter given by the density in the point. Here we call
it local equilibrium because the equality holds for a small region of the space and for
changes in the variables that are actually not infinitely slow.

2.2.2 Shock and rarefaction fan cases

We consider the case corresponding to t = 1 and u0 = uλ,ρ in the Burgers equation
(1.18). Taking into account λ, ρ ∈ [0, 1] and U in (2.3) we obtain the initial configuration
ηλ,ρ = ηλ,ρ[U ] given by

ηλ,ρ(x) :=

{
1{U(x)≤λ}, if x ≤ 0

1{U(x)≤ρ}, if x > 0,
(2.9)

with this we can obtain the TASEP previously built

ηλ,ρt : = ηt[η
λ,ρ, ω],

which is a function of U and ω. The following theorem is a particular case of the Theorem
1, but we prove it using special definitions and methods.

Theorem 2. For all real numbers a < b,

lim
t→∞

1

t

∑
x:at≤x≤bt

ηλ,ρt (x) =

∫ b

a
u(r, 1)dr, a.s. (2.10)

And, the continuity points of u(·, 1), we have

lim
t→∞

E[fA(τtrη
λ,ρ
t )] = u(r, 1)|A|. (2.11)

Note that a difference with respect the Theorem 1 is that, we fix a macroscopic time
equal to 1 and use t as scaling parameter also in the equation (2.10) we do not use the
scaling mesh ζε defined in (2.4) because this mesh is included in the index of summation.
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2.3 Some definitions and results

In this part we introduce some definitions and results that will be useful for estab-
lishing a demonstration of the Theorem 2.

2.3.1 The tagged particle

Let η a configuration with infinitely many particles in Z. We can enumerate and tag
each particles as follows: the particle zero is the first particle that appear to the left of
zero and the other are labeled recursively, with index in Z, as they come out on the left
or right of the particle zero , i.e.,

X(i)[η] : =


max{x ≤ 0 : η(x) = 1}, if i = 0

min{x > X(i− 1) : η(x) = 1}, if i > 0

max{x < X(i+ 1) : η(x) = 1}, if i < 0.

(2.12)

Clearly we have a dependence on the initial configuration. In our case, we are interested
in initial configurations with a particle at the origin, so we define

η̃(x) : =

{
1, if x = 0,

η(x), otherwise,
(2.13)

too, we get the configuration at time t of η̃, η̃t : = ηt[η̃, ω].

We can see the graphical representation of the tagged particles and its trajectories in
the Figure 2.1, so we can know the position of the particles in any time t, let be Xt(i)[η̃, ω]
the position of the i−th particle at time t; when η and ω are understood we just denote
Xt(i). We call Xt : = Xt(0) the position of the tagged particle initially at the origin and
define the process as seen from that tagged particle by τXtηt[η̃, ω].

X(0)X(1)X(2) X(3)X(−1)X(−2)

Xt(0)Xt(1) Xt(2) Xt(3)Xt(−1)Xt(−2)

time t = 0

time t

ω

Figure 2.1. Trajectories made for the tagged particles with initial
configuration η̃ and realization ω.
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Now, we consider the configuration ηρ defined in (1.1), applying (2.13) we obtain our
new initial configuration η̃ρ which has law Bernoulli product measure conditioned to
have a particle at the origin. The distribution of η̃ρ is invariant for the process as seen
from the tagged particle, i.e., τXt η̃

ρ
t has the same distribution as η̃ρ for all t ≥ 0.

The next proposition is a celebrated fact, usually attributed to Kesten (see [13]. How-
ever, since we couldn’t find a proof for such result in the literature, an argument is pro-
vided below.

Proposition 2.1. Let Xt be the position of the tagged particle initially at the origin for
the process with random initial configuration η̃ρ. Then there exist a Poisson point process
Nt of parameter (1− ρ) such that Xt coincides with the number of arrivals of Nt.

Proof. Since the particles to the left of the tagged particle do not interfere with the
movement of the tagged particle, we will deal with particles with positive tag.

Given an initial configuration η and a realization ω we can make a bijection between
the TASEP evolution for these elements and a system of infinity queues with index in
N ∪ {0} as follows.

The ith particle is associated with the queue i and the number of customers in the
queue i is the number of empty sites between the particle i and i+ 1. The queue system
evolves with respect to TASEP, i.e., if we have an arrow such that the ith particle can
move to the rigth, then customer in the queue i moves to the left going to the queue
i − 1 or leaving the system when i = 0. See an illustration of this construction in the
Figure 2.2.

Xt(0)

0 1 2 3 4 5 6

Figure 2.2. Illustration of the bijection between the TASEP and
the infinity queues system.

Let η̃ρ the initial random configuration, which always has the tagged particle at the
origin, i.e., X0(0) = 0. Note that the bijection implies that the number of departures of
the queue 0 coincides with the position of Xt. By construction of these queues, the cus-
tomers are served by means of a Poisson process of rate 1. Also, we know that the dis-
tribution of ηρ is product Bernoulli with parameter ρ, which is invariant for the TASEP
by Lemma 1.1, this implies that the queues system has a invariant product geometric
measure with parameter (1− ρ).

We consider the process with N + 1 queues:

ηNt : = (ηNt (0), ..., ηNt (N)),

where each ηNt (j) indicates the number of customers in the jth queue. Let us assume
that the customers get into the queue N via a Poisson point process of rate (1− ρ), which
is denoted by PPP(1 − ρ). Assume that this process starts from the initial (invariant)
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measure given by
N∏
j=0

Geom(1− ρ) .

Note that if we have the same conditions by the process ηN+1
t , using the Burke’s The-

orem 1.3 in the last queue, since the attending rate 1 is greater than the arrivals rate
(1−ρ) and the invariant initial measure is geometric, we have that the departure process
in the queue N + 1 is a PPP(1− ρ).

Denote by DN
t (0) the departure process of the queue 0 of the process ηNt . Therefore, if

we have the same initial measure and Poisson processes in every process ηNt . Using
recursively the above remark, we have that DN

t (0) is a PPP(1 − ρ) for any N ∈ N.
Moreover, under these conditions, there exists a coupling of all these processes such
that the marginal process of ηN+1

t coincides with ηNt , i.e.,

(ηN+1
t (0), ..., ηN+1

t (N)) = (ηNt (0), ..., ηNt (N)).

Let be η∞t the process with infinity queues as above, which is the process given by
the bijection initially mentioned.

We claim that the departure process in the queue 0 by this process, which we will
denote by D∞t (0), is a PPP(1− ρ) provided the system starts from the invariant product

measure
∞∏
j=0

Geom(1 − ρ). Note that this claim and the aforementioned bijection im-

mediate imply that Xt is a Poisson point process with parameter (1 − ρ), finishing the
proof.

In order to prove the claim, consider the random variable

T = inf
{
k ∈ N ∪ {0} : there are no connections between

the queues k and k + 1 in [0, t0]
}
.

Using the Borel-Cantelli Lemma we have that P[T <∞] = 1. Let

Ak =
[
T = k

]
,

which are disjoint events and note that [T < ∞] =
∞⋃
k=0

Ak and P

[ ∞⋃
k=0

Ak

]
= 1. By

construction,

(η∞t (0), ..., η∞t (k))1Ak = (ηkt (0), ..., ηkt (k))1Ak , for any t ∈ [0, t0].

Therefore, D∞t (0) = Dk
t (0) for all t ∈ [0, t0] in Ak. Since Dk

t is a PPP(1− ρ) and Dk+1
t (0) =

Dk
t (0) in the time interval t ∈ [0, t0] for any k ∈ N, we then conclude that D∞t (0) is a

PPP(1 − ρ) on [0, t0]. And since t0 is arbitrary, it implies that D∞t (0) is a PPP(1 − ρ) on
[0,∞], concluding the proof.

Corollary 2.1. (Law of large numbers for the tagged particle) Let Xt be the po-
sition of the tagged particle initially at the origin for the process with random initial
configuration η̃ρ. Then

lim
t→∞

Xt

t
= 1− ρ, a.s. (2.14)



26

Proof. This convergence follows from the above theorem and the strong law of large
numbers for renewal processes (see [6, Theorem 4.1]), considering in our situation the
renewal process Xt, where the time between arrivals are given by independent exponen-
tial variables of rate (1− ρ).

2.3.2 Coupling and first and second class particles

Taking into account the graphical construction of the TASEP introduced before, we
can define naturally the coupling, this is done via two initial configurations η and η′
given by

{(ηt, η′t) : t ≥ 0} : = {(ηt[η, ω], ηt[η′, ω]) : t ≥ 0}. (2.15)

Note that, by definition we have two ordened pairs which each component has infinite
length subject to same TASEP realization ω, therefore graphically we shall see this as
two randoms configuration very close evolving in time, see Figure 2.3. Hence, if we have
a arrow in x to x + 1 at time t and if some configuration has a particle in x at t− this
jump for x+ 1 submitted to the rules of TASEP.

time t = 0

time t

ω

η
η′

ηt

η′t

Figure 2.3. Graphical interpretation for the coupling with initial
configurations η, η′ and realization ω.

For two configurations η, η′, we denoted η ≤ η′ if every time that we have a particle
in η we also have in η′, i.e., η(x) ≤ η′(x) ∀x ∈ Z. Considering this we introduce the next
lemma.

Lemma 2.1. (Attractivity) ∀t ≥ 0 if η ≤ η′, then ηt ≤ η′t.
(Discrepancy conservation) If η ≤ η′ and the number of discrepances is finite, i.e.,∑

x
(η′(x)− η(x)) <∞ then

∑
x

(η′(x)− η(x)) =
∑
x

(η′t(x)− ηt(x)), ∀t ≥ 0.

Proof. For i) if t = 0, we have nothing to prove. Let be t > 0, is sufficient to prove that
if ηt− ≤ η′t− implies ηt ≤ η′t. Fix x ∈ Z and a realization ω, then we have the two cases
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(x, t) /∈ ω and (x, t) ∈ ω. If we have the second case, as this process is Poisson in each
integer line, there exist t1 < t such that (x, s) /∈ ω ∀t1 ≤ s < t, by assumption (taken
t1 = t− or closer to t if necessary) ηt1(x) ≤ η′t1(x) and since there are no intermediary
jumps follows that ηt(x) ≤ η′t(x).

For the first case, we have two subcases. If ∀t− ≤ s ≤ t, (x, s) /∈ ω is immediate. For
the other subcase, there exist t− ≤ s < t such that (x, s) ∈ ω, we use the second case in
[t−, s] and after the first subcase in [s, t], taking into account that there are no more than
two particles almost surely. We can conclude by arbitrariness of x and ω.

For ii), we consider the new configuration ζ = η′−η which by hipotese ζ ∈ {0, 1}Z and
has finite number of particles. As demonstrated by i), we have that ζt = (η′−η)t = η′t−ηt
and since the TASEP does not increase the number of particles only moves this, then∑

x

ζ(x) =
∑
x

ζt(x).

Fix η ≤ η′ and define

σt : = ηt[η, ω]; ξt : = ηt[η
′, ω]− ηt[η, ω]. (2.16)

By definition σt ∈ {0, 1}Z and by attractivity ξt ∈ {0, 1}Z, which are called, respectively,
σ particles of first class and ξ particles of second class. In resume, the first class particles
are those on both configurations, while the second class particles are those that lays
only the configuration η′. We know that these particles are not simultaneously in a
same position. Therefore in the coupling we represented graphically, see Figure 2.4, by
0©, 1© and 2© we mean that there is no particle, there is a first class particle or there is a
second class particle, respectively.

2 1 0 1 2 0 1 2 2 1 0
η
η′

Figure 2.4. Graphical interpretation for the σ e ξ particles with
initial configurations η, η′ (η ≤ η′) and a realization ω.

Now we construct a new process {(σt, ξt) : t ≥ 0}, which will be a Markov process,
this is directly function of ω and the initial configurations σ and ξ, as follows. In each
integer, we know that there is just one particle σ, ξ, or there is none (denoted by 0). For
the arrows between σ− σ, ξ− ξ, σ− 0 and ξ− 0 particles, we use the same TASEP rules,
but for the arrows on σ − ξ particles only interchange their positions if σ → ξ. In the
other case (ξ → σ) nothing happens. In other words, the first class particles have jump
preference, including jump over a second class particle, while the second class particle
jumps to the right only with a hole.

The vector (σt, ξt) depends on the initial configuration (σ, ξ) = (η, η′−η) and on ω. We
denote the process construct above, when this needs to be stressed, by

(σt, ξt) = (σt, ξt)[(σ, ξ), ω] = (σt[(σ, ξ), ω], ξt[(σ, ξ), ω]), (2.17)
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2 1 0 1 2 0 1 2 2 1 0

2 1 0 2 0 1 2 2 1 0 1

time t = 0

time t

ω

Figure 2.5. Graphical example of the behavior of the σ, ξ particles
with the new rules above.

either way. Let us make some observations. First we denoted this new process by a two-
dimensional vector. In this case, configurations at any time have at most one particle
σ or ξ at any site. On the other hand, the new process is another way of looking at
the coupling, including this is well suited with the graphical description of coupling we
mentioned before.

2.3.3 Law of large numbers

Having into account a lot of the things previously addressed, we will show some
versions of the law of large numbers for different elements.

Flux

Let {yt}t≥0 be any arbitrary trajectory inRwith y0 = 0. We define the flux of particles
along yt as the number of particles with no positive label that their position exceed yt
subtracting the number of particles with positive tag that their position left behind of yt,
i.e.,

Fyt(t)[η, ω] : =
∑
i≤0

1{Xt(i)[η,ω]>yt} −
∑
i>0

1{Xt(i)[η,ω]≤yt}, (2.18)

where Xt(i)[η, ω] is the position of the ith particle at time t above defined. In the
Figure 2.6 we see that such trajectories may not be continuous or linear.

Recalling that η̃ is the configuration η but with particle at the origin and Xt is
the position of the tagged particle, then considering that Xt(i)[η̃, ω] > Xt iff i ≥ 1 and
Xt(i)[η̃, ω] ≤ Xt iff i ≤ 0 for all t and ω, we have by definition that the flux of η̃ along Xt

is null, i.e.,
FXt(t)[η̃, ω] ≡ 0. (2.19)

However, it should be noted that the relation (2.19) is valid for any configuration η even
if does not has particle at the origin.
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X(0)X(1)X(2) X(3)X(−1)X(−2)

Xt(0)

time t = 0

time t

ω

ytzt

Figure 2.6. The flux along the trajectories yt and zt are respec-
tively −1 and 2, for some initial configuration and realization ω

We can write in another form the flux of η̃ along yt as follows:

Fyt(t)[η̃, ω] =
∑
x∈Z

η̃t(x)
(
1{yt<x≤Xt} − 1{Xt<x≤yt}

)
. (2.20)

In this equality, by the term η̃(x), we can replace the index i in (2.18) by x, also the
first indicator function allows us take the number of values greater that yt but with tag
no positive (by x ≤ Xt), as the first sum in the definition (2.18). Similarly, the second
indicator function and the second sum. These sets in both indicator functions are well
defined by (2.19) because we do not count particles with the wrong label. With all this
in mind, it is clear that the equalities (2.18) and (2.20) are equivalent.

Given that η ≤ η̃ has at most one discrepancy in the origin and by discrepancy con-
servation in the Lemma 2.1 this is conserved. Then we have

Fyt(t)[η, ω] : =
∑
x∈Z

ηt(x)
(
1{yt<x≤Xt} − 1{Xt<x≤yt}

)
+ h(ω, t), (2.21)

where h(ω, t) ∈ {0, 1}is a function of ω and t (in the next proposition, will be also function

of U ) such that
h(ω, t)

t
→
t→∞

0, a.s. Having this into account we have

Proposition 2.2. Let a ∈ R. Then,

lim
t→∞

Fat(t)[η
ρ, ω]

t
= ρ[(1− ρ)− a], a.s. (2.22)

Proof. Given t > 0, we have the following cases

i) If at ≤ (1 − ρ)t ≤ Xt or Xt ≤ (1 − ρ)t ≤ at, defining t as the union of disjoint sets
we obtain that

{Xt < x ≤ at} = {Xt < x ≤ (1− ρ)t} t {(1− ρ)t < x ≤ at},
{at < x ≤ Xt} = {at < x ≤ (1− ρ)t} t {(1− ρ)t < x ≤ Xt}.
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ii) If (1− ρ)t is smaller that at and Xt with at < Xt, then

{at < x ≤ Xt} = {(1− ρ)t < x ≤ Xt} \ {(1− ρ)t < x ≤ at},
{Xt < x ≤ at} = {Xt < x ≤ (1− ρ)t} \ {at < x ≤ (1− ρ)t}.

We have similar equalities for the cases ii’) (Xt < at) and iii) ((1− ρ)t between Xt and at)
and in any case we have

1{at<x≤Xt} − 1{Xt<x≤at} =
(
1{at<x≤(1−ρ)t} − 1{(1−ρ)t<x≤at}

)
+
(
1{(1−ρ)t<x≤Xt} − 1{Xt<x≤(1−ρ)t}

)
,

using this and the equation (2.21) we have that

Fyt(t)[η
ρ, ω] =

∑
x∈Z

ηρt (x)
(
1{at<x≤(1−ρ)t} − 1{(1−ρ)t<x≤at}

)
+
∑
x∈Z

ηρt (x)
(
1{(1−ρ)t<x≤Xt} − 1{Xt<x≤(1−ρ)t}

)
+ h(ω, t).

Dividing by t, in the second sum the maximum number of the numerator is the interval
length, because both indicator functions take different values for all x, then the absolute

value of the second term is bounded by
|Xt − (1− ρ)t|

t
which converges a.s. to zero, by

the Proposition 2.1, this implies that the second sum converges a.s. to zero. Given that

the last term,
O(1)

t
, also converges a.s. to zero, then the proof will be complete if we see

that the first sum converges a.s. to ρ(1− ρ− a).

Let be F (t) =
∑
x∈Z

ηρt (x)
(
1{at<x≤(1−ρ)t} − 1{(1−ρ)t<x≤at}

)
, we assume without loss of

generality that we only have the first term, this is, a ≤ (1 − ρ) this is possible because
the two set of the indicator functions are disjoints. Therefore F (t) =

∑
at<x≤(1−ρ)t

ηρt (x) and

we will prove, through a three steps, that

lim
t→∞

F (t)

t
= ρ(1− ρ− a) a.s. (2.23)

Step 1 lim
k→∞

F (k)
k = ρ(1− ρ− a) a.s.

Using the Chebyshev inequality we have that

P
[∣∣∣F (k)

k
− ρ(1− ρ− a)

∣∣∣ > ε
]

=P
[∣∣∣F (k)

k
− ρ(1− ρ− a)

∣∣∣4 > ε4
]

≤ 1

ε4
E

[(
1

k

∑
ak<x≤(1−ρ)k

ηρk(x)− ρ(1− ρ− a)

)4]

=
1

k4ε4
E

[( ∑
ak<x≤(1−ρ)k

(ηρk(x)− ρ)

)4]
. (2.24)

By the Lemma 1.1, for any k ≥ 0, ηρk(x) has distribution Bern(ρ) and ηρk(x), ηρk(y) are
independent for x 6= y. Moreover, ηρk(x) − ρ and ηρk(y) − ρ are two independent random
variables with zero mean for all x 6= y. So

E
[
(ηρk(x)− ρ)(ηρk(y)− ρ)(ηρk(w)− ρ)(ηρk(z)− ρ)

]
6= 0 iff x = y = w = z or two equal pairs.
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In general, if we have n summands in the sum appearing in (2.24), the quantity of those
with the above property are

n+

(
4

2

)(
n

2

)
= n+

3n(n− 1)

2
,

in our case n = b(1− ρ)kc− bakc ≤ kM , for some M big enough, hence we get from (2.24)
that

P
[∣∣∣F (k)

k
− ρ(1− ρ− a)

∣∣∣ > ε
]
≤ 1

k4ε4

[
kME

[
ηk(x)4

]
+

3kM(kM − 1)

2
V ar(ηk(x))

]
≤ ck2

k4ε4
=

c

ε4k2
for some c > 0.

Hence, we have that
∞∑
k=1

P
[∣∣∣F (k)

k − ρ(1 − ρ − a)
∣∣∣ > ε

]
≤

∞∑
k=1

c

ε4k2
< ∞ and using the

Borel-Cantelli Lemma follows the limit of the Step 1.

Step 2 lim
t→∞

F (t)
btc = ρ(1− ρ− a) a.s. where t ∈ R+.

Define

Ak =

{ ∣∣∣∣F (t)

k
− F (k)

k

∣∣∣∣ ≥ ε, for some t ∈ [k, k + 1)

}

=

{ ∣∣F (t)− F (k)
∣∣ ≥ εk, for some t ∈ [k, k + 1)

}
,

in this case, Ak ⊆ [there is at least εk arrivals of the Poisson process in the interval
[k, k + 1)]. By Burke’s Theorem 1.3 we know that the number of arrivals Nk in [k, k + 1)
is a Poisson process, we also have that, for all k ∈ N, Nk are i.i.d. and since E

[
Nk
ε

]
=

∞∑
i=1

P
[
Nk
ε ≥ i

]
<∞, because Nk take positive integer values, we have

∞∑
k=1

P(Ak) ≤
∞∑
k=1

P
[
Nk ≥ εk

]
=
∞∑
k=1

P

[
N1

ε
≥ k

]
<∞.

We can conclude again this step using the Borel-Cantelli Lemma and the limit in the
Step 1.

Step 3 lim
t→∞

F (t)
t = ρ(1− ρ− a) a.s. where t ∈ R+.

Once lim
t→∞

(
F (t)
t −

F (t)
btc

)
= 0 a.s., adding this to the limit it the Step 2 the result follows.

But this limit is due to∣∣∣∣F (t)

t
− F (t)

btc

∣∣∣∣ =

∣∣∣∣F (t)(btc − t)
tbtc

∣∣∣∣
=

∣∣∣∣F (t)

btc

∣∣∣∣ t− btct
≤
∣∣∣∣F (t)

btc

∣∣∣∣1t a.s.→ |ρ(1− ρ− 1)| · 0 = 0
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Tagged second class particle

Taking 0 ≤ λ < ρ ≤ 1. We have that if U(x) < λ implies U(x) < ρ, thus ηλ ≤ ηρ. We
can define now the two class process

(σt, ξt) : = (ηλt , η
ρ
t − ηλt ). (2.25)

We can see that the marginals laws of σt and σt+ξt are stationarity but the process (σt, ξt)
is not stationary. Similarly to the definition of the configuration η̃ with a particle at the
origin, we can define the configuration

˜
η as the initial configuration with no particle at

the origin, i.e.

˜
η(x) : =

{
0, if x = 0,

η(x), otherwise.
(2.26)

Clearly we obtain the relation η̃ρ ≥ ηρ ≥ ηλ ≥
˜
ηλ and we can define the process

(
˜
σt, ξ̃t) : = (

˜
ηλt , η̃

ρ
t −

˜
ηλt ). (2.27)

Note that the initial configuration for this process coincides with the process (σt, ξt) out of
the origin while at the origin there is a second class particle since

˜
σ0 = 0 and ξ̃0 = 1. We

state below the law of large number for the position of the tagged second class particle.

Proposition 2.3. Take λ < ρ and let Y λ,ρ
t be the position of the tagged particle ξ for the

process (σt, ξt), initially located at the origin, that is, Y λ,ρ
0 = 0. Then,

lim
t→∞

Y λ,ρ
t

t
= 1− λ− ρ, a.s. (2.28)

Proof. Denote byGyt(t)[(
˜
σ, ξ̃), ω] the flux of ξ̃ particles along a trajectory yt for the process

(
˜
σt, ξ̃t). By the definition of ξ̃ particles, these are the particles which are in η̃ρ but not in

˜
ηλ, we can write this flux as the difference of the η̃ρ particle flux and the

˜
ηλ particle flux,

i.e,

Gyt(t)[(
˜
σ, ξ̃), ω] = Fyt(t)[η̃

ρ, ω]− Fyt(t)[
˜
ηλ, ω]

= Fyt(t)[η
ρ, ω]− Fyt(t)[ηλ, ω] + h2(t, ω, U),

where h2 ∈ {−1, 0, 1} is the error comes from (2.21). Using the law of large numbers for
the flux in (2.22) for the trajectory yt = at we obtain that

lim
t→∞

Gyt(t)[(
˜
σ, ξ̃), ω]

t
= [ρ(1− ρ)− λ(1− λ)]− a(ρ− λ), a.s. (2.29)

We can see that the limit is negative for a > 1 − ρ − λ and positive for a < 1 − ρ − λ.
Note the relationship between the flux of the ξ̃ particles and the position of the tagged
particle given by[

Gat(t)[(
˜
σ, ξ̃), ω] ≥

∑
at≤x≤(a+c)t

x∈Z

ξt(x)

]
=
[
Y λ,ρ
t ≥ at+ ct

]
, for some c > 0. (2.30)



33

Or equivalently,[
Gat(t)[(

˜
σ, ξ̃), ω]

t
≥ 1

t

∑
at≤x≤(a+c)t

x∈Z

ξt(x)

]
=

[
Y λ,ρ
t

t
≥ a+ c

]
, for some c > 0.

Note that, the second term of the first set is no negative and since that the limit of the
first term is positive when a < 1− ρ−λ, then we can have this assumption on a. Picking
0 < ε < 1− ρ− λ and choosing c = 1− ρ− λ− a− ε > 0, we have that[

Gat(t)[(
˜
σ, ξ̃), ω]

t
≥ 1

t

∑
at≤x≤(1−ρ−λ−ε)t

x∈Z

ξt(x)

]
=

[
Y λ,ρ
t

t
≥ 1− λ− ρ− ε

]
.

Having into account that the probability for the ξ particles is ρ−λ and taking the lim inf
on both sets we obtain by the limits in (2.29) and (2.23) that[

ρ(1− ρ)− λ(1− λ)− a(ρ− λ) ≥ (ρ− λ)(1− ρ− λ− a− ε)
]

=

[
lim inf
t→∞

Y λ,ρ
t

t
≥ 1− ρ− λ− ε

]
.

The first set above has probability one, because

ρ(1− ρ)− λ(1− λ)

(ρ− λ)
− a ≥ 1− ρ− λ− a− ε

⇔ 1− ρ− λ− a ≥ 1− ρ− λ− a− ε⇔ 0 ≥ −ε.

We can conclude that

lim inf
t→∞

Y λ,ρ
t

t
≥ 1− ρ− λ− ε, a.s. (2.31)

Similarly, we can obtain the equality[
Gat(t)[(

˜
σ, ξ̃), ω] ≤ −

∑
(a−c)t≤x≤at

x∈Z

ξt(x)− 1

]
=
[
Y λ,ρ
t ≤ at− ct

]
, for some c > 0. (2.32)

Again, using the fact that the limit (2.29) is negative if a > 1− λ− ρ, taking ε and c > 0
such that a− 1 + λ+ ρ > ε > 0 and c = a− 1 + λ+ ρ− ε, we obtain that[

Gat(t)[(
˜
σ, ξ̃), ω]

t
≤ −1

t

∑
(1−ρ−λ+ε)t≤x≤at

x∈Z

ξt(x)− 1

t

]
=

[
Y λ,ρ
t

t
≤ 1− λ− ρ+ ε

]
.

Using the same limits as above, but in this case taking lim sup, it follows that

[ρ(1− ρ)− λ(1− λ)− a(ρ− λ) ≤ −(ρ− λ)(a− 1 + λ+ ρ− ε)]

=

[
lim sup
t→∞

Y λ,ρ
t

t
≤ 1− ρ− λ+ ε

]
,
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Finally, in the same way we obtain that the first set has probability one and we can
conclude that

lim sup
t→∞

Y λ,ρ
t

t
≤ 1− ρ− λ+ ε, a.s. (2.33)

The proposition follows from the arbitrariness of ε and the inequalities (2.31) and (2.33).

Isolated second class particle

Let α ∈ (0, 1). To create a isolated second class particle for the configuration ηα we
consider the coupling

(
˜
ηαt , η̃

α
t −

˜
ηαt ), (2.34)

where the position at time t of the second class particle in the coupling above is denoted
by

Rαt : = {x : η̃αt (x) 6=
˜
ηαt (x)}. (2.35)

Proposition 2.4. We have

lim
t→∞

Rαt
t

= 1− 2α, a.s. (2.36)

Proof. Take α < ρ and consider, as before, the coupling

(
˜
ηαt , η̃

ρ
t −

˜
ηαt ) (2.37)

and the position of the second class particle Y α,ρ
t initially at the origin for this process.

Recalling that we are using the same U and ω in the couplings (2.34) and (2.37), then we
see that the second class particles in (2.37) are not in (2.34) and both Rαt and Y α,ρ

t have
the same first class particles

˜
ηαt ,thus, while Rαt sees no other second class particle, Y α,ρ

t

is blocked by the second class particles η̃ρt −
˜
ηαt to its right side, this implies that

Rαt ≥ Y
α,ρ
t , if α < ρ.

Hence, by the law of large number for the tagged second class particle (2.28), we obtain

lim inf
t→∞

Rαt
t
≥ 1− α− ρ, a.s. (2.38)

Our goal now is to prove the reverse inequality. Take now λ < α and consider the
coupling

(
˜
ηλt , η̃

α
t −

˜
ηλt ). (2.39)

Keep in mind that the process (2.34) has a single second class particle which starts at
the origin, while the process (2.39) has many second class particles. Since λ < α, we can
say that all first class particles of (2.39) are present in (2.34). Therefore, the isolated
second class particle of (2.34) will walk slower than the tagged second class particle of
(2.39), that is,

Rαt ≤ Y
λ,α
t , if λ < α.

Again using the law of large number for the tagged second class particle (2.28), we obtain

lim sup
t→∞

Rαt
t
≤ 1− α− λ, a.s. (2.40)

The proposition now follows from (2.38) and (2.40) taking ρ ↓ α and λ ↑ α respectively.
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2.4 Proof of hydrodynamics: increasing shock

Now, we prove the Theorem 2 for the shock case, that is λ < ρ . Recall that in this
case the solution is a translation of the initial condition, i.e, u(r, t) = uλ,ρ(r− (1−λ−ρ)t).
Let z ∈ Z and the cut operator define Γz : {0, 1}Z → {0, 1}Z as

Γzη(x) := η(x)1{x≥z}. (2.41)

This operator when applied to the configuration η eliminates the particles to the left of
z.

If ξ(0) = 1 and Yt is the position of the ξ particle initially at the origin, its cut the
initial configuration to the left of the origin and evolve it until time t is the same as to
cut the ξt configuration to the left of Yt at time t. In another words,

(σt[(σ, ξ), ω],ΓYtξt[(σ, ξ), ω]) = (σt[(σ,Γ0ξ), ω], ξt[(σ,Γ0ξ), ω]). (2.42)

This fact can be explained in words as follows. The initial ξ particles to the left to Y0 are
not felt neither by the σ particles nor by the ξ particles at Y0 and to the right to Y0, so it
is the same to cut them at the time 0 or to cut them at time t.

Let (σ, ξ) be a two-class configuration and let the configuration η which cut the second
class particles to the left of the particle at the origin (also called tagged particle, as will
be seen later) and forget the class for the remaining particles. That is,

η := σ + Γ0ξ.

Considering this configuration, add a second class particle with respect to ηt at the origin
at time zero; calling Rt its position at time t. Add a ξ particle at the origin at time zero;
call Yt its position at time t. Then, using (2.42) we have

Rt =Yt (2.43)

(
˜
ηt, Rt) =(

˜
σt + ΓYt ξ̃t, Yt). (2.44)

Recall ηρ and ηρ,λ are already defined as as functions of U and their diferent tilde ver-
sions are also defined in (2.13) and (2.26). Set σ = ηλ and ξ = ηρ − ηλ we have of these
definitions that

(
˜
σ, ξ̃) =(

˜
ηλ, η̃ρ −

˜
ηλ)

˜
ηλ,ρ =

˜
σ + Γ0ξ̃
˜

.

Let Rλ,ρt be a position of the second class particle with respect to
˜
ηλ,ρ and Y λ,ρ

t be a ξ̃

tagged particle for (
˜
σt, ξ̃t) with Rλ,ρ0 = Y λ,ρ

0 . Then we have for all t ≥ 0 by (2.43) and
(2.44) that

Rλ,ρt =Y λ,ρ
t (2.45)

(
˜
ηλ,ρt , Rλ,ρt ) =(

˜
σt + Γ

Y λ,ρt
ξ̃t

˜

, Y λ,ρ
t ). (2.46)

Finally, by (2.46) we can write ηλ,ρt as follows

ηλ,ρt (x) =

{
˜
ηλ,ρt (x), if x 6= Rλ,ρt ,

ηλ,ρt (0), if x = Rλ,ρt .
(2.47)
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2.4.1 Proof of local equilibrium

For λ < ρ and the solution discussed above the case in (2.11) reduces to

lim
t→∞

E[fA(τtrη
λ,ρ
t )] =

{
ρ|A|, if r > 1− λ− ρ,
λ|A|, if r < 1− λ− ρ.

(2.48)

We consider first the case r > 1− λ− ρ. Denote by Yt = Y λ,ρ
t the position of the tagged ξ

particle.

We clain that, if Yt < rt+ minA, then

fA(τtrη
λ,ρ
t )1{Yt<rt+minA} = fA(τtr(σt + ξt))1{Yt<rt+minA}. (2.49)

This statement follows by the relationship (2.47) and the fact that we can drop the cut
operator and the tilde operator in σt and ξt because f take values over A, whose values
are above of Yt−rt. Then, when we do the translation by rt, these values fall to the right
of Yt.

On the other hand,

lim
t→∞

1{Yt≥rt+minA} = 0 a.s. and lim
t→∞

1{Yt<rt+minA} = 1 a.s. , (2.50)

which is deduced from lim
t→∞

Yt
t

= 1− λ− ρ ≥ r > 1− λ− ρ a.s. Therefore

E[fA(τtrη
λ,ρ
t )] =E[fA(τtrη

λ,ρ
t )1{Yt<rt+minA}] + E[fA(τtrη

λ,ρ
t )1{Yt≥rt+minA}]

=E[fA(τtr(σt + ξt))1{Yt<rt+minA}] + E[fA(τtrη
λ,ρ
t )1{Yt≥rt+minA}].

We know that |fA|≤ 1 then the second summand above converges to zero using that
the indicator function goes to zero a.s. and Dominated Convergence Theorem. Since
lim
t→∞

1{Yt<rt+minA} = 1 a.s and σt + ξt = ηρt , then

lim
t→∞

E[fA(τtr(σt + ξt))1{Yt<rt+minA}] = lim
t→∞

E[fA(τtrη
ρ
t )].

We can conclude the proof by the Lemma 1.1 since the distribution of τtrηρ is spatially
invariant. The remaining case r < 1− λ− ρ is similar.

2.4.2 Proof of convergence of the density fields

We use the same notation and some of the argument of the previous proof. In this
part we proof (2.10), which says that

lim
t→∞

1

t

∑
x:at≤x≤bt

ηλ,ρt (x) =

∫ b

a
u(r, 1)dr, a.s.

Fix a, b ∈ R such that 1− λ− ρ < a < b. Then

1

t

∑
x:at≤x≤bt

ηλ,ρt (x) =
1

t

∑
x:at≤x≤bt

(σt(x) + ΓYtξt(x)) (2.51)
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=
1

t

∑
x:at≤x≤bt

(σt(x) + ξt(x))1{Yt<at} +
1

t

∑
x:at≤x≤bt

(σt(x) + ΓYtξt(x))1{Yt≥at} (2.52)

=
1

t

∑
x:at≤x≤bt

ηρt (1− 1{Yt≥at}) +
1

t

∑
x:at≤x≤bt

(σt(x) + ΓYtξt(x))1{Yt≥at}

=
1

t

∑
x:at≤x≤bt

ηρt (x)− 1

t

∑
x:at≤x≤bt

ηρt (x)1{Yt≥at} +
1

t

∑
x:at≤x≤bt

(σt(x) + ΓYtξt(x))1{Yt≥at}

(2.53)

−→
t→∞

ρ(b− a) =

∫ b

a
u(r, 1) dr,

where we used that: in (2.52) that we can drop the cut operator as (2.49); the limit in
(2.53) follows from (2.23) for the first sum and the second and the third sums go to zero
a.s. because their absolute values are bounded by (b − a)1{Yt≥at} which goes to zero a.s.
for the same reason that (2.50).

Now, consider c, d ∈ R such that c < d < 1−λ−ρ. Using the same argument as before
we obtain

1

t

∑
x:ct≤x≤dt

ηλ,ρt (x) =
1

t

∑
x:ct≤x≤dt

(σt(x) + ΓYtξt(x))

=
1

t

∑
x:ct≤x≤dt

(σt(x) + ΓYtξt(x))1{Yt>dt} +
1

t

∑
x:ct≤x≤dt

(σt(x) + ΓYtξt(x))1{Yt≤dt}

=
1

t

∑
x:ct≤x≤dt

ηλt (x) +
1

t

∑
x:ct≤x≤dt

(σt(x) + ΓYtξt(x))1{Yt≤dt} (2.54)

−→
t→∞

λ(d− c) =

∫ d

c
u(r, 1) dr,

where we obtain (2.54) since if Yt < dt and we take values between ct and dt, then we
are removing the second class particles and leaving only first class particles.

Finally, we have c, d ∈ R such that c < 1− λ− ρ < b then given ε > 0

1

t

∑
x:ct≤x≤bt

ηλ,ρt (x) =
1

t

∑
x:ct≤x≤(1−λ−ρ−ε)t

ηλ,ρt (x) +
1

t

∑
x:(1−λ−ρ−ε)t<x<(1−λ−ρ+ε)t

ηλ,ρt (x)

+
1

t

∑
x:(1−λ−ρ+ε)t≤x≤bt

ηλ,ρt (x).

Therefore, using this equality and the above cases we can obtain that

lim sup
t→∞

1

t

∑
x:ct≤x≤bt

ηλ,ρt (x) = λ(1− λ− ρ− ε− c) + ρ(b− 1 + λ+ ρ− ε)

+ lim sup
t→∞

1

t

∑
x:(1−λ−ρ−ε)t<x<(1−λ−ρ+ε)t

ηλ,ρt (x)

≤ λ(1− λ− ρ− c) + ρ(b− 1 + λ+ ρ) + ε(2− λ− ρ),
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and in the same way

lim inf
t→∞

1

t

∑
x:ct≤x≤bt

ηλ,ρt (x) ≥ λ(1− λ− ρ− c) + ρ(b− 1 + λ+ ρ)− ε(λ+ ρ).

We can conclude, using the arbitrariness of ε, that

. lim
t→∞

1

t

∑
x:ct≤x≤bt

ηλ,ρt (x) = λ(1− λ− ρ− c) + ρ(b− 1 + λ+ ρ)

=

∫ 1−λ−ρ

c
u(r, 1) dr +

∫ b

1−λ−ρ
u(r, 1) dr =

∫ b

c
u(r, 1) dr.

2.5 Proof of hydrodynamics: rarefaction fan

Now, we prove the Theorem 2 for the rarefaction case, that is, λ > ρ . Recall that in
this case the solution is given in (1.22). For this proof we need the following two results.

Lemma 2.2. If λ > ρ and for each α ∈ [0, 1] let Rαt be a second class particle initially at
the origin for the process ηαt . Then

ηλ,ρt (x) =

{
ηρt (x), if x > Rρt ,

ηλt (x), if x < Rλt .
(2.55)

Furthermore, for λ ≥ α ≥ ρ we have

ηλ,ρt (x) ≤ ηαt (x), for x > Rαt , (2.56)

ηαt (x) ≤ ηλ,ρt (x), for x < Rαt . (2.57)

The results in this lemma can be seen in the Figure 2.7. In the first graph we can
see that Rρt ≥ Rλt whenever λ > ρ this follows from the fact that if λ > ρ then ηλt ≥ ηρt ,
so Rλt moves slower that Rρt because there are more first class particles interfering in a
process with respect to the other.

Proof. Consider the process with only one second class particle with constant density ρ
given by

(
˜
ηρt , η̃

ρ
t −

˜
ηρt )

and let Rρt be the position of the second class particle for this coupling. By definition we
have that ηλ,ρ ≥ ηρ. Then we can define the two class process whereas σt and ξt are the
first and second class particles, that is,

(σt, ξt) := (ηρt , η
λ,ρ
t − η

ρ
t ).

Note that at time 0 Rρ0 = 0 and initially the second class particles are in a negative
position, i.e., ξ(x) = ηλ,ρt (x) − ηρ(x) = 0 for all x > 0. The first identity in (2.55) is
equivalent to

ξt(x) = 0, for x > Rρt . (2.58)
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Rα
t

ηαt
ηλ,ρt

Rλt Rρt

Figure 2.7. Ilustration of both results of the Lemma 2.2. In the
first graph the gray and white points indicates the λ particles and
ρ particles respectively.

We claim that the ξ particles cannot overpass Rρt , this is

Yt := max{y : ξt(y) = 1} ≤ Rρt . (2.59)

Note that Yt behaves as a second class particle for ηρt , since that the ξ particles interact
by exclusion among them and we have that the rightmost ξ particle does not feel the ξ
particles to its left, but with a random initial position Y0 ≤ 0 = Rρ0. To proof the claim
we have to explore the following three cases, which depends of the particles in the site 0
of ηρ and ηλ.

(a) If ηρ(0) = 0 and ηλ(0) = 1, then Y0 = 0 = Rρ0 and both particles will follow the
same path in future times.

(b) If ηρ(0) = ηλ(0) = 1, this implies that we have a first class particle at the origin in
(σt, ξt) and Y0 < Rρ0, since σt(Rρt ) = 1 and Yt cannot jump over σ particles we obtain that
Yt < Rρt .

(c) If ηρ(0) = ηλ(0) = 0, it means that at the origin we have no particle and Y0 < Rρ0.
If there exist an arrow (x, t) and Yt− = x, Rρ

t− = x + 1, then Yt = Rρt = x + 1 and these
continues together in higher times. Therefore, if the above is verified or not we have that
Yt ≤ Rρt .

The claim (2.59) implies (2.58), and therefore we obtain the first equality in (2.55).

To get the second identity in (2.55) we define other process of two classes. In this case
the σt and ξt particles are

(σt, ξt) := (ηλ,ρt , ηλt − η
λ,ρ
t ),

is once again well define because ηλ ≥ ηλ,ρ. The second equality in (2.55) is equivalent
to show that

ξt(x) = 0, for x < Rλt .

For this argument we need a similar claim, which is:

Zt := min{z : ξt(z) = 1} ≤ Rλt ,
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this follows in the same way that the above claim, following the same cases.

Finally, to prove (2.56) and (2.57) recall λ ≥ α ≥ ρ. By definition we have that ηλ,ρ ≤
ηλ,α and ηα,ρ ≤ ηλ,ρ, then by attractiveness in the Lemma 2.1 we have that ηλ,ρt ≤ ηλ,αt
and ηα,ρt ≤ ηλ,ρt . Therefore, using the previously demonstrated results we can conclude
that

ηλ,ρt (x) ≤ ηλ,αt (x) = ηαt (x), for x > Rαt ,

ηαt (x) = ηα,ρt (x) ≤ ηλ,ρt (x), for x < Rαt .

Corollary 2.2. Let λ ≥ α > β ≥ ρ. Then

P

(
lim inf
t→∞

1

t

∑
x

ηλ,ρt 1{x∈((1−2α)t,(1−2β)t)} ≥ 2(α− β)β

)
=1, (2.60)

P

(
lim sup
t→∞

1

t

∑
x

ηλ,ρt 1{x∈((1−2α)t,(1−2β)t)} ≤ 2(α− β)α

)
=1. (2.61)

Proof. If λ ≥ α > β ≥ ρ this implies that ηαt ≥ ηβt and Rβt ≥ Rαt . By (2.55) we have
that ηβt (x) ≤ ηλ,ρt (x) if x < Rβt and ηαt (x) ≥ ηλ,ρt (x) if x > Rαt . Therefore, putting all this
together we have that∑

x

ηβt (x)1{x∈(Rαt ,R
β
t )} ≤

∑
x

ηλ,ρt (x)1{x∈(Rαt ,R
β
t )} ≤

∑
x

ηαt (x)1{x∈(Rαt ,R
β
t )}. (2.62)

By the law of large numbers for Rαt and Rβt we have that Rαt ≥ (1− 2α− ε)t and
Rβt ≤ (1− 2β + ε)t a.s. and applying the first inequality in (2.62),

1

t

∑
x

ηβt (x)1{x∈((1−2α−ε)t,(1−2β+ε)t)}

≤1

t

∑
x

ηβt (x)1{x∈(Rαt ,R
β
t )}

≤1

t

∑
x

ηλ,ρt (x)1{x∈(Rαt ,R
β
t )}

≤1

t

∑
x

ηλ,ρt (x)1{x∈((1−2α)t,(1−2β)t)}

+
1

t

∑
x

ηλ,ρt (x)1{x∈((1−2α)t,Rαt )} +
1

t

∑
x

ηλ,ρt (x)1{x∈(Rαt ,(1−2α)t)}

+
1

t

∑
x

ηλ,ρt (x)1{x∈(Rβt ,(1−2β)t)} +
1

t

∑
x

ηλ,ρt (x)1{x∈((1−2β)t),Rβt }

≤1

t

∑
x

ηλ,ρt (x)1{x∈((1−2α)t,(1−2β)t)} +
2

t
|Rαt − (1− 2α)t|+2

t
|Rβt − (1− 2β)t|

≤1

t

∑
x

ηλ,ρt (x)1{x∈((1−2α)t,(1−2β)t)} + 4ε.
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Therefore, using the law of large number (2.23) in the left side we obtain that

β(2α− 2β + 2ε) ≤ lim inf
t→∞

1

t

∑
x

ηλ,ρt (x)1{x∈((1−2α)t,(1−2β)t)} + 4ε. (2.63)

Therefore, by arbitrariness of ε the first part (2.60) follows. Using the same argument
and the second inequality in (2.62) follows the second part (2.60) in this corollary.

2.5.1 Proof of convergence of the density field

Fix r ∈ (1− 2λ, 1− 2ρ). Then

lim sup
t→∞

1

t

∑
rt<x<(1−2ρ)t

ηλ,ρt (x) = lim sup
t→∞

1

t

n∑
k=1

∑
x

ηλ,ρt (x)1{x∈[t(1−2 k
n
,t(1−2 k−1

n
)]∩(rt,(1−2ρ)t)}

≤
n∑
k=1

k

n

2

n
1{ρ≤ k

n
≤ 1−r

2
} (2.64)

−→
n→∞

∫ 1−r
2

ρ
2r′dr′ =

(1− r
2

)2
− ρ2 =

∫ 1−2ρ

r

(1− r′

2

)
dr′ =

∫ 1−2ρ

r
u(r′, 1)dr′.

Where in (2.64) we use the second part (2.60) of previous corollary for any k with α = k/n
and β = (k − 1)/n. On the other hand,

lim inf
t→∞

1

t

∑
rt<x<(1−2ρ)t

ηλ,ρt (x) = lim inf
t→∞

1

t

n∑
k=1

∑
x

ηλ,ρt (x)1{x∈[t(1−2 k
n
,t(1−2 k−1

n
)]∩(rt,(1−2ρ)t)}

≥
n∑
k=1

k − 1

n

2

n
1{ρ≤ k

n
≤ 1−r

2
} (2.65)

−→
n→∞

∫ 1−r
2

ρ
2r′dr′ =

∫ 1−2ρ

r
u(r′, 1)dr′.

Again, we use the first part of the above corollary in (2.65) with the same α and β. By
these two facts we conclude the convergence of the density fields (2.10) for intervals
(a, b) ⊂ (1− 2λ, 1− 2ρ). If a < (1− 2λ) and b > (1− 2ρ) we claim that

lim
t→∞

1

t

∑
at<x<(1−2λ)t

ηλ,ρt (x) = lim
t→∞

1

t

∑
at<x<Rλt

ηλ,ρt (x) a.s. and (2.66)

lim
t→∞

1

t

∑
(1−2ρ)t<x<bt

ηλ,ρt (x) = lim
t→∞

1

t

∑
Rρt<x<bt

ηλ,ρt (x) a.s.. (2.67)

To proof the first claim note that

1

t

∑
at<x<Rλt

ηλ,ρt (x) ≤ 1

t

∑
at<x<(1−2λ)t

ηλ,ρt (x) +
2

t
|Rλt − (1− 2λ)t|.
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Using the same inequality exchanging the sums and the law of large number of Rλt in
(2.36) we obtain∣∣∣∣1t ∑

at<x<Rλt

ηλ,ρt (x)− 1

t

∑
at<x<(1−2λ)t

ηλ,ρt (x)

∣∣∣∣ ≤ 2

t
|Rλt − (1− 2λ)t| a.s.−−−→

t→∞
0.

This proof the first part (2.66). The second part (2.67) follows in the same way. On the
other hand, using the second identity in (2.55) and the result (2.23) we obtain a.s. for t
big enough∣∣∣∣1t ∑

at<x<Rλt

ηλ,ρt (x)− λ(1− 2λ− a)

∣∣∣∣ ≤ ∣∣∣∣1t ∑
at<x<(1−2λ−ε)t

ηλt (x)− λ(1− 2λ− ε− a)

∣∣∣∣
+

1

t
|Rλt − (1− 2λ− ε)t|+λε ≤ ε(2 + λ).

This implies that

lim
t→∞

1

t

∑
at<x<Rλt

ηλ,ρt (x) = λ(1− 2λ− a), a.s. and (2.68)

lim
t→∞

1

t

∑
Rρt<x<bt

ηλ,ρt (x) = ρ(b− (1− 2ρ)), a.s.. (2.69)

Where we can obtain the equality (2.69) in the same way as (2.68). We can conclude the
convergence of the density fields in the other cases using this result and the above claim,
i.e.,

lim
t→∞

1

t

∑
at<x<1−2λ

ηλ,ρt (x) = λ(1− 2λ− a) =

∫ 1−2λ

a
u(r′, 1)dr′, a.s. and

lim
t→∞

1

t

∑
1−2ρ<x<bt

ηλ,ρt (x) = ρ(b− (1− 2ρ)) =

∫ b

1−2ρ
u(r′, 1)dr′, a.s..

2.5.2 Proof of local equilibrium

Give A a finite integer set and recall fA(η) =
∏
x∈A η(x). Take λ ≥ α > β ≥ ρ,

then from (2.56) and (2.57) we have ηαt (x) ≥ ηλ,ρt (x) ≥ ηβt (x) if x ∈ (Rαt , R
β
t ). Hence

if y = rt + x ∈ (Rαt , R
β
t ) with x ∈ A then τtrη

α
t (x) ≥ τtrη

λ,ρ
t (x), therefore fA(τtrη

λ,ρ
t ) = 0

implies that fA(τtrη
α
t ) = 0. So fA(τtrη

α
t ) ≥ fA(τtrη

λ,ρ
t ), and similarly we have fA(τtrη

λ,ρ
t ) ≥

fA(τtrη
β
t ). Then, we obtain

Bt := {Rαt < x+ rt < Rβt , x ∈ A} ⊂ {fA(τtrη
α
t ) ≥ fA(τtrη

λ,ρ
t ) ≥ fA(τtrη

β
t )}.

Denoting 1Bt the indicator function of the set Bt above, we have

E
[
fA(τtrη

β
t )1Bt

]
≤ E

[
fA(τtrη

λ,ρ
t )1Bt

]
≤ E

[
fA(τtrη

α
t )1Bt

]
.
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By the law of large numbers for Rαt and Rβt , for r ∈ (1 − 2α, 1 − 2β) we have that
limt→∞ 1Bt = 1 a.s. . Hence, since |fA| ≤ 1, for r ∈ (1− 2α, 1− 2β), using the Lemma 1.1
and the Dominated Convergence Theorem we obtain

β|A| ≤ lim inf
t→∞

E
[
fA(τtrη

λ,ρ
t )
]
≤ lim sup

t→∞
E
[
fA(τtrη

λ,ρ
t )
]
≤ α|A|.

Taking α↘ 1−r
2 and β ↗ 1−r

2 we have

lim
t→∞

E
[
fA(τtrη

λ,ρ
t )
]

=
(1− r

2

)|A|
= u(r, 1)|A|.

This proves local equilibrium in rarefaction fan for r ∈ (1 − 2λ, 1 − 2ρ). For r ≥ 1 − 2ρ,
by (2.55) we have ηλ,ρt (x) = ηρt (x), if x > Rρt .Therefore, we can conclude this case using
the argument in the proof above with the law of large numbers (2.36) by Rρt and Bt :=
{Rρt ≤ x+ rt, x ∈ A}. Similarly holds for r ≤ 1− 2λ.
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