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Resumo

Esta dissertação tem como objetivo a construção do processo de Dawson-Watanabe
como limite de escala do movimento browniano ramificado, sendo que este último tam-
bém qual é aqui relacionado à solução de uma equação do calor com fonte.

A existência do processo de Dawson-Watanabe (também chamado de superbrowni-
ano ou superprocesso) é uma consequência de tal processo ser solução de um problema
martingal obtido através do limite de escala do movimento browniano ramificado. A
prova segue a estrutura clássica de rigidez e unicidade de pontos limite, sendo que a
unicidade, neste caminho seguido, decorre da caracterização do processo de Dawson-
Watanabe como dual da solução de uma certa equação diferencial parcial.

Palavras-chave: Processo de Dawson-Watanabe, Super Movimento Browniano.



Abstract

This dissertation aims at the construction of the Dawson-Watanabe process as a scal-
ing limit of the branching Brownian motion, the latter being also related here to the
solution of a heat equation with a source.

The existence of the Dawson-Watanabe process (also called super Brownian motion
or superprocess) is a consequence that this process is a solution to a martingal problem
obtained through the scale limit of the branching Brownian motion. The proof follows
the classic structure of tightness and uniqueness of limit points, and the uniqueness, in
this followed path, results from the characterization of the Dawson-Watanabe process
as a dual solution of a certain partial differential equation.

Keywords: Super Brownian motion, Dawson-Watanabe superprocess.
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Introduction

Much of the current research on probability theory is concerned with stochastic pro-
cesses taking values in infinite-dimensional spaces. In 1951, Feller in [10] observed
that the evolution of large populations could be study from a Galton-Watson branching
process by re-scaling and passing to the limit, and such device was known as a Feller
diffusion approximation. Superprocesses arise from this idea where we study not only
the size of large populations, but also their spatial distribution.

The Dawson-Watanabe superprocess is one example of such superprocesses. In gen-
eral terms, the Dawson-Watanabe process can be seen as a scaling limit of interacting
particles systems, in which we give a distribution for the size of the population according
to a reproduction law and we also give a spatial movement of each particle given by a
Brownian motion.

The branching Brownian motion, rigorously constructed in [13, 14, 3], is a stochastic
process with relevance in the theory of the superprocesses since from it we may construct
the Dawson-Watanabe superprocess through a scaling limit. Intuitively, the branching
Brownian motion is defined as follows: we give to a particle starting at x ∈ Rd a spa-
tial movement given by a Brownian motion Px and, at exponential random time, this
particle dies. Then, according to some probability generating function, a random num-
ber of descendants of this ancestor is generated and each of the descendants performs a
Brownian motion in Rd.

Observe that such a process is not described by a continuous trajectory, since it may
generate or destroy mass every time a particle in the system dies. We thus need to work
with the space of càdlàg functions under a suitable topology: the Skorohod space [8].

As mentioned before, the Dawson-Watanabe superprocess will be constructed here
as the scaling limit of the branching Brownian motion which, in a certain sense can be
seen as a “discrete particle” counterpart. We will characterize the branching Brown-
ian motion as a solution of the reaction-diffusion equation, first studied by Skorohod in
[23], and posteriorly by H. McKean in [20]. Once the expectation of certain function of
the branching Brownian motion was characterized as a solution of a reaction-diffusion
equation, we may obtain its infinitesimal generator and consequently the Dynkin mar-
tingales. Taking the limit of such Dynkin martingales eventually serves us as a basis to
show the existence and uniqueness of the superprocess.

The construction of the scaling limit process will be done by resizing the initial mea-
sure, we will no longer start with a single particle, but with many ones of small mass,
wheres the total mass is of order of some constant. We will also give a shorter lifetime to
each particle and a longer time for the spatial movement of Brownian motions to evolve.

The dissertation is divided into three chapters. The first one recalls some probabilis-
tic background, basic concepts and stochastic processes, as well as the construction and
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understanding of the Skorohod space, an important tool to study superprocesses. The
second chapter focuses on the construction of the branching Brownian motion as a the
junction between a Galton-Watson process and a Brownian motion, its characterization
via a solution to certain diffusion-reaction equation, and as a solution of a martingal
problem. In the third chapter, we will start by making the scale limit of the branching
Brownian motion, we will show certain important tools to show its uniqueness, here we
can cite Prohorov’s classic theorem, and the Aldous-Rebolledo criterion [21] criterion to
guarantee the existence of the superprocess and we will also use the duality method to
relate the Dawson-Watanabe superprocess to its deterministic dual process which we
know is unique.

This dissertation aims to present a fluid and simple way to understand the book of
Alison Etheridge [7] and generate an intuition to deal with more advanced problems, as
perhaps analogous superprocess with boundary conditions such as reflection or absorp-
tion, or even a sticky branching Brownian motion.



Chapter 1

Preliminaries

1.1 Basic notions

let (Ω,U,P) be a probability space, we denote L1(Ω,U,P) (L1(P )) to be the space of
measurable random variables X : Ω→R with E[|X|] <∞ and L1 := L1(P )/ ∼ where two
random variables a in relation to each other, if they are equal almost everywhere.

Definition 1.1. If (S, S) is a measure space then a stochastic process with state space S
is a collection {Xt : t ∈ I} of random variables

Xt : Ω→ S.

More generally, we will consider processes with finite life-time. Here we add an extra
point ∆ to the state space and we endow S∆ = S ∪ {∆} with the σ-algebra S∆ = {B ∪∆ :
B ∈ S}. A stochastic process with state space S and life-time ξ is defined as a process

Xt : Ω→ S∆,

and Xt(w) = ∆ if t ≥ ξ(w) where ξ : Ω→[0,∞] is a random variable.

Remark 1.1. We will assumes that space S is a Polish space, i.e., S is a complete separa-
ble metric space. Note that for example open sets in Rn are polish spaces, although they
are not complete w.r.t. the Euclidean metric.

Definition 1.2. A filtration on (Ω,U,P) is an increasing collection (Ft)t∈I of σ-algebras
on U.

A stochastic process (Xt : t ∈ I) is called adapted with respect to filtration (Ft)t∈I if
Xt is Ft-measurable for any t ∈ I.

Given a process X = {Xt : t ∈ I}, we have that the X is always adapted to the
σ-algebra generated by X,

FXt = σ(Xs : s ≤ t),

for each t ∈ I. FXt is called the natural σ-algebra of the process X.

3
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1.2 Poisson Point Process

The Poisson point processes is an important class of stochastic process used to model
the occurrence or arrival of events over a continuous interval. We will present three
different characterizations.

Recall that a Poisson random variable X with parameter λ has the distribution func-
tion given by

P[X = k] =

{
exp (−λ)λk

k! if k = 0, 1, 2, . . .

0 otherwise.

1.2.1 Counting Process

We define a counting process {Nt : t ≥ 0} as a collection of non-negative, integer-
valued random variables such that if 0 ≤ s ≤ t, then Ns ≤ Nt.

A Poisson process is a particular case of counting process. Consider a collection of
events that arrives at random times starting at t = 0, let Nt denote the number of
arrivals that occur at the time t, that is, the number of events in [0, t]. Suppose that we
would like to model the arrival of events that happen completely at random at a rate λ
per unit time. Observe that, at time t = 0, we have no arrivals and therefore, N0 = 0.

Now, we will divide the interval [0,∞) into tiny sub-intervals of length δ to some
δ > 0. Thus, we have that [0,∞) =

⋃∞
k=0[kδ, (k + 1)δ) is a partition of the half-line

R+. Now, for each sub-interval [kδ, (k+ 1)δ), assume that we toss a coin with probability
p = λδ of landing head. If it lands head, we say that we have an arrival in that sub-
interval, otherwise, there is no arrival.

Let Nt the number of arrivals from time 0 to time t. Observe that there are, ap-
proximately t

δ time slots in the interval (0, t] and Nt is the numbers of heads in n coin
flips.

Thus, we conclude that Nt is a Binomial(n, p). Observe that

np = nλδ =
t

δ
λδ = λδ.

We know that, if Yn are Binomial(n, p) such that np → λ to some λ > 0 then Yn
converges to a random variable X which is a Poisson with parameter λ. [6, Theorem
3.6.1., page 126].

Definition 1.3. A Poisson process with paramenter λ > 0 is a counting process {Nt : t ≥
0} with the following properties:

(i) N0 = 0

(ii) For all t > 0, Nt has a Poisson distribuition with parameter λ.

(iii) (Stationary increments) For all s, t > 0, Nt+s −Ns has the same distribution as Nt.
That is

P (Nt+s −Ns = k) = P (Nt = k) =
exp (−λt)(λt)k

k!
for k = 0, 1, 2, . . .

(iv) (Independent increments) For 0 ≤ q < r ≤ s < t, Nt−Ns andNr−Nq are independent
random variables.
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Figure 1.1: Counting process

Observe that the stationary increments property says that the distribution of the
number of arrivals in an interval only depends on the length of the interval while the
independent increments says that the number of arrivals on disjoint intervals are inde-
pendent random variables.

The Figure 1.1 illustrate the path of counting process in which events occur in ran-
dom times t1, . . . , t6.

1.2.2 Arrival and interarrival times

Let Nt be a Poisson process with parameter λ and X1 be the time of first arrival.
Thus

P[X1 > t] = P[ there is no arrival in (0, t]] = exp (−λt)

Therefore, we conclude that X is exponentially distributed with parameter λ. We will
do a heuristic for this construction. Let X2 the time between the first and the second
arrival and consider s > 0 and t > 0. Observe that the intervals (0, s] and (s, s + t] are
disjoint. Since the increments are independents, it follows that

P[X2 > t |X1 = s] = P[ there is no arrival in (s, s+ t] |X1 = s]

= P[ there is no arrival in (s, s+ t]]

= P[Nt+s − Ns = 0]

= P[Nt = 0] = exp (−λt),
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and we conclude that X2 are exponentially distributed with parameter λ and X1 and X2

are independents. The random variables X1, X2, . . . are called the inter-arrival times of
the counting process Nt. For a rigorous construction see [6, page 134]. Thus, another
way to define the Poisson point process is:

Definition 1.4. Let X1, X2, . . . be a sequence of i.i.d. exponential random variables with
parameter λ > 0. For t > 0, let

Nt = max{n : X1 + · · ·+Xn ≤ t}

with N0 = 0. Then {Nt : t ≥ 0} defines a Poisson process with parameter λ. Let

Sn = X1 + · · ·+Xn, for n = 1, 2, . . .

We call S1, S2 . . . the arrival times of the process, where Sk is the time of the k-th arrival.
Furthermore, let

Xk = Sk − Sk−1, for k = 1, 2, . . .

is the time between the (k − 1)-th and k-th arrivals, with S0 = 0.

Remember that if X is exponentially distributed with parameter λ, then X is memo-
ryless random variable, i.e.,

P[X > a+ x |X > a] = P[X > x]

for all a, x ≥ 0. The memoryless of inter-arrival times is consistent with the independent
increment property of the Poisson process.

To show the equivalence between these two definitions of the Poisson point process
and consider Xi with i = 0, 1, . . . and Nt as in the definition of arrival and inter-arrival
Poisson point process. Observe that for k ≥ 0, Nt = k if and only if Sk ≤ t < Sk + Xk+1

and the densisty of Sk and Xk+1 since they are independent is given by

fSk,Xk+1
(s, x) = fSk

(s)fXK+1
(x) =

λksk−1 exp (−λs)
(k − 1)!

λ exp (−λx).

For k ≥ 0

P[Nt = k] = P[Sk ≤ t ≤ Sk + Xk+1]

= P[Sk ≤ t,Xk+1 ≥ t − Sk]

=

∫ t

0

∫ ∞
0

λksk−1 exp (−λs)
(k − 1)!

λ exp (−λx) dx ds

=
λk

(k − 1)!

∫ t

0
(sk−1 exp (−λ(t− s)))ds

=
exp (−λt)λk

(k − 1)!

∫ t

0
sk−1ds =

exp (−λt)λk

k!
.

Which gives the distribution of the first definition and therefore, we have proved the
following Proposition.

Proposition 1.1. The definitions 1.3 and 1.4 are equivalent.
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1.2.3 Infinitesimal characterization

We can also define a Poisson point process via on an infinitesimal characterization.
We write f(h) = o(h) whenever

lim
h→0

f(h)

h
= 0.

More generally, we say that f has the same asymptotic behavior of g, and write
f(h) = o(g(h)), if

lim
h→0

f(h)

g(h)
= 0.

Let Nt be a Poisson Process with rate λ. Consider a very short interval of length h.
Then, the number of arrivals in this interval has the same distribution as Nh. Particu-
larly, using the Taylor expansion we have that

P[Nh = 0] = exp (−λh) = 1 − λh +
λ2

2
h2 − . . .

= 1 − λh + o(h).

Analogously, it follows that

P[Nh = 1] = exp (−λh)(λh)

= ( 1 − λh + o(h))(exp (−λh))

= λh + o(h).

and then, we have another way to define the Poisson point process. Rigorously,

Definition 1.5. A Poisson process with parameter λ is a counting process {Nt : t ≥ 0}
with the following properties:

(i) N0 = 0,

(ii) The process has stationary and independent increments,

(iii) P(Nh = 0) = 1− λh+ o(h),

(iv) P(Nh = 1) = λh+ o(h).

Properties (iii) and (iv) essentially say that there is only be finitely many arrivals in
a finite interval, and in an infinitesimal interval it may occur at most one arrival.

Example 1.1. Let {Nt : t ≥ 0} be a Poisson process. Then, by definition, we have that

P(Nt = k) =
exp (−λt)(λt)k

k!
.

In particular P(Nt > 1) = 1 − P(Nt = 0) − P(Nt = 1). Thus,

P(Nt > 1) = 1 − exp (−λt)(λt)0 − exp (−λt)(λt).



8

Dividing P(Nt > 1) by t and taking the limit when t tends to 0

lim
t→0

P(Nt > 1)

t
= lim

t→0

1 − exp (−λt)(λt)0 − exp (−λt)(λt)
t

= lim
t→0

1 − exp (−λt)
t

− lim
t

exp (−λt)(λt)
t

= −(exp (−λt))′
∣∣
t=0
− λ = 0.

Therefore, P(Nt > 1) = o(t).

Assume that the definition 1.5 holds. We show that Nt has a Poisson distribution
with parameter λt. Consider Nt the number of point in the interval [0, t] and make a
partition into n sub-intervals each of length t

n . For n sufficiently large, by the property
(iii) and (iv) of the definition 1.5, the probability of each sub-interval has more than 1
arrivals are negligible.

Observe that each sub-interval has the form ( (k−1)t
n , ktn ] for k = 0, 1, . . . , n and by the

stationary increments,

pn := P[Nkt/n − N(k−1)t/n = 1] = P[Nt/n = 1] =
λt

n
+ o

( t
n

)
.

Hence,

npn = n
(λt
n

+ o
( t
n

))
= λt + n

[
o
( t
n

)]
which converges to λt. By the theorem [6, Theorem 3.6.6. page 132], it follows that Nt is
a Poisson with parameter λt. Therefore, we have that

Proposition 1.2. The definitions 1.3 and 1.5 are equivalent.

1.3 Markov Process and the Brownian Motion

The Markov process is a stochastic process that describes a sequence of possible
events, in which the probability of the next state depends exclusively on the present
state. Rigorously

Definition 1.6 (Markov Property). A stochastic process {Xt : t ∈ I} on (Ω,U,P) with
state space (S, S) is called a (Ft)-Markov process if and only if {Xt : t ∈ I} is adapted
w.r.t. the filtration (Ft)t∈I and

P[Xt ∈ B|Fs] = P[Xt ∈ B|Xs] (1.1)

P-a.s. for any B ∈ S and s, t ∈ I with s ≤ t.

Remark 1.2. A Markov process {Xt : t ∈ I} is called a Markov chain when I = N.

In addition of usual definition given by (1.1), we have other equivalents forms for the
Markov Property. They are

P[Xt ∈ B|Fs] = Ps,t(Xs, B)
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P-a.s. for any B ∈ S with s ≤ t, and

E
[
f
(
Xt

)∣∣Fs] = (Ps,t)f(Xs)

P-a.s. for any measurable function and s ≤ t. In these definitions, Ps,t(x, dy) is a regular
version of the conditional probability distribution of Xt given Fs and

(Ps,tf)(x) =

∫
Ps,t(x, dy)f(y).

Moreover, by the item (v) of the Theorem A.3, the kernels ps,t satisfy the consistency
condition

Ps,u(Xs, B) =

∫
Ps,t(Xs, dy)Pt,u(y,B),

P-a.s. for any B ∈ S and s ≤ t ≤ u and that is the same as

Ps,uf = Ps,tPt,u,

P ◦X−1
s -a.s. for all 0 ≤ s ≤ t ≤ u.

Definition 1.7. A probability kernel P on (S, S) is a map (x,B)→P (x,B) from S × S to
[0, 1] such that

(i) for any x ∈ S, P (x, ·) is a positive measure on (S, S) with P (x, S) = 1,

(ii) for any B ∈ S, P (·, B) is a measurable function on (S, S).

A transition kernel is a collection of Ps,t with s, t ∈ I and 0 ≤ s ≤ t, of probability
kernels on (S, S) satisfying

Pt,t(x, ·) = δx for any x ∈ S and t ∈ I

Ps,tPt,u = Ps,u for any s ≤ t ≤ u
(1.2)

and the composition of two probability kernels P and Q is the probability kernel PQ
defined by

(PQ)(x,B) =

∫
P (x, dy)Q(y,B)

for any x ∈ S and B ∈ S. The equations in (1.2) are called the Chapman-Kolmogorov
equations.

Definition 1.8 (Markov process with transition function). Let Ps,t be a transition ker-
nel. A stochastic process {Xt : t ∈ I} on (S, S,P) is called an (Ft)-Markov process with
transition function (Ps,t) if, and only if, it is (Ft)-adapted and

P[Xt ∈ B |Fs] = Ps,t(Xs, B)

P-a.s. for any s ≤ t and B ∈ S.

The process is called time-homogeneous if and only if there exist sub-probability ker-
nels pt such that ps,t = pt−s for any s ≤ t.
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Example 1.2 (Continuous time Markov chains). If {Xt : t ∈ I} is a time-homogeneous
Markov chain on a polish space, and {Nt : t ≥ 0} is a Poisson process with parameter
λ > 0 which is independent of {Xt : t ∈ I}, then the process

Yt = XNt

is a time homogeneous Markov process in continuous-time with transition function

Pt(x,B) =
∑
k≥0

exp{−λt}(λt)k

k!
Pk(x,B).

Let the filtration (Ft)t∈I . Consider T : Ω→[0,∞) a map such that {w : T (w) ≤ t} ∈ Ft,
for all t ∈ [0,∞) then T is called a (Ft)-stopping time.

Definition 1.9 (Strong Markov Property). Let X be a càdlàg S-valued Markov process,
(Ft : t ∈ I) the natural filtration and T a (Ft)-stopping time. Then X is strong Markov at
T if

P
[
X(t+ T ) ∈ B

∣∣∣Ft] = Pt,X(t+T )(X(t), B),

for all t ≥ 0 and for all B ∈ B.

We say that X is a strong Markov process if it has the strong Markov property for all
(Ft)-stopping times.

Definition 1.10. A one-dimensional Brownian motion is a real-valued process {Bt : t ≥
0} such that satisfies the following properties

(i) The process {B(t) − B(s) : 0 ≤ s ≤ t} are independent of {B(r) : r ≤ s} and
B(0) = 0.

(ii) If s, t ≥ 0 then

P[B(s+ t) − B(s) ∈ A] =

∫
A

1√
2πt

exp
(
− x2

2t

)
dx,

Note that for the d-dimensional Brownian motion, the transition function are given
by

Pt(x,B) =

∫
B

1

(2πt)d/2
exp

(
−‖x− y‖2

2t

)
dy

where B is a Borel subset in Rd.

(iii) With probability one, t→ Bt is a continuous function.

Lemma 1.1 (Scaling invariance). Suppose that {Bt : t ≥ 0} is a standard Brownian
motion and let a > 0. Then the process Xt = 1

aBa2t is a standard Brownian motion.

Proof. Consider the process {B(t) − B(s) : 0 ≤ s ≤ t}. Observe that this process have
the distribution 1

a2
N(0, a2(t− s)), i.e., has mean zero and variance a2(t− s).
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Lemma 1.2 (Time inversion). Suppose that Bt is a standard Brownian motion. Then the
process defined by

Xt :=

{
0 , if t = 0

tB(1
t ) , if t > 0

is a standard Brownian motion.

For a proof of above, see [6, page 302].

Definition 1.11. if B1(t), . . . , Bd(t) are all independent Brownian motions started in
x1, . . . , xd, then the randon process given by

Bt = (B1(t), . . . , Bd(t)),

is called a d-dimensional Brownian motion started at x = (x1, . . . , xd) ∈ Rd.

We define Px as the probability measure which makes the random process {Bt : t ≥
0} a d-dimensional Brownian motion started at x ∈ Rd.

Theorem 1.1 (Markov property). Let {B(t) : t ≥ 0} is a Brownian motion started at
x ∈ Rd. Then the process {B(t+ s) − B(s) : 0 ≤ s ≤ t} is a Brownian motion started at
origin and is independent of {B(t) : 0 ≤ t ≤ s}

Definition 1.12. The germ σ-algebra is defined as F+(0) where

F+
s =

⋂
t>s

F0
t .

and F0
s := σ(Br : r ≤ s) is the natural σ-algebra generated by {B(t) : t ≥ 0}.

Remark 1.3. Observe that the σ-algebra F+
s give us more information than the natural

σ-algebra also, note that F+
s encodes information about a (infinitesimal) near future.

Let x ∈ Rd and Px a probability measure on a measurable space (Ω,F), so that under
Px, Bt(w) = w(t) is a Brownian motion starting at x. In addition, for s ≥ 0, define the
shift transformation θs : Ω→Ω such that (θsw)(t) = w(s+ t).

Theorem 1.2 (Strong Markov Property). Let (s, w)→Ys(w) be bounded and measurable.
If S is a stopping time, then for all x ∈ Rd

Ex[YS ◦ θS |FS ] = EB(S)[YS ]

where the right-hand side is the function φ(x, t) = ExYt evaluated at x = B(S), t = S.

Proof. See [6, Theorem 8.3.7., page 314].

A particular case for the Brownian movement of Theorem 1.2 can be stated as

Theorem 1.3 (Strong Markov Property for Brownian motion). For every almost surely
finite stopping time T , the process {W (T + t) − W (T ) : t > 0} is a standard Brownian
motion independent of F+

T .

Remark 1.4. The Donsker Theorem [4, page 68] is the classical construction of the Brow-
nian motion which is one of the most important stochastic process in probability theory
and statistical mechanics.
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1.4 Martingales and infinitesimal generators

A martingale is a stochastic process for which, at a particular time, the conditional
expectation of the next value in the sequence, given all prior values, is equal to the
present value. Rigorously a stochastic process X : R × Ω→R is a continuous martingale
with respect to the filtration {Ft}t≥0 if

(i) {Xt : t ≤ 0} is adapted to Ft,

(ii) for all t, E[|Xt|] <∞,

(iii) for all s ≤ t, E[Xt|Fs] = Xs.

Definition 1.13. We will say that the process Xn is a local martingale if given a fil-
tration F∗ = {Ft} and X : [0,∞) × Ω→S there exists a non-decreasing sequence {Tk} of
F∗-stopping times such that Tk↑∞ a.s. and, for every n, the stopped process MTn is a
uniformly integrable martingale, i.e.,

XTk
t := X{min{t,Tk}},

is an F∗-martingale for every k.

Definition 1.14. A real valued process X = {Xt : t ≥ 0} is called a continuous semi-
martingale if

Xt = Mt + At,

whereM is a continuous local martingale andA is a predictable process of locally bounded
variation.

Proposition 1.3. The semi-martingale X has unique decomposition in a continuous lo-
cal martingale and a predictable process of locally bounded variation.

Proof. Suppose that the semi-martingale can be decomposed in Xt = Mt + At and
Xt = M ′t + A′t where Mt and M ′t are continuous local martingales and At and A′t are a
predictable process of locally bounded variation. Thus

Mt + At = M ′t + A′t,

and therefore
Mt − M ′t = At − A′t.

Now, observe that At −A′t is a continuous process of locally bounded variation and hence,
Mt −M ′t also is and by the theorem in [18, Theorem 4.8, page 78] it follows thatMt = M ′t
for all t almost surely.

The proposition above will be used in this dissertation only to evaluate some quadratic
variation in the proof of Lemma 2.2.
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1.4.1 Infinitesimal generator

Consider X = {Xt : t ≥ 0} be a Markov process. The infinitesimal generator L of Xt

is defined as:

Lf(Xt) = lim
h↓0

1

h
Eν
[
f
(
Xt+h

)
− f(Xt)|Xt = x

]
= lim

h↓0

Pt,t+hf(x) − f(x)

h
,

given that this limit exists. Here, Ptf(x) := Ex
[
f
(
Xt

)]
denotes the transition semi-

group of {Xt : t ≥ 0}.
The set of functions f : Rd→ R such that the above limit exists at x is denoted by

D(Lx). Thus

d

dt
Ptf(x) = Lf(x), (1.3)

this means that the generator is the time derivative of the function t 7→ Ptf(x). More-
over, we can see the equation (1.3) as a partial differential equation. Indeed, let u(t, x) =
Ptf(x). Then, u(t, x) solves {

d
dtu(t, x) = Lf(x)

u(0, x) = f(x).

Lemma 1.3. For every bounded function f , the sequence {t−1(Ptf − f) : t ≥ 0} converges
uniformly to Lf as t ↓ 0.

The proof of the lemma above can be found in [16, Lemma 3.1, page 323]

Proposition 1.4. Let {Xt : t ≥ 0} be a Markov process. For every f ∈ C2
b (Rd) ∩D(L) and

initial measure ν, the process

Mt = f
(
Xt

)
− f

(
X0

)
−

t∫
0

Lf(Xs)ds,

is a Pν-martingale, where L is the infinitesimal generator of Xt

Proof. Note that the process {Mt : t ≥ 0} is Ft-adapted and

Eν [|Mt|] = Eν

∣∣∣∣∣∣f(Xt)− f(X0)−
t∫

0

Lf(Xs)ds

∣∣∣∣∣∣


≤ Eν [|f(Xt)|] + Eν [|f(X0)|] + Eν
[∣∣∣∣∫ t

0
Lf(Xs)ds

∣∣∣∣]

≤ Eν [|f(Xt)|] + Eν [|f(X0)|] + Eν
[ t∫

0

|Lf(Xs)| ds
]
.

Since f is bounded, Eν [|Mt|] < ∞. It remains to show that Eν [Mt|Fs] = Ms. By linearity
of the conditional expectation, it follows that

Eν
[
Mt |Fs

]
= Eν [f(Xt) |Fs] − Eν [f(X0) |Fs] − Eν

[ s∫
0

Lf(Xu) du +

t∫
s

Lf(Xu) du |Fs
]
.
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Thus, since L is the infinitesimal generator of {Xt : t ≥ 0}, by the theory of semigroup
operators [8, Chapter 1, section 1-2],

t−s∫
0

Eν [Lf(Xu+s)] du = Eν [f(Xt) − f(Xs)].

Now, consider A ∈ Fs. By Markov property and the Fubini Theorem

Eν
[
Eν
[ t∫
s

Lf(Xu) du |Fs
]
1A

]
= Eν

[
Eν
[
θξs ◦

t−s∫
0

Lf(Xu+s) du |Fs
]
1A

]

= Eν
[
Eξs
[ t−s∫

0

Lf
(
Xu+s

)
du

]
1A

]
= Eν [Eξs [f(Xt) − f(Xs)]1A]

= Eν [Eν [f(Xt) − f(Xs)]1A]

Since f
(
X0

)
, f
(
Xs

)
,
∫ s

0 Lf
(
Xu

)
du ∈ Fs, we conclude that Mt is a Pν-martingale.

Remark 1.5. The process Mt in the Proposition 1.4 is known as the Dynkin’s martingale.
The Dynkin’s martingale has an analogous statement for the discrete case in which the
process is given by

Mt = f(Xt) −
t−1∑
s=0

(Lf)(Xs)

and its generator is (Lf)(Xt) := E[f(Xt+1) − f(Xt) |Ft], P-almost surely.

Lemma 1.4. Let {Xt : t ≥ 0} be a stochastic process and

Mt(X) = f(Xt) − f(X0) −
∫ t

0
Lf(Xs)ds

be a martingale with respect to the natural σ-algebra Ft where f ∈ Cb(S) ∩ D(L). Define

Mt,t+h(X) = f(Xt+h) − f(Xt) −
∫ t+h

t
Lf(Xs)ds.

Then, E
[
Mt,t+h(X)|Ft

]
= 0.

Proof. It is enough observe that Mt,t+h(X) = Mt+h(X) − Mt(X). Thus

E
[
Mt,t+h(X)|Ft

]
= E

[
Mt+h(X) − Mt(X)|Ft

]
= E

[
Mt+h(X)|Ft

]
− Mt(X) = 0 .
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1.5 Skorohod space

1.5.1 The Space D

Let C(R+, E) the space of continuous functions with the uniform topology, where
(E, ρ) is a metric space. This space is not enough to describe certain classes of processes
when they contain jumps, like a Poisson process for example.

For this reason, we need more suitable spaces to deal with such processes. Consider
the metric q in the space E given by q(x, y) = min{ρ(x, y), 1}. We will denote D(R+, E) to
be the space of the functions x : [0,∞)→E that are right-continuous and have left-side
limits.

Lemma 1.5. If x ∈ D(R+, E), then x have at most countable many points of discontinuity.

Proof. Define An = {t > 0 : ρ(x(t), x(t−)) > 1
n}. Since the x have the left-hand limits,

the set An shall not have limit points, that is, An is countable. Thus, follows the result
because D(R+, E) =

⋃
n∈NAn.

Now, we will equip the space with a metric such that will make our space well be-
haved. We will say that two functions x, y ∈ D(R+, E) are near in the space D, if x(t) can
be carried onto the graph of the y(t) by uniformly small perturbation in the range and a
uniformly small perturbation on the scale of time, formally: Let Λ′ the space of (strictly)
increasing continuous function λ : [0,∞)→[0,∞) such that λ(0) = 0 and λ(∞) = ∞ (this
space is called reparametrization space). Let γ : Λ′→R defined as

γ(λ) := ess sup
t≥0

∣∣log λ′(t)
∣∣ = sup

s>t≥0

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ .
Recalling that the essential supremum of f is the smallest number a ∈ R for which f
only exceeds a on a set of measure zero, i.e., if Uaf := {x : f(x) ≥ a} for each a ∈ R, define
U0 := {a : m(Uaf ) = 0} where m is the Lebesgue measure. Then ess sup(f) = inf U0.

Define Λ := {λ ∈ Λ′ : λ is Lipschitz continuous and γ(λ) < ∞} and for x, y ∈
D(R+, E), let

d(x, y) = inf
λ∈Λ

[
γ(λ) ∨

∞∫
0

exp{−u}d(x, y, λ, u) du

]
, (1.4)

where d(·, ·, ·, ·) represents the supremum of the distance until fixed time u for given λ,
i.e.,

d(x, y, λ, u) = sup
t≥0

q(x(t ∧ u), y(λ(t) ∧ u)

= sup
t≥0
{min{ρ(x(t ∧ u), y(λ(t) ∧ u)), 1}}.

Note that it is adopted the exponential weight exp (−u) and the minimum with 1 in the
definition of q in order to make the integral finite.

Example 1.3. Let f(t) = exp (exp (−t)) and g(t) = 0, see Figure 1.2. Since

d(f, g) = inf
λ∈Λ

[
γ(λ) ∨

∞∫
0

exp{−u}d(f, g, λ, u) du

]
,
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t

y

f(t) = exp(exp(−t))

g(t) = 0

Figure 1.2: Illustration that d is a metric in the sense that d is finite.

we can take the λ to be the identity and so γ(λ) = 0. Thus, since f(t) > e for all t, it
follows that d(f, g, λ, u) = 1, hence d(f, g) = 1.

Remark 1.6. An equivalent notion of convergence between sequences in this space is the
following: Consider {xn}, {yn} sequences of D(R+, E). Thus lim

n→∞
d(xn, yn) = 0 if and

only if there exists {λn} in Λ such that lim
n→∞

γ(λn) = 0, and for all ε > 0 and u0 > 0

lim
n→∞

m({u ∈ [0, u0] : d(xn, yn, λn, u) > ε}) = 0.

We claim that
ess sup
t≥0

∣∣λ′(t)− 1
∣∣ ≤ 1− exp (−γ(t)) ≤ γ(λ), (1.5)

for each λ ∈ Λ. Consider f(x) = 1− exp (−x) which is an increasing function. Hence

γ(f(λ)) ≤ f(γ(λ)).

Moreover f(x) ≤ x for all x.

x

y

(1, 0)

f−1(x) = 1− exp(−x)

f−1(x) = x

Therefore, (1.5) is valid. Thus, if we have that γ(λn) → 0, by (1.5) for each T > 0 it
follows that

lim
n→∞

sup
0≤t≤T

|λn(t) − t| = 0.

Proposition 1.5. The function d as defined in (1.4) is a metric.

Remark 1.7. The metric d induces the so-called J1-Skorohod topology on D(R+, E).

Proof. Let x, y ∈ D(R+, E) such that d(x, y) = 0. So, as we have that x, y are right
continuous function and D(R+, E) has at most countable many points of discontinuity,
x(t) = y(t) for every t continuity point of y and follows x = y.
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Since λ is strictly increasing and is defined on [0,∞), it follows that

sup q(x(t ∧ u), y(λ(t) ∧ u)) = sup q(x(λ−1(t) ∧ u), y(t ∧ u)),

for each λ ∈ Λ and u > 0 hence d(x, y, λ, u) = d(x, y, λ−1, u) and this implies that d(x, y) =
d(y, x).

It remains to show the triangular inequality. Let x, y, z ∈ D(R+, E) and λ1, λ2 ∈ Λ,

sup
t≥0

q(x(t ∧ u), z(λ2 ◦ λ1(t) ∧ u)) ≤ sup
t≥0

q(x(t ∧ u), y(λ1(t) ∧ u))

+ sup
t≥0

q(y(λ1(t) ∧ u), z(λ2 ◦ λ1(t) ∧ u))

≤ sup
t≥0

q(x(t ∧ u), y(λ1(t) ∧ u))

+ sup
t≥0

q(y(s ∧ u), z(λ2(s) ∧ u))

(1.6)

that is, d(x, y, λ2◦λ1, u) ≤ d(x, y, λ1, u) + d(x, y, λ2, u). To assume the inequality d(x, z) ≤
d(x, y) + d(y, z), its enough to show that

γ(λ2 ◦ λ1) ≤ γ(λ1) + γ(λ2).

Since λ2 ◦ λ1 ∈ Λ, applying the chain’s rule gives us

γ(λ2 ◦ λ1) = ess sup
t≥0

∣∣log(λ2 ◦ λ1)′(t)
∣∣

= ess sup
t≥0

∣∣log λ′2(λ1(t)))λ′1(t)
∣∣

= ess sup
t≥0

∣∣log λ′2(λ1(t))) + log λ′1(t)
∣∣

≤ ess sup
t≥0

∣∣log λ′2(λ1(t)))
∣∣+ ess sup

t≥0

∣∣log λ′1(t)
∣∣

= γ(λ1) + γ(λ2).

Thus, d is a metric.

The next example illustrates the difference between the uniform and the Skorohod
metric.

Example 1.4. Consider the following functions,

x(t) =

{
0, if t ∈ [0, 1

2),

1, if t ≥ 1
2

and

y(t) =

{
0, if t ∈ [0, 1

2 + ε
2),

1, if t ≥ 1
2 + ε

2 .

Under the uniform metric, we have that

‖x− y‖∞ = sup
t≥0
|x(t) − y(t)| = 1.
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On the other hand, defining a perturbation λ ∈ Λ by

λ(t) =

{
(1 + ε)t, if t ∈ [0, 1

2),

(1− ε)t+ ε, if t ≥ 1
2 ,

which is the candidate to minimize the distance between x and y.
We have two cases. Consider t ∈ [0, 1

2), then λ(t) = (1 + ε)t ≤ 1
2 + ε

2 . This implies
that x(t) = 0 = y(λ(t)) for t ∈ [0, 1

2), hence d(x, y, λ, u) = 0. Moreover γ(λ) = |1 + ε|
and consequently

d(x(t), y(λ(t))) = inf
λ∈Λ

[
γ(λ) ∨

∞∫
0

exp{−u}d(x, y, λ, u) du

]
≤ |log(1 + ε)| .

Now, for t ≥ 1
2 , λ(t) = (1 − ε)t + ε ≥ 1

2 + ε
2 . Hence, x(t) = 1 and y(λ(t)) = 1

for t ≥ 1
2 , then d(x, y, λ, u) = 0. As the same way for the firs case, it follows that

d(x(t), y(λ(t))) ≤ |log(1− ε)|.

Proposition 1.6. If {xn} a sequence in D(R+, E) and x ∈ D(R+, E). the following state-
ments are equivalent:

(i) lim
n→∞

d(xn, x) = 0 .

(ii) There exists a sequence {λn} in Λ such that γ(λn) → 0, and

lim
n→∞

d(xn, x, λn, u) = 0 ,

for all u ∈ [0,∞).

(iii) There exists a sequence {λn} in Λ such that γ(λn) → 0, and

lim
n→∞

d(xn, x, λn, u) = 0,

for any continuity point u of x.

Proof. (i)⇒ (ii)
Let u ∈ [0,∞). By definition of convergence there exist sequences {λn} ⊂ Λ and

{un} ⊂ [u,∞) with un ↓u such that for all ε > 0

lim
n→∞

m{u ∈ [0, un] : d(xn, x, λn, u) > ε} = 0,

thus
lim
n→∞

d(xn, x, λn, un) = 0, (1.7)

m-almost everywhere in t ∧ un. By the triangular inequality

d(xn, x, λn, u) ≤ sup
t≥0

q(xn(t∧u), x(λn(t∧u)∧un)) +sup
t≥0

q(x(λn(t∧u)∧un), x(λn(t)∧u)). (1.8)
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Note that the first term of (1.8) go to zero by (1.7). Now, observe that

sup
t≥0

q(x(λn(t ∧ u) ∧ un), x(λn(t) ∧ u)) = sup
t≤u

q(x(λn(t) ∧ un), x(λn(t) ∧ u))

+ sup
t>u

q(x(λn(u) ∧ un), x(λn(t) ∧ u)).

By the monotonicity of each function λn, if t ≤ u then λn(t) ≤ λn(u) for all n, and
similarly if t > u it follows that λn(t) > λn(u). The first term clearly tends to zero. In
fact, it is enough to perceive that λn(t) ∧ u ≤ λn(t) ∧ un and un ↓u.

Since d(xn, x) → 0, by the notion of convergence in Skorohod space γ(λn) → 0 and it
follows that

|λn(u) − u| ≤ sup
0≤t≤un

|λn(t) − t| → 0 .

The second term λn(t) is smaller than u only for finite times because t > u. Then

q(x(λn(u) ∧ un), x(λn(t) ∧ u)) → 0.

(ii)⇒ (iii) By the Lemma 1.5, the set of discontinuity points have zero Lebesgue measure.
(iii) ⇒ (i) Since d(xn, x, λn, u) ≤ 1, |exp (−u)d(xn, x, λn, u)| ≤ exp (−u) and exp (−u) is
integrable, by the Dominated Convergence Theorem we can conclude.

The previous proposition tell us that limn→∞ d(xn, x) = 0 implies that

lim
n→∞

xn(u) = lim
n→∞

xn(u−) = x(u)

for all continuity points u of x.

Proposition 1.7. Let {xn} and x elements of D(R+, E). The following statements are
equivalent:

(i) lim
n→∞

d(xn, x) = 0 ,

(ii) There exists {λn} ⊂ Λ such that

lim
n→∞

γ(λn) = 0 ,

and
lim
n→∞

sup
0≤t≤T

ρ(xn(t), x(λn(t))) = 0,

for all T > 0 .

(iii) For each T > 0, there exists {λn} ⊂ Λ′ such that

lim
n→∞

sup
0≤t≤T

|λn(t) − t| = 0 ,

and
lim
n→∞

sup
0≤t≤T

ρ(xn(t), x(λn(t))) = 0 .
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Proof. Keep in mind that since q(x, y) = ρ(x, y) ∧ 1, if ρ(xn, x) → 0 we also have that
q(xn, x) → 0.

(i)⇒ (ii) Suppose that lim
n→∞

d(xn, x) = 0. By the Proposition 1.6 there exists {λn} ⊂ Λ

and un ∈ (0,∞), {un} sequence of continuity points of x with un →∞ such that γ(λn)→
0, and d(xn, x, λn, un) → 0 when n → ∞. Then, we can find un ≥ T := T (un) > 0 such
that λn(T ) ≤ λn(un) ∨ un. Thus

sup
0≤t≤T

ρ(xn(t), x(λn(t))) ≤ sup
t≥0

ρ(x(t ∧ un), x(λn(t) ∧ un))

which goes to zero.
(ii) ⇒ (i) Let {λn} ⊂ Λ satisfying the hypothesis. Fix any T > 0 and take {un} ⊂

[0, T ] such that un ≤ λn(T ∧ t) ∨ T . Thus

sup
t≥0

ρ(xn(t ∧ un), x(λn(t) ∧ un) ≤ sup
0≤t≤T

ρ(xn(t), x(λn(t))).

Since the right side of above goes to zero for all T > 0, we can take any continuity point
u of x and {un} ⊂ [u,∞) as in Proposition 1.6 and therefore we can conclude.

(ii) ⇒ (iii) We have already seen that γ(λn) → 0 imply |λn(t)− t| → 0 and that is
enough to conclude because Λ ⊂ Λ′.

(iii) ⇒ (ii) The idea is to construct a family of polygonal paths {λ′n} from {λn} ⊂ Λ′

where λ′n in Λ for all n such that λ′n approaching to λn in a certain sense and their
derivative is close to one.

Given N ∈ N, choose {λNn } ⊂ Λ′ that satisfies the item (iii) with T = N such that for
all t ≥ N ,

λNn (t) := λNn (N) + t − N,

for all n ∈ N. Now, define τ0 = 0, and for each integer k,

τNk :=

{
inf{t > τNk−1 : ρ(x(t), x(τNk−1)) > 1

N }, if τNk−1 < ∞,
∞, if τNk−1 = ∞.

Note that {τNk }k is a collection of times at which x(τNk ) are at least 1
N away from

x(τNk−1). The sequence {τNk }k is strictly increasing and since the left limits exist, τNk goes
to infinity as t → ∞.

Now, we will create a sequence of strictly increasing Lipschitz functions which will
be our candidate to be λ′n. To do so, for each integer n, define the following sequence of
times

uNk,n := (λNn )−1(τNk ),

with k ∈ N, where (λNn )−1(∞) = ∞. Note that {uNk,n}n is a collection of increasing times
that converges to τNk . In fact, by the hypothesis (iii) we have that∣∣τNk − uNk,n∣∣ =

∣∣λNn (uNk,n)− uNk,n
∣∣ ≤ sup

0≤t≤T

∣∣λNn (t)− t
∣∣→ 0. (1.9)

For each k integer, let

µNn (t) :=

{
τNk + (t − uNk,n)(uNk+1,n − uNk,n)−1(τNk+1 − τNk ), if t ∈ [uNk,n, u

N
k+1,n) ∩ [0, N ]

µNn (N) + t − N, if t > N.
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Figure 1.3: Illustration of the family {τNk }

and, by convention, define ∞−1∞ = 1. The function µNn as defined above is a polygonal
path which is a strictly increasing Lipschitz function which carries uNk,n to τNk .

We claim that µNn ∈ Λ. First, observe that µNn ∈ Λ′. The continuity of µNn (t) is
guaranteed by the continuity of λNn and the strictly increasing monotonicity property,
because t ∈ [uNk,n, u

N
k+1,n). Hence µNn ∈ Λ. It remains to show that µNn will be Lipschitz

and γ(µNn ) <∞ to ensure that µNn ∈ Λ′. Its enough to realize that

d

dt
µNn = (uNk+1,n − uNk,n)−1(τNk+1 − τNk ) < ∞.

Therefore, for each integer N and n we have that µNn ∈ Λ.
Now, by equation (1.9), when n goes to infinity it follows that (µNn )′ → 1 and there-

fore, γ(µNn ) → 0. Thus, for each T = N , put λ′n = µNn and observe that

sup
0≤t≤T

ρ(xn(t), x(µNn (t))) ≤ sup
0≤t≤T

ρ(xn(t), x(λNn (t))) + sup
0≤t≤T

ρ(x(λNn (t)), x(µNn (t))),

and

sup
0≤t≤T

ρ(x(λNn (t)), x(µNn (t))) = max
0≤i≤n

sup
uNi,n≤t<uNi+1,n

ρ(x(λNn (t)), x(µNn (t))) ≤ 1

N
.

By the second statement of hypothesis (iii), we can conclude this implication which
proves the proposition.

Remark 1.8. In items (ii) and (iii) of the proposition above in order to simplify some
results, we can replace

lim
n→∞

sup
0≤t≤T

ρ(xn(t), x(λn(t))) = 0,
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by
lim
n→∞

sup
0≤t≤T

ρ(xn(λn(t)), x(t)) = 0.

We can do that because the inverse of each λn inherit all properties of λn and therefore,
λ−1
n belongs to the same space that λn.

Theorem 1.4. If E is separable, then D(R+, E) is separable. If the metric space (E, ρ) is
complete, then D(R+, E) is complete.

Proof. Let E separable and consider x ∈ D(R+, E) arbitrary. Let T > 0 and set τ0 = 0
and for each k integer, define

τTk =

{
inf{t > τTk−1 : ρ(x(t), x(τTk−1)) > 1

T }, if τTk−1 < ∞,
∞, if τTk−1 = ∞.

Now, define the operator JT : D(R+, E)× [0,∞) 7→ E by

JT (x)(t) =

{
x(τTi−1), if t ∈ [τTi−1, τ

T
i ) ∩ [0, T ]

x(T ), if t ≥ T.

and observe that ρ(x(t), JT (x)(t)) < 1
T for each t ∈ [0, T ] uniformly. Let {ai}i∈N ⊂ E to

be the dense subset. Thus, for any T > 0 considering the family {τTi }i∈N as defined, we
can find ai ∈ Bρ(x(τTi−1), 1

T ).
Thus, we can approach the operator JT by functions that assume values in a dense

subset of E, and therefore, this function only have a countable distinct values. Define

yT (t) =

{
ai, if t ∈ [τTi−1, τ

T
i ) ∩ [0, T ]

x(T ), if t ≥ T,

and note that ρ(x(t), yT (t)) < 1
T . Observe that to get a dense subset of D(R+, E), it is

enough to show that we can approach any function that has a jump in irrational times
by countable sequence of functions as defined as above.

Let x ∈ D(R+, E) be a function that have at least one jump in an irrational time,
let’s say t∗i ∈ [τTi−1, τ

T
i ) ∩ [0, T ]. Thus, let {qin}n∈N ⊂ Q such that qin → t∗i as n → ∞.

Now, we can construct a sequence of {λin}n∈N ⊂ Λ as in example 1.4. Since the set of
discontinuity points is countable by Lemma 1.5 and making a linear interpolation of
{λin}i∈N then we conclude that D(R+, E) is separable.

Let {xn} ⊂ D(R+, E) a Cauchy sequence. Thus, there exists nk ∈ N large enough
such that for all m,n ≥ nk,

d(xn, xm) ≤ 1

2k+1
exp (−k), for each k ∈ N.

Define yk = xnk
to be a subsequence of {xn}. Taking uk > k and {λk} ⊂ Λ so that

max{γ(λk), d(xn, xm, λk, uk)} ≤
1

2k
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and that is true because {yk} is a subsequence of a Cauchy sequence in the Skorohod
metric. Let

µk := lim
n→∞

λk+n ◦ · · · ◦ λk

We claim that µk exists uniformly on bounded intervals. Consider the interval [0, T ]
for any T > 0 and consider the partial composition µnk = λk+n ◦ · · · ◦ λk for each integer
n.

Let m,n ∈ N such that k < n < m, then

sup
0≤t≤T

|µnk − µmk | ≤ γ(µnk) + γ(µmk ) <
1

2n−1
+

1

2m−1

Therefore, {µnk} is a Cauchy sequence and converge uniformly in [0, T ] as n → ∞. More-
over since each λi ∈ Λ for each i integer, we have that µk ∈ Λ for each k. Indeed

γ(µk) = ess sup

∣∣∣∣log
d

dt
µk(t)

∣∣∣∣ = ess sup

∣∣∣∣log
d

dt
( lim
n→∞

λk+n ◦ · · · ◦ λk)
∣∣∣∣

≤
∞∑
j=k

ess sup

∣∣∣∣log
d

dt
λj(t)

∣∣∣∣ ≤ 1

2k+1
,

Moreover γ(µk) is finite and µk is composition of strictly increasing Lipschitz functions.
We claim that µ−1

k+1 = λk ◦ µ−1
k . Indeed

λk ◦ µ−1
k = λk ◦

(
lim
n→∞

λk+n ◦ . . . ◦ λk
)−1

= λk ◦
(

lim
n→∞

λ−1
k ◦ . . . ◦ λ−1

(n−1)+(k+1)

)
= lim

n→∞
λk ◦ λ−1

k ◦ . . . ◦ λ−1
(n−1)+(k+1)

=
(

lim
n→∞

λ(k+1)+(n−1) ◦ . . . ◦ λk+1

)−1
= µ−1

k+1.

Thus
sup
t≥0

q(yk(µ
−1
k (t) ∧ uk), yk+1(µ−1

k+1(t))) = sup
t≥0

q(yk(µ
−1
k (t) ∧ uk), yk+1(λk ◦ µ−1

k (t) ∧ uk))

= sup
t≥0

q(yk(s ∧ uk), yk+1(λk(s) ∧ uk))

= d(yk, yk+1, λk, uk) ≤
1

2k
,

for each k. From the completeness of (E, r), for each T > 0 set zk := yk ◦µ−1
k and observe

that {zk}k∈N is a Cauchy sequence and then {zk(t)} ⊂ E is a Cauchy sequence. Thus
for each t0 ∈ [0, T ], zk(t0) converges to some a0 ∈ E as k → ∞. Define y : [0,∞)→E
to be y(t) = limk→∞ zk(t). Since {zk}k∈N by [19, Corollary 1, page 186], zk converges
uniformly to y on [0, T ]. Observe that for each k we have that zk ∈ D(R+, E) and therefore
y ∈ D(R+, E).

To conclude it is enough to observe that γ(µ−1
k ) → 0 as n → ∞,

lim
n′→∞

sup
0≤t≤T

ρ(yk(µ
−1
k (t)), y(t)) = 0

and by the the equivalence (ii), (i) of the Proposition 1.7 follows that D(R+, E) is com-
plete.
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1.5.2 Compact sets in Skorohod space

Our next goal will be characterize compact sets in the space D(R+, E) aiming to
achieve tightness criterion for families of probability measures in the Skorohod space.

Consider x ∈ D(R+, E). Define s0 = 0 and for each k ∈ N,

sk(x) =

{
inf{t > sk−1(x) : x(t) 6= x(t−)}, if sk−1(x) 6= ∞,
∞, if sk−1(x) = ∞,

the points where x is not continuous.
Let Γ ⊂ E a compact set and given δ > 0, define A(Γ, δ) to be the set of all step

functions x ∈ D(R+, E) with values x(t) on Γ such that two consecutive jumps are at
least a distance δ, that is

A(Γ, δ) := {x ∈ D(R+, E) : x([0,∞)) ⊂ Γ, x is a step function and
sk(x) − sk−1(x) > δ for each k}

Lemma 1.6. The set A(Γ, δ) is relatively compact.

Proof. Consider a sequence {xn} ⊂ D(R+, E) then either sk(xn′) = ∞ or sk(xn′) < ∞.
For each k ∈ N, by a diagonalization argument, we can extract a subsequence {xn′}n′ ⊂
{xn}n such that, sk(xn′)n′ is a convergent sequence.

If sk(xn′) < ∞ for each n′ ∈ N, it follows that limn′→∞ sk(xn′) = tk exists and since
the set Γ is compact,

lim
n′→∞

xn′(tk) = ak ∈ Γ

for each n′ ∈ N. Hence limn′→∞ xn′ ∈ DE [0,∞] taking {λn}n∈N ⊂ Λ as in example 1.4.
Let k the first moment that sk(xn′) = ∞. Observe that the {xn′} ⊂ A(Γ, δ) and

therefore si(xn′) − si−1(xn′) > δ for all i ∈ {1, . . . , k − 1} hence we are in the previous
cases.

Now, define y(t) = ak whenever that t ∈ [tk, tk+′). The sequence {xn′}n′∈N converges
uniformly to y. Then, A(Γ, δ) is relatively compact.

To establish the compactness criterion for subsets of D(R+, E), let us define the mod-
ulus of continuity of a functions. For x ∈ D(R+, E), δ > 0 and T > 0, define

w′(x, δ, T ) := inf
{ti}

max
1≤i≤n

sup
s,t∈[ti−1,ti)

ρ(x(s), x(t)),

where {ti}ni=1 is the form 0 = t0 < . . . < tn−1 < T ≤ tn and for any n ≥ 1 we have that
min

1≤i≤n
(ti − ti−1) > δ.

Note that, if δ1 > δ2, it follows that min1≤i≤n (ti − ti−1) > δ1 > δ2 then

w′(x, δ1, T ) ≥ w′(x, δ2, T )

Similarly if T1 ≥ T2, i.e., w′ is non-decreasing in δ and in T .
We claim that,

w′(x, δ, T ) ≤ w′(y, δ, T ) + 2 sup
0≤s<T+δ

ρ(x(s), y(s)). (1.10)
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Indeed, by the triangular inequality,

max
0≤i≤n

sup
s,t∈[ti−1,ti)

ρ(x(s), x(t)) ≤ max
0≤i≤n

sup
s∈[ti−1,ti)

ρ(x(s), y(s))

+ max
0≤i≤n

sup
s,t∈[ti−1,ti)

ρ(y(s), y(t)) + max
0≤i≤n

sup
t∈[ti−1,ti)

ρ(y(t), x(t))

≤ max
0≤i≤n

sup
s,t∈[ti−1,ti)

ρ(y(s), y(t)) + 2 sup
s∈[0,T + δ)

ρ(x(s), y(s))

and since we take the infimum of {ti}ni=1 with the form

0 = t0 < . . . < tn−1 < T ≤ tn

such that min1≤i≤n{ti − ti−1} > δ on the both sides of equation, we can conclude.

Lemma 1.7. (i) For each x ∈ D(R+, E) and T > 0 we have that w′(x, δ, T ) is right-
continuous in δ and

lim
δ ↓ 0

w′(x, δ, T ) = 0.

(ii) If {xn} ⊂ D(R+, E), x ∈ D(R+, E) and lim
n→∞

d(xn, x) = 0, follows that

lim sup
n→∞

w′(xn, δ, T ) ≤ w′(x, δ, T + ε),

for all δ > 0, T > 0 and ε > 0.

(iii) For each δ > 0 and T > 0, w′(x, δ, T ) is Borel measurable in x.

Proof. (i) To show the right-continuity of the modulus of continuity in δ, for each x ∈
D(R+, E) and T > 0, let δ > 0 and consider w′(x, δ, T ). Then, we can find δ′ > δ such
that min0≤i≤n{ti − ti−1} > δ′ and since the modulus of continuity is non-decreasing in δ
It follows that w′ is right-continuous in δ.

To show the second statement, define τNk := min{t > τNk−1 : ρ(x(t), x(τNk−1)) > 1
N }

and consider 0 < δ < minτNk <T {τNk − τNk−1}. Then

w′(x, δ, T ) ≤ 1

N
.

Thus whenever N → ∞ it follows that δ ↓ 0 hence, limδ→0w
′(x, δ, T ) = 0.

(ii) Let {xn} ⊂ D(R+, E) and x ∈ D(R+, E) such that lim
n→∞

d(xn, x) = 0. By the
Proposition 1.7 item (iii) there exists {λn} ⊂ Λ′ such that, for each T > 0 we have that

lim
n→∞

sup
0≤t≤T

|λn(t) − t| = 0

lim
n→∞

sup
0≤t≤T

ρ(xn(t), x(λn(t))) = 0
(1.11)

Observe that, if we make a small perturbation δ in T, (1.11) still valid. Thus, for each
n ∈ N, set δn = sup0≤t≤T [λn(t + δ) − λn(t)]. We claim that δn → δ. Indeed, since λn is
non-decreasing and

sup
0≤t≤T

|λn(t+ δ)− λn(t)− ((t+ δ) − t)| ≤ sup
0≤t≤T

|λn(t+ δ) − (t − δ)| + sup
0≤t≤T

|λn(t)− t| .
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By (1.11) the above equation converges to zero. Now, by (1.10) and (1.11)

lim sup
n→∞

w′(xn, δ, T ) ≤ lim sup
n→∞

w′(x ◦ λn, δ, T ) + lim sup
0≤t≤T+δ

ρ(xn(t), x(λn(t)))

≤ lim sup
n→∞

lim
n→∞

w′(x, δn ∨ δ, λn(T )) = w′(x, δ, T + ε)

and such ε > 0 is given by the condition (1.11).
(iii) By the previous result, we have that

lim
ε↓0

w′(x, δ, T + ε) = w′(x, δ, T+),

thus w′(x, δ, T ) is upper semi-continuous function in T for all x ∈ D(R+, E) and therefore,
is Borel-measurable.

Proposition 1.8. Let (E, ρ) be a complete metric space. If A ⊂ D(R+, E) is compact,
then for each T > 0 there exists a compact set ΓT ⊂ E such that x(t) ∈ ΓT for 0 ≤ t ≤ T
and for all x ∈ A.

Proof. Fix T > 0 and define ΓT := {x(t) : x ∈ A and t ∈ [0, T ]} ⊂ E and let {an}n∈N ⊂
ΓT . By definition of ΓT there exists {xn}n∈N ⊂ A such that an = xn(tn) for some
tn ∈ [0, T ]. By the compacity of [0, T ], we can extract a subsequence {tn′}n′∈N ⊂ {tn}n∈N
such that converges to some t ∈ [0, T ]. Since A is compact then there exists a convergent
subsequence {xn′}n′∈N ⊂ {xn}n∈N. Observe that this subsequence is a Cauchy sequence
with the metric of Skorohod.

Then, given ε > 0 there exist {λTn′}n′∈N ⊂ Λ with γ(λTn′) → 0 as n′ → ∞, and n0 ∈ N
such that, for all m′, n′ ≥ n0

ρ(xn′ ◦ λTn′(tn′), xm′ ◦ λTm′(tm′)) ≤ sup
0≤s≤T

ρ(xn′ ◦ λTn′(t), xm′ ◦ λTm′(t)) < ε,

and therefore {xn′(tn′)}n′∈N is a Cauchy sequence in ΓT . Hence since E is complete, for
each t ∈ [0, T ] which is a limit of {tn′}n′∈N there exists at ∈ E such that xn′(tn′) → at as
n′ → ∞. Moreover ΓT is closed subset of E then at ∈ ΓT for each t ∈ [0, T ]. So ΓT is a
compact subset of E.

Theorem 1.5. Let (E, ρ) be complete. The subset A ⊂ D(R+, E) is relatively compact if
and only if

(i) For each rational t ≥ 0, there exists a compact Γt ⊂ E such that x(t) ∈ Γt for all
x ∈ A,

(ii) For each T > 0,
lim
δ↓0

sup
x∈A

w′(x, δ, T ) = 0.

Proof. Suppose that exists A ⊂ D(R+, E) is relatively compact. Thus, taking B = clA
then by the Proposition 1.8, the first statement is true.

Since A is relatively compact, given {xn}n∈N ⊂ D(R+, E) there exists {xn′}n′∈N ⊂
{xn}n∈N that convergent for some x ∈ D(R+, E). Suppose there is η > 0 and T > 0
such that for all n > 0

w′(xn′ ,
1

n′
, T ) > η. (1.12)
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By Lemma 1.7 (i) and (ii), we have a contradiction with (1.12).
Now, consider a subset A ⊂ D(R+, E) that satisfies the hypothesis (i) and (ii).For

each N > 0, let 0 < δN < 1 such that

sup
x∈A

w′(x, δN , N) ≤ 1

N
.

Recalling that ΓT := {x(t) : t ∈ [0, T ] andx ∈ A}. Let mN big enough such that
1
mN

< δN and define

Γ(N) :=

NmN⋃
i=1

Γ i
mN

.

Set AN = A(Γ(N), δN ) as in Lemma 1.6. Thus given x ∈ A, let l integer such that

0 = t0 < t1 < . . . < tl−1 < N ≤ tl < N + 1 < tl+1

with min
i≤n

(ti − ti−1) > δN and

max
1≤i≤l

sup
s,t∈[ti−1,ti)

ρ(x(s), x(t)) ≤ 2

N
. (1.13)

Define

x′(t) =

l∑
i=1

x(ti)1[ti,ti+1)(t).

We claim that x′ ∈ An. Observe that, for any k ∈ {1, . . . , l} and for all t ∈ [tk, tk+1),
x′(t) ∈ Γ i

mN

for all i
mN
≥ tk and it follows that x′(t) ∈ Γ(N), and therefore x′ ∈ An. By

the equation (1.13),

sup
1≤t≤N

ρ(x′(t), x ◦ λN (t)) = max
0≤i≤l

sup
s,t∈[ti−1,ti)

ρ(x ◦ λN (t), x′(t)) ≤ 2

N
,

and taking λ(t) = t

d(x′, x) ≤
∞∫

0

exp (−u) sup
t≥0

q(x(λ(t) ∧ u), x′(t ∧ u)) du

≤
∫
0

exp (−u) sup
0≤t≤n

ρ(x(λ(t) ∧ u), x′(t ∧ u)) du +

∞∫
N

exp (−u) du

≤
N∫

0

exp (−u)
2

N
du +

∞∫
N

exp (−u) du ≤ 2

N
+ exp (−N) ≤ 3

N
.

(1.14)

Define A3/N
N := {y ∈ A : d(y,AN ) < 3

N }. By (1.14) we have that x ∈ A3/N
N and therefore

A ⊂ A3/N
N . Moreover, since N is arbitrary, it follows that A ⊂

⋂
N≥1A

3/N
N .

We claim that
⋂
N≥1A

3/N
N is totally bounded. Indeed by the Lemma 1.6 clAN is rela-

tively compact then for each xθ ∈ clAN consider B(xθ,
3
N ) = {y ∈ D(R+, E) : d(xθ, y) <
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3
N }. Thus, we can extract a finite sub-covering such that clAN ⊂ Bd(xθ1 ,

3
N ) ∪ . . . ∪

B(xθj ,
3
N ). Since

⋂
N≥1A

3/N
N ⊂ A

3/N
N and A3/N

N ⊂ Bd(xθ1 ,
3
N ) ∪ . . . ∪ B(xθj ,

3
N ) it follows

the claim.
Now, since A is contained in a totally bounded set we conclude that A is relatively

compact.

Theorem 1.6. Let (E, ρ) an arbitrary space, {xn} ⊂ D(R+, E) and x ∈ D(R+, E). Thus,
lim
n→∞

d(xn, x) = 0 if and only if whenever {tn} ⊂ [0,∞) converges to t ≥ 0, the following
statements are satisfied

(i)
lim
n→∞

ρ(xn(tn), x(t)) ∧ ρ(xn(tn), x(t−)) = 0,

(ii) If lim
n→∞

ρ(xn(tn), x(t)) = 0, then for any sequence of times {sn} ⊂ [0,∞) with sn ≥ tn

and lim
n→∞

sn = t, we have that

lim
n→∞

ρ(xn(sn), x(t)) = 0,

(iii) If lim
n→∞

ρ(xn(tn), x(t−)) = 0, then for any sequence of times {sn} ⊂ [0,∞) with sn ≤ tn
and lim

n→∞
sn = t, we have that

lim
n→∞

ρ(xn(sn), x(t−)) = 0,

Remark 1.9. The proposition 1.6 gives us a more intuitive idea for the convergence in
Skorohod space, in the sense of emphasizing that we have at most two limit points for
the sequence {xn(tn)}, the second condition tell us that the limit is right-continuous
and the third condition the existence of left-limits. So, we characterize the limit as an
element of D(R+, E).

Moreover, this proposition gives us an equivalent result of sequential convergence in
the uniform convergence in C(R+, E).

Proof. Suppose that lim
n→∞

d(x,x) = 0, and let {tn} ⊂ [0,∞) and t ≥ 0 with tn → t. Choose
T > 0 such that {tn} ⊂ [0, T ] and 0 ≤ t ≤ T . By the Proposition 1.7 item (iii), there exists
{λn} ⊂ Λ′ such that

sup
0≤t≤T

|λn(t)− t| = 0 (1.15)

and
lim
n→∞

sup
0≤t≤T

ρ(xn(t), x(λn(t))) = 0 (1.16)

By triangular inequality, it follows that

ρ(xn(tn), x(t)) ∧ ρ(xn(tn),x(t−)) ≤ sup
0≤t≤tn<T

ρ(xn(t), x(λn(t)))

+ ρ(x ◦ λn(tn)), x(t) ∧ ρ(x ◦ λn(tn), x(t−))
(1.17)



29

Since we have that tn → t, by (1.15) it follows that limn→∞ λn(tn) = t and in addition
with (1.16) we have that (1.17) tends to zero and therefore, we conclude (i). Observe that
maybe neither ρ(x ◦ λn(tn)), x(t) nor ρ(x ◦ λn(tn), x(t−)) tends to zero, but the infimum
between them, goes to zero.

Let {sn} ⊂ [0,∞) such that tn ≤ sn ≤ T , for each n ∈ N where T is the same as choose
previously, and sn → t as n → ∞. Observe that

ρ(xn(sn), x(t)) ≤ sup
0≤u≤sn<T

ρ(xn(u), xn ◦ λn(u)) + ρ(xn ◦ λn(sn), x(t)), (1.18)

and

ρ(xn ◦ λn(sn), x(t)) ≤ sup
0<tn≤u≤sn<T

ρ(xn ◦ λn(u), xn(u)) + ρ(xn(tn), x(t)). (1.19)

By the hypothesis and (1.16) it follows that (1.19) tends to zero whenever n → ∞. Again
by the hypothesis and in addition with (1.19) it follows that (1.18) converges to zero as
n → ∞ and then we conclude the item (ii). To show the last statement, it’s enough to
observe that

ρ(xn(sn), x(t−)) ≤ sup
0≤u≤sn<T

ρ(xn(u), xn ◦ λn(u)) + ρ(xn ◦ λn(sn), x(t)),

and

ρ(xn ◦ λn(sn), x(t)) ≤ sup
0<sn≤u≤tn<T

ρ(xn ◦ λn(u), xn(u)) + ρ(xn(tn), x(t−)).

The idea of sufficiency of (i) to (iii) will be divided into three steps. The first, we will
show that the set of points that do not satisfy the convergence is empty. The second step,
we will create a sequence of {λn}n∈N ⊂ Λ′ which satisfies the item (iii) of Proposition
1.7. Finally, these {λn}n∈N will be an upper (lower) bound for the sequence {sn}n∈N of
this proposition.

Fix T > 0 and, for each n ∈ N, define

εn := 2 inf{ε : Γ(t, n, ε) 6= ∅, for all 0 ≤ t ≤ T},

where

Γ(t, n, ε) := {s ∈ (t− ε, t+ ε) ∩ [0,∞) : ρ(xn(s), x(t)) < ε, ρ(xn(s−), x(t−)) < ε}.

We claim that εn → 0. Assume that the sequence {εn}n∈N does not converge to zero.
Then there exists ε > 0, and sequences {tk}k∈N ⊂ [0, T ] and {nk}k∈N ⊂ N such that
Γ(tk, nk, ε) = ∅ for all k > 0. Thus, without loss of generality, we can suppose, taking
sub-sequence if necessary, that exists t ∈ [0, T ] such that, or tk ↑ t, or tk ↓ t or tk = t for
all k. For the first case, tk < t for all k and since the left limits exists it follows that

lim
k→∞

x(tk) = lim
k→∞

x(tk−) = x(t−). (1.20)
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In the second case, by the right-continuity of x, we have that

lim
k→∞

x(tk) = lim
k→∞

x(tk−) = x(t). (1.21)

Thus, by item (i), we have that for all ε > 0

ρ(xn(s), x(s)) ∧ ρ(xn(s), x(s−)) < ε, (1.22)

for each continuity point s of x.
By the Lemma 1.5 and the Proposition 1.6, for the respectively cases there exist

sequences {ak}k∈N and {bk}k∈N of continuity points of x such that tk ≤ ak ≤ t or t ≤
bk ≤ tk and therefore by (1.22), (1.20)

ρ(xn(ak−), x(t−)) < ρ(xn(ak−), x(ak−)) + ρ(x(ak−), x(t−)),

tends to zero and similarly by (1.22) and (1.21)

ρ(xn(bk), x(t)) < ρ(xn(bk), x(bk)) + ρ(x(bk), x(t))

also converges to zero as k → ∞. Thus ak, bk ∈ Γ(tk, k, ε). It is a contradiction. It
remains to show the case when tk = t for all k.

Now, we have two cases, the first is when x(t) = x(t−). In this case, t ∈ Γ(tk, nk, ε)
for all k ∈ N. For the second case, x(t) 6= x(t−) then there exists a δ > 0 such that
ρ(x(t), x(t−)) = δ. By the hypothesis (ii), (iii), we can take a sequences {an}, {bn} ⊂ [0, T ]
with an↓ t and bn ↑ t. Thus, there exists n0 ∈ N such that, for all n > n0,

ρ(xn(an), x(t)) ∨ ρ(xn(bn), x(t−)) <
1

2
(ε ∧ δ), (1.23)

and therefore, for an, bn ⊂ (t− ε, t+ ε),

sup
an≤s≤bn

ρ(xn(s), x(t−)) ∧ ρ(xn(s), x(t)) <
1

2
(ε ∧ δ). (1.24)

Now, define for each n > n0,

sn = inf{s > an : ρ(xn(s), x(t)) <
1

2
(ε ∧ δ)}.

Note that by equation (1.23), sn ∈ (an, bn] ⊂ (t− ε, t+ ε) and therefore

ρ(xn(sn), x(t)) ≤ 1

2
(ε ∧ δ),

and by definition of sn
ρ(xn(sn−), x(t)) ≥ 1

2
(ε ∧ δ). (1.25)

Thus, by the equations (1.24), (1.25) follows that

ρ(xn(sn−), x(t−)) < ρ(x(t−), x(t)) − ρ(x(t), xn(sn−)) <
1

2
(ε ∧ δ),

and therefore sn ∈ Γ(t, n, ε) for all n ≥ n0 resulting a contradiction. This ensure that
εn → 0 as n → ∞.
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By the definition of modulus of continuity, fixed T > 0 and for each n ∈ N, consider
the partition

0 = tn0 < · · · < tnmn−1 < T ≤ tnmn
,

with min0≤i≤mn (tni − tni−1) > 3εn such that

max
0≤i≤mn

sup
s,t∈[tni −tni−1)

ρ(x(t), x(s)) ≤ w′(x, 3εn, T ) + εn. (1.26)

Set m∗n = max{i ≥ 0 : tni ≤ T} and define λTn (0) := 0 and λTn (tni ) := inf Γ(tni , n, εn),
for i ∈ {1, . . . , m∗n} and and interpolate linearly within the range [0, tnm∗n ]. For t ≥ tnm∗n ,
define

λTn (t) = t − tnm∗n + λTn (tnm∗n).

Easily follows that λTn ∈ Λ′. Moreover

sup
0≤t≤T

∣∣λTn (t) − t
∣∣ = sup

0≤t≤T
|inf Γ(t, n, εn) − t| ≤ εn

because t ∈ [tni , t
n
i+1) for some i ∈ {0, . . . , m∗n}. We claim that for each T > 0, we have

that
lim
n→∞

sup
0≤t≤T

ρ(xn ◦ λTn (t), x(t)) = 0,

and, by the proposition 1.7, we will conclude that d(xn, x) → 0.
Let {tn} ⊂ [0, T ] and 0 ≤ t ≤ T with tn → t and let us separate in three cases.

The first case consider x(t) = x(t−). Then by item (i) of this proposition and taking
tn = λTn (t), follows that d(xn, x) → 0.

By item (i) of Lemma 1.7 and by the equation (1.26) then there exists n ∈ N such that
there exist in ∈ {0, . . . , m∗n} such that t = tnin . Thus, taking subsequence if necessary,
we have that either {tn}n∈N ⊂ [0, t] or {tn}n∈N ⊂ [t, T ].

For the first case, λTn (tn) ↑ λTn (tnin) = λTn (t). Thus, either

ρ(xn ◦ λTn (tnin), x(t−)) < εn,

or
ρ(xn ◦ λTn (tnin), x(t−)) < εn .

Hence there exists λTn (tn) < sn < λTn (tnin) and therefore

ρ(xn ◦ λTn (sn), x(t)) < εn,

or
ρ(xn ◦ λTn (sn), x(t−)) < εn.

By the hypothesis (iii), we have the desired convergence. For the second case it is enough
to do the same argument and use the hypothesis (ii).
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1.5.3 Tightness criterion in the space D

Let (S, r) a metric space.

Definition 1.15. We say that a family of probability measures {Pα}α∈J is tight if for all
ε > 0 there exists a compact set K = K(ε) ⊂ S such that Pα(K) > 1 − ε for all α ∈ J .

In the case where E is complete and separable, then any singleton {µ} (where µ is a
Borel probability) is tight.

Lemma 1.8. Let (E, ρ) a complete and separable metric space. Then, all probability on
E is tight.

Proof. Let {xi}i∈N dense subset ofE. Then, given ε > 0, we have thatE =
⋃
n∈NB(xn,

1
k )

for some k ∈ N. Thus, we can find nk such that, for all n ≥ nk

P
[ nk⋃
n=0

B
(
xn,

1

k

)]
> 1 − ε

2k
.

Define R =
⋂
k≥ 1

⋃nk
i=0B

(
xi,

1

k

)
. Since R is totally bounded set and E is complete, it

follows that R is relatively compact. Thus

P[R{] = P
[ ⋃
k≥1

(

nk⋂
i=1

B(xi,
1

k
)){
]
≤

∞∑
k=1

P
[( nk⋂

i=1

B
(
xi,

1

k

)){]
=
∑
k≥1

ε

2k
.

Taking clR to be our compact set, the result follows.

Let M(S) to denote a family of probability measures defined on S. We say that this
family is tight if for all ε > 0 there exists a compact set K = K(ε) ⊂ S such that
µ(K) > 1 − ε for all µ ∈ M(S).

Definition 1.16. We will say that the family of probability measure M(S) is relatively
compact if for all sequence {µn} ⊂ M(S) we can find a subsequence {µn′} ⊂ {µn} such
that for all ψ ∈ Cb(S) we have that 〈ψ, µn′〉 → 〈ψ,Q〉 for some probability measure Q.

The next theorem, due to Yuri Vasilyevich Prohorov [4, page 35, chapter 1], is an
important tool that establishes a relation between probabilistic property about a family
of measures and a topological property.

Theorem 1.7 (Prohorov’s Theorem). Let S complete and separable space. The family
M(S) is tight if and only if M(S) is relatively compact.

Let {Xα} be a family of a stochastic process with sample path in D(R+, E) and let
{Pα} their associated probability distribution. We say that a sequence {Xn}n∈N taking
values in Skorohod space D(R+, E) is tight if their distribution is tight. Now applying
the Prohorov’s Theorem on the Theorem 1.5, we have a criterion for {Xα} to be tight
since E is a compact space.

Now we are interested in obtaining probabilistic conditions to characterize relatively
compact sets the in D(R+, E) space. Given a compact set Γ ⊂ E and ε > 0, we define
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Γε := {a ∈ E : infx∈Γ d(x, a) ≤ ε}. In addition, given η > 0 and T > 0, we define Γη,T
as in the Proposition 1.8 such that

P{Xα(t) ∈ Γη,T : 0 ≤ t ≤ T} ≥ 1− η.

Now, we will give a result to characterize a topological property once knowing a prob-
abilistic property.

Theorem 1.8. Let (E, ρ) be a complete and separable metric space. Consider {Xα} a
family of process with sample paths in D(R+, E). Then {Xα} is relatively compact if and
only if the following conditions hold.

(i) For every η > 0 and a rational t ≥ 0, there exists a compact set Γη,t ⊂ E such that

inf
α

P{Xα(t) ∈ Γηη,t} ≥ 1 − η.

(ii) For every η > 0 and T > 0 then there exists δ > 0 such that

sup
α

P{w′(Xα, δ, T ) ≥ η} ≤ η.

Proof. If {Xα} is relatively compact, by the theorems, 1.4, 1.5 and 1.7 it follows (i) and
(ii).

Conversely, let ε > 0 and T > 0 such that exp (−T ) < ε
2 . Choose δ > 0 such that

the to second condition for η = ε
4 . Let m > 1

δ e define

Γ =
mT⋃
n=0

Γ ε

2i+2 ,
i
m
.

Observe that

P
[
Xα(t) ∈ Γ{] = P

[
Xα ∈

( mT⋃
n=0

Γ ε

2i+2 ,
i
m

){]

≤
mT∑
i=1

P
[
Xα ∈ Γ ε

2i+2 ,
i
m

]
=

ε

4

mT∑
i=1

1

2i
<

ε

4
.

Recalling that Γε := {a ∈ E : infx∈Γ d(x, a) ≤ ε}, then by the hypothesis (ii) it follows
that

P
[
Xα

( i
m

)
∈ Γε/4 : i ∈ {1, . . . ,mT}

]
≥ 1 − ε

2
.

Now, with the notation of the Lemma 1.6, Define A = A(Γ, δ) which is relatively
compact. Thus, given x ∈ D(R+, E) with w′(x, δ, T ) < ε

4 and x( i
m) ∈ Γε/4 for all i ∈

{0, . . . ,mT} let 0 = t0 < . . . tn−1 < T < tn with min0≤i≤n{ti − ti−1} > δ such that

max
0≤i≤n

sup
s,t∈[ti−1,ti)

ρ(x(s), x(t)) <
ε

4
.

Taking {ai}mTi=1 ⊂ Γ such that ρ(x( i
m), ai) <

ε
4 where i ∈ {0, . . . ,mT}.
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Define x′ ∈ A as following:

x′(t) :=

a[ ti−1
m

]
+ 1
, if t ∈ [ti−1, ti)

amT , if t ≥ T,

and it follows that
sup

0≤t≤T
ρ(x(t), x′(t)) ≤ ε

4
.

Thus, taking λ to be the identity

d(x, x′) <

∫ ∞
0

exp (−u)d(x, x′, λ, u) du

=

∫ T

0
exp (−u)

ε

4
du +

∫ ∞
T

exp (−u)du

≤ ε

2
+ exp (−T ) < ε.

Hence, x ∈ {y : infx∈A d(x, y) < ε} =: Aε. It follows that infα P
[
Xα ∈ Aε

]
≥ 1 − ε. Now,

by the theorems 1.4 and 1.7, we conclude that {Xα} is relatively compact.

Definition 1.17. We say that a family process {Xα} satisfies the compact containment
condition if for every η > 0 and T > 0 there exist a compact set Γη,T ⊂ E such that

inf
α

P[Xα(t) ∈ Γη,T : for all 0 ≤ t ≤ T ] ≥ 1 − η.

Observe that, if {Xα} is relatively compact, then {Xα} satisfies the compact con-
tainment condition. The following Corollary is an important characterization for that
processes to be relatively compacts. It follows by a little modification of the Theorem 1.8.

Corollary 1.1. Let (E, ρ) be a complete and separable metric space and {Xn}n∈N is a
sequence of process with sample paths in D(R+, E). Then, {Xn}n∈N is relatively compact
if and only if

(i) For every η > 0 and rational t ≥ 0, there exists a compact set Γη,t ⊂ E such that

lim inf
n→∞

P[Xn(t) ∈ Γηη,t] ≥ 1 − η.

(ii) For every η > 0 and T > 0, there exists δ > 0 such that

lim sup
n→∞

P[w′(Xn, δ, T ) ≥ η] ≤ η.

Remark 1.10. Note that the first condition of the Corollary 1.1 gives us the tight con-
dition at each fixed time and the second hypothesis prevents large jumps to be close
together.

Proof. Fix η > 0, rational t ≥ 0 and T > 0. For each n > 0, since (E, ρ) is complete and
separable metric space, every probability measure is tight by Lemma 1.8, there exists a
compact set Γn ⊂ E such that

P{Xn(t) ∈ Γηn} ≥ 1 − η,
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and by the Lemma 1.7 (i) there exists δn > 0 such that

P{w′(Xn, δn, T ) ≥ η} ≤ η.

Now, suppose (i) and (ii). Then, there exist a compact set Γ0 ⊂ E, δ0 and a integer
n0 such that

inf
n≥n0

P{Xn(t) ∈ Γη0} ≥ 1 − η,

and
sup
n≥n0

P{w′(Xn, δn, T ) ≥ η} ≤ η.

Putting Γ0 =
⋃n0−1
n=0 Γn and δ0 = min0≤n≤n0−1 δn, we can take n0 = 1 and, by the

Theorem 1.8, we conclude.



Chapter 2

The Branching Brownian Motion

The Branching Brownian Motion (BBM) is a classical model in stochastic processes
which can be briefly described as follows. Consider a single particle moving on Rd ac-
cording to a Brownian motion. After a exponential random time of parameter V , this
particles splits into a random number k of offsprings with probability generating func-
tion δ(s) =

∑∞
k=0 pks

k where
∑∞

k=0 pk = 1 and are independent copies of itself which
starts Brownian motion at the same location where she died. This process then repeats
ad infinitum.

Naturally, we will have a lot of ask about this model but we will be more interested
in the way this process spreads out and his behavior. A particular interest of BBM
stems from the fact that it is closely linked to a non-linear partial differential equation
introduced by Fischer and later by Kolmogorov, Petrovsky and Piscounov, the F-KPP
equation.

The F-KPP equation is a differential partial equation that belongs to the class of
reaction-diffusion equation.

Figure 2.1: Illustration of the BBM in dimension one. Image courtesy of Rodrigo Viégas.

36
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2.1 The Galton-Watson branching process

The branching process is a class of stochastic processes in which independent parti-
cles move around the space according to some (Markovian) process. This class is useful
because these processes model the growth of a population.

At time t, denote Nt the set of all particles alive, and for u ∈ Nt let Xt
u be the position

of each particle in the system. We are interested in rooted ordered trees so that we can
identify and study the living population at time t. For that, set N = {0, 1, 2, . . . }. Define

U =
∞⋃
n=0

Nn, U = U ∪ N∞.

Let u ∈ U. Then u is a finite sequence of integers u = (u1, u2, . . . , un) for some n ∈ N.
Denote |u| = n to represents the generation of u. Define the map p : U \∅→ U such that
p(u1, . . . , un) = (u1, . . . , un−1). Note that this map carries information from the ancestors
of the n-th generation of u. To illustrate what its mean, consider the following example

Example 2.1. Consider the u ∈ U such that u = (2, 3, 4) then, u represents the 4-th
child of the 3-th child of 2-th child of the root and, the function p(u) = (2, 3) telling
us that the descendants of u are the 3-th child of the 2-th child of the root. Moreover,
we have that |u| = 3 which means that u belongs to the third generation. Figure 2.2
illustrate this example.

Figure 2.2: In blue, the 4-th child of the 3-th child of the 2-th child of the root.

Definition 2.1. A (locally finite, rooted) plane tree τ is a subset of U such that
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(i) ∅ ∈ τ ,

(ii) u ∈ τ \∅ then p(u) ∈ τ ,

(iii) For every u = (u1, . . . , un) ∈ τ there exists an integer Au ≥ 0 such that for every j ∈ N,
(u1, . . . , uj) ∈ τ if and only if j ≤ Au.

Let us denote by T the set of all plane trees.

Consider the following collection of independent random variables (Au, u ∈ U) each
of them with law P. Denote by T the random subset of U defined by

T = {u ∈ U : uj ≤ Ap(u), for every 1 ≤ j ≤ n} .

Definition 2.2. A Galton-Watson process is a Markov process in Z+ which is defined as

Z0 = 1, and for alln ≥ 0 ,Zn+1 =

Zn∑
i=1

Xn+1
i , (2.1)

where {Xn
i : n, i ∈ N} are i.i.d random variables such that P[Xn

i = k] = pk and∑
k≥0 pk = 1.

Thus, we have that T is a P-Galton-Watson tree and (Zn, n ∈ N) is the associated
Galton-Watson processes where Zn = #{u ∈ T : |u| = n}.
Remark 2.1. Observe that the branching process is a Markov chain. Indeed the size of
next generation only depends on the size of previous generation, i.e., Zn+1 is independent
of Z0, Z1, · · · , Zn−1.

Observe that the Galton-Watson branching process has probability generating func-
tion given by

GZn(s) =

Zn−1∑
k=1

sZnP[Zn = k].

Therefore, if Zn,Wn are branching processes, it follows that GZn +Wn(s) = GZn(s)GWn(s)
which it is enough to conclude that if p is the transition function

p(·, Zn + Wn) = p(·, Zn) ∗ p(·,Wn).

Proposition 2.1. Let {Zn : n ∈ N} be a Galton-Watson process as defined in 2.1 such
that E[X1] < ∞. Then for each n ∈ N, E[Zn] = (E[X1])n.
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Proof. Observe that

E[Zn] =
∑
k≥0

E[Zn |Zn−1 = k]P[Zn−1 = k]

=
∑
k≥0

E
[ Zn−1∑
i=0

Xi|Zn−1 = k

]
P[Zn−1 = k]

=
∑
k≥0

E
[ k∑
i=0

Xi|Zn−1 = k

]
P[Zn−1 = k]

=
∑
k≥0

E
( k∑
i=0

Xi

)
P[Zn−1 = k]

= E[X1]
∑
k≥0

kP[Zn−1 = k] = E[X1]E[Zn−1].

Iterating the result above with a basic recurrence it follows that E[Zn] = (E[X1])n.

Definition 2.3. A branching process is said subcritical if E[Zn] < 1, critical if E[Zn] = 1
and supercritical if E[Zn] > 1.

Proposition 2.2. Let {Zn} a Galton-Watson process and Fn = σ(Xm
i : i ≥ 1, 0 ≤ m ≤

n). If µ = E[Xn
i ] < ∞, then the process {Zn

µn } is a (Fn)-martingale.

Proof. Let us check the martingale properties. The process is clearly Fn-adapted because
it is sum of Fn-measurable random variables. Moreover

E |Zn| = E

∣∣∣∣∣∣
Zn−1∑
i=0

Xn
i

∣∣∣∣∣∣ ≤
Zn−1∑
i=0

E |Xn
i | =

Zn−1∑
i=0

E[Xn
i ] < ∞.

Let us compute the conditional expectation. By the linearity of conditional expectation
and the Monotone Convergence Theorem,

E[Zm+1 | Fm] = E[Zm+11
⋃

k≥0[Zm = k] | Fm]

= E[ lim
k→∞

k∑
i=0

Zm+11[Zm = k] | Fm]

= lim
k→∞

k∑
i=0

E[Zm+11[Zm = k] | Fm].

(2.2)

Since 1[Zm = k] ∈ Fm, {Xn
i } are independent and identically distributed and {Xm+1

i } are
independent of Fm, the equation (2.2) becomes

lim
k→∞

k∑
i=0

1[Zm = k]E[
k∑
i=0

Xm+1
i | Fm] = lim

k→∞

k∑
i=0

k1[Zm = k]µ = µZn

Finally, dividing both sides by µm+1, the result follows.
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2.1.1 The branching Brownian motion

The spatial tree is an element τ ∈ T with more structure. For each u ∈ τ , we associate
a life-time σu ≥ 0 and that allows us to define the birth-time of u by bu =

∑
v<u σu and

its death time by du = bu + σu. Moreover, for each u ∈ τ and time t there is a map
Xt : R+ → Nt, that is, a map that gives an “order” to all living individuals at time t.
Once defined a spatial tree, we can define a marked tree.

Definition 2.4. We define a marked tree as the triplet

t = (τ, σ,X) = (τ, {σu, (Xu(s), s ≥ 0),u ∈ τ}) .

Definition 2.5. Let Nt ⊂ U be the set of all particles alive at time t, that is

Nt = {u ∈ τ : bu ≤ t ≤ du}.

Remark 2.2. Note that, if u ∈ Rd is a particle alive at time t, we can define its position,
inductively, as

Y u
t := Xu(t− bu) + Y

p(u)
du

,

where Y p(u)
du

denotes the position where the “father” of u died.

Once defined the Galton-Watson process and the spatial tree, we can define rigorously
a branching Brownian motion considering the following properties:

1. A branching mechanism such that Au = Ψ(u), for all u ∈ U where Ψ(u) is the
probability generating function of u,

2. The branching rate: For all u ∈ U, σu are i.i.d. exponentially distributed with
parameter V ,

3. The spatial motion: The random variables Y u are standard Brownian motions.

Definition 2.6. Let w = (τ, (σu, Y
u)u∈τ , Au) then we define

Yt = Yt(w) = (Y u
t , u ∈ Nt),

to be the branching Brownian motion process.

Remark 2.3. For this process, the natural filtration is given by

Ft = σ{Ys : s ≤ t} = σ{Ys,Nt}.

The distribution for this process is usually denoted by P or Px when we want to highlight
that x ∈ Nt is the initial state.

The branching Brownian motion process also can be viewed as a measure-valued
process. The ξt will denote the measure representing the whole population at time t

ξt(·) =
∑

δY i
t
(·),

which is also Ft-adapted.
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Remark 2.4. Observe that the following random variables are measurable with respect
to Ft.

• All the σv such that v < u for some u ∈ Nt.

• Any Y u
s for s ≤ t and u ∈ Nt.

Proposition 2.3. The branching Brownian motion Yt (or ξt) is strongly Markovian.

Proof. By the memoryless property of exponentials and the Brownian motions is strongly
Markovian, the result follows.

Remark 2.5. If the initial population is the (purely atomic) measure ν, then we write Pν(·)
for the distribution of the process and Pt(·, ν)for the corresponding transition probability.

Since the branching Brownian motion is a branching processes, the following prop-
erty holds

Pt(·, ν1 + ν2) = Pt(·, ν1) ∗ Pt(·, ν2),

where the symbol ∗ denotes the convolution between the measures ν1 and ν2.

2.2 F-KPP equation

The Fischer, Kolmogorov, Petrovski, Piscounov (F-KPP) equation was first consid-
ered in 1937 by R. A. Fisher in [11], which was proposed and studied in the context
of population dynamics to describe the spatial spread of an advantageous allele, ana-
lyzing its traveling wave solutions. Kolmogorov, Petrovsky, and Piskunov [17] studied
simultaneously this equation. Over the years, these reaction-diffusion equations have
been studied by many authors, among them: Kolmogorov, Fisher, Skorohod, McKean,
Dawson, Le Gall, and Perkins to name just some of them.

The equation describes the evolution of an invasion front from a stable phase into an
unstable phase. It is a semi-linear equation of the form

ut =
1

2
uxx + f(u) (2.3)

where the forcing term f is assumed to be in C[0, 1] and satisfies the conditions

f(0) = f(1) = 0, f(u) ≥ 0 ,u ∈ (0, 1]

and
f ′(0) > 0, f ′(u) ≤ f ′(0), u ∈ (0, 1].

This equation is ubiquitous in the study of reaction-diffusion phenomena and front
propagation. It appears in models related to diverse fields as ecology, population ge-
netics, combustion, epidemiology, etc. It is one of the simplest examples of a semi-linear
parabolic equation, which admits traveling wave solutions. Briefly, a mathematical wave
is a function of the form u(x, t) = f(x − ct), with c > 0 by convention, and such wave is
solution of the constant-coefficient transport equation

ut + cux = 0.

At t = 0, the wave has the form f(x), which is the boundary condition for the problem,
so the wave f(x − ct) represents the wave profile translated to the right by ct spatial
units.
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2.3 McKean representation

The next Theorem, due to H. McKean [20], gives a representation of solutions to the
F-KPP equation in term of the BBM which will allow us to study branching Brownian
motion from the heat equation. We can understand the heat in the discrete case, as
follows.

Consider the finite set A ∈ Zd with boundary ∂A. We will define the temperature at
the border as zero, and the initial condition set the temperature at x ∈ A to be pt(x) with
t ∈ N the time unit. For each integer t, the heat in x at time t is spreading among its 2d
first neighbors. If one of those neighbors is a boundary point, then the heat that goes to
that site is lost forever.

In a more probabilistic way, we can understand as a very large amount of “heat
particles” which perform a random walk in A until the moment they touch the boundary.
The temperature at x at time t, pt(x) is given by density of particles x ∈ A ⊂ Zd.
Remark 2.6. We use to denote the domain of the Laplacian D(∆). In general, D(L) will
be the domain of the linear operator L. Subscripts will indicate a time variable, not a
derivative.

The theorem is often called the McKean representation. It says that the solution
of the F-KPP equation can be viewed as an expectation of spatial distribution of the
braching Brownian motion. It is, essentially, a type of Feynman-Kac result according
with [16, page 334].

Theorem 2.1. The distribution of the branching Brownian motion can be characterized
as follows: for ψ ∈ C+

b (Rd) ∩D(∆) with 0 ≤ ψ(x) ≤ 1 for x ∈ Rd,

Eδx
[ ∏
u∈Nt

ψ(Y u
t )

]
= v(t, x) , (2.4)

and v solves 
∂v

∂t
=

1

2
∆v + (Ψ(v)− v)V

v(0, x) = ψ(x) .
(2.5)

where Ψ(v) is the generating probability function and V is the branching rate.

Before proving the theorem, let us discuss its meaning. Once the theorem is proved,
we will have that the expected value for the position of the particles in a branching Brow-
nian motion is described by the heat equation, i.e., it is described by the phenomenon of
diffusion. These are particular cases of so-called transport processes, in which there is a
directed transfer of internal energy, mass, linear moment, etc. in supposedly continuous
environments.

Such problems can be approached in a relatively same way in the sense of considering
each of these measures as “fluids” such that is modeled by a certain conservation law. In
general, all these cases obey a continuity equation, which can be found in its physical-
mathematical construction elsewhere [12].

The heat equation is a particular case of the diffusion process. The heat conduction
process is determined by the temperature u(t, x). As well known, heat flows from the
highest temperature points to the lowest temperature points, and in the case of the
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presence of heat sources or sinks, the forcing term in (2.3) will represent the amount
added or removed.

With this in mind, we can understand that the expected value of the particle positions
in Rd will play the role of temperature, diffusing through space according to the heating
process.

Remark 2.7. The hypothesis ψ ∈ [0, 1] ensures that function v(t, x) defined in the Theo-
rem 2.5 is finite.

Proof. Initially let ψ ∈ C+
b (Rd) ∩D(∆) defined as

∏
i∈Nt

ψ(Y i
t )

def
=

{
1, if Nt = ∅∏
i∈Nt

ψ(Y i
t ), otherwise.

Let v(t, x)
def
= Eδx

[∏
ψ(Y i

t )
]
. It is clear that v(0, x) = ψ(x). In fact, at time t = 0, we

have only one particle, which we will call the original ancestor and therefore follows the
equality Y i

0 = x.
We assume that at time t, v(t, x) is twice differentiable with respect to the space

variable x and by [9, Theorem 8, page 69] v(t, x) is smooth as a function of x at all later
times.

At time t, a certain number of individuals are alive. Each one of them will be called
of ancestor and recall that they are all independent. We are interested in the behaviour
between 0 and t for each of these individuals. To clarify ideas, fix one of the original
ancestors, which we call I1. Define the hitting time

T = inf{t ≥ 0 : the original ancestor dies before time t }

and consider the space partition

K = { after the original ancestor dies, he leaves exactly k offsprings }.

Then, we can writing our solution as

Eδx
[ ∏
u∈Nt

ψ(Y i
t )
]

= Eδx
[ ∏
u∈Nt

ψ(Y i
t )1[T≤t]

]
+ Eδx

[ ∏
u∈Nt

ψ(Y i
t )1[T>t]

]
=
∑
k≥0

Eδx
[ ∏
u∈Nt

ψ(Y i
t )1[T≤t]1K

]
+ Eδx

[ ∏
u∈Nt

ψ(Y i
t )1[T>t]

]
.

Now we will handle each term above. We claim that:

• Eδx
[∏

u∈Nt
ψ(Y i

t )1[T≤t]1K

]
=

t∫
0

ds V exp{−V s}Eδx
[
pkv

k
(
t− s, Yt

)]
,

• Eδx
[∏

u∈Nt
ψ(Y i

t )1[T>t]

]
= Ex[v(t− T,Bt)]

∞∫
t

ds V exp{−V s},

where Ex denotes expectation for a Brownian motion started at the point x at time zero
and Bt represents the Brownian that survived.
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Since the process is Markovian and T have exponential distribution with parameter
V , it follows that

Eδx
[ ∏
u∈Nt

ψ(Y i
t )1[T≤t]1K

]
= Eδx

[
Eδx
[ ∏
u∈Nt

ψ(Y i
t )|[T ≤ t]

]
1[T≤t]1K

]

= Eδx
[
Eδx
[ k∏
j=1

∏
u∈Nt

ψ(Y i
T−t) ◦ θT |[T ≤ t]

]
1[T≤t]1K

]

= Eδx
[
EYT

[ k∏
j=1

∏
u∈Nt

ψ(Y i
T−t)

]
1[T≤t]1K

]

=

t∫
0

ds pkV exp{−V s}Eδx
[
EYT

[ k∏
j=1

∏
u∈Nt

ψ(Y i
T−t)

]]
.

Now, given that the original ancestor died at position Y 1
Tk
∈ Rd, the particles generated

are independent of each other and each particle are a Brownian motion. Therefore the
product over all alive particles become k copies of a Brownian motion started at Y 1

Tk
∈ Rd.

Thus, by the linearity of expectation and definition of v(t, x)

Eδx
[
ψ(Y 0

t )1[T≤t]1K

]
=

t∫
0

ds pkV exp{−V s}Eδx
[
EYT

[( ∏
u∈Nt

ψ(Y i
t−T )

)k]]

=

t∫
0

ds pkV exp{−V s}Eδx
[
EYT

[ ∏
u∈Nt

ψ
(
Y i
t−T

)]k]

=

t∫
0

ds V exp{−V s}Eδx
[
pkv

k
(
t− s, Yt

)]
.

To show the second claim note that the Brownian motion has survived and is inde-
pendent of the hitting time T . Then

Eδx
[ ∏
u∈Nt

ψ(Y i
t )1[T>t]

]
= Eδx

[
E
[
ψ(Y 0

t )|T > t
]
1[T>t]

]
= Eδx

[
ψ(Y 1

t )1[T>t]

]
= P[T > t]E

[
ψ(Bt)

]
,

where Bt denotes the position of the Brownian motion which is alive at time T − t. Now,
we will show that expectation solves the P.D.E. (2.5) and we have two cases whether Nt

is empty or not. For the first case, by definition, the product over all particles is one.
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Trivially for this case, v(t, x) solves (2.5). Suppose now that Nt is not empty. Hence

Eδx
[ ∏
u∈Nt

ψ(Y i
t )

]
= Eδx

[ ∏
u∈Nt

ψ(Y i
t )1[T≤t]

]
+ Eδx

[ ∏
u∈Nt

ψ(Y i
t )1[T>t]

]

= exp{−V t}Eδx
[
ψ(Bt)

]
+

t∫
0

ds V exp{−V s}Eδx
[∑
k≥0

pkv
k
(
t− s, Yt

)]

= exp{−V t}Eδx
[
ψ(Bt)

]
+

t∫
0

ds V exp{−V s}Eδx
[
Ψ
(
v
(
t− s, Yt

))]
.

Since v(t, ·) is continuously differentiable with respect to the space variable x, making
the substitution t− s→ s′ in the integral and by [15, Lemma 2.3, page 171] we get

∂tv(t, x) = −V exp{−V t}Eδx
[
ψ(Bt)

]
+ exp{−V t}1

2
∆Eδx

[
ψ(Bt)

]
+ ∂t

[ t∫
0

ds V exp{−V (t− s′)}Eδx
[
Ψ
(
v
(
t− s, Yt

))]]

= −V exp{−V t}Eδx
[
ψ(Bt)

]
+ exp{−V t}1

2
∆Eδx

[
ψ(Bt)

]
+ V

∑
k≥0

pkv
k(t, x) +

t∫
0

ds′
[
− V 2 exp{−V (t− s′)}Eδx

[
vk
(
t− s, Yt

)]
+ V exp{−V (t− s′)}∂tEδx

[
vk
(
t− s, Yt

)]]
= −V Eδx

[ ∏
i∈Nt

ψ
(
Y i
t

)
1[T>t]

]
+

1

2
∆Eδx

[ ∏
i∈Nt

ψ
(
Y i
t

)
1[T>t]

]
+ VΨ(v(t, x)) − V Eδx

[ ∏
i∈Nt

ψ
(
Y i
t

)
1[T≤t]

]
+

1

2
∆Eδx

[ ∏
i∈Nt

ψ
(
Y i
t

)
1[T≤t]

]
=

1

2
∆v(t, x) + V

(
Ψ(v(t, x)) − v(t, x)

)
.

Once this process is established for the original ancestor, we can reproduce for each of
the descendants, considering them as an original ancestor, and this proves the theorem.

For now on we will use 〈·, ·〉 to denote the integral, i.e., 〈φ, µ〉 =
∫
φdµ.

Corollary 2.1. We can define the branching Brownian motion as following: assuming
that the initial state of the population is represented by the purely atomic measure ν, its
state at time t will be the measure ξt determined by

Eν
[

exp (〈logψ, ξt〉)
]

= exp
(
〈log v(t, ·), ν〉

)
. (2.6)

Proof. Let Nt the number of alive individuals at time t. Thus, ξt = {δY 1
t
, . . . , δ

Y
Nt
t
} and

therefore

〈logψ, ξt〉 =
〈

logψ,

Nt∑
i=1

δY i
t

〉
= logψ(Y 1

t ) + . . . + logψ(Y Nt
t ).
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Hence

exp (〈logψ, ξt〉) =

Nt∏
i=1

ψ(Y i
t )

and Theorem 2.1 allows to conclude.

Remark 2.8. The expression (2.6) is the so-called Laplace functional of the Branching
Brownian motion.

2.4 A martingale characterisation

Towards to characterization of branching Brownian motion as a martingale, we will
need to deal with the functionals of the branching Brownian motion which can be ex-
pressed in terms of functions of the position of each particle alive in time t and then we
would like to be able to determine when these functionals is a martingale, and it is easy
when we know the infinitesimal generator of this processes.

Proposition 2.4. Let ξt be the branching Brownian motion with branching rate V . Then
its generator is given by

L1F (η) =

〈 1
2∆ψ − V

(
Ψ(ψ)− ψ

)
ψ

, η

〉
exp

{
〈log(ψ), η〉

}
. (2.7)

Proof. Let v as defined in (2.4). By the Corollary 2.1 we know that

Eη
[

exp (〈logψ, ξt〉)
]

= exp
{
〈log v(t, ·), η〉

}
By the above and Theorem 2.1, it follows that

d

dt
E[F (ξt)] =

∂

∂t
exp (〈log v(t, ·), η〉)

= exp (〈log v(t, ·), η〉) ∂
∂t
〈log v(t, ·), η〉

= exp (〈log v(t, ·), η〉)
〈 1

2∆v − V
(
Ψ(v)− v

)
v

, η

〉
.

Since
L1F (η) =

d

dt
Eη[F (ξt)]

∣∣∣
t=0

,

we conclude the proof.

Observe that, by the Proposition A.2 (ii), if L1 is the infinitesimal generator of the
branching Brownian motion with Laplace functional f , we have that d

drPtf = PtL1f .
Thus

d

dr
Eν [F (ξr)] = Eν [L1F (ξr)]

By the Lebesgue Differentiation theorem under the sign of Integral and the Fubini’s
Theorem, integrating both side of the equation above on the interval [s, s + t] it follows
that

Eν
[
F
(
ξs+u

)
− F

(
ξs
)]

= Eν
[ s+u∫
s

L1F
(
ξy
)
dy

]
, (2.8)
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Proposition 2.5. The process

M(ξt) = F (ξt) − F (ξ0) −
t∫

0

L1F (ξs) ds (2.9)

is a mean zero Pν-martingale for all F ∈ D(L1) where L1 is given by equation (2.7).

Remark 2.9. The proof of the Proposition 2.5 is slightly similar to the proof of Proposi-
tion 1.4 which is more general. Here we will use an explicit formula for the infinitesimal
generator of the branching Brownian motion while in Proposition 1.4 we used the theory
of semi-groups argument for a generic generator which did not done in this dissertation
and therefore, we will keep this demonstration although are quite similar.

Proof. Note that F and L1 are continuous and since the integral is a continuous operator
it follows that the process is Ft-adapted. To show that the process have first moment
finite, it is enough to note that φ and L1 are bounded. By the linearity of conditional
expectation

Eν [M(ξt)|Fs] = Eν [F (ξt) |Fs] − Eν [F (ξ0) |Fs]− Eν
[ s∫

0

LF (ξu) du +

t∫
s

LF (ξu) du |Fs
]
.

Let u such that s + u = t and A ∈ Fs, then by the Markov property

Eν
[
Eν
[ t∫
s

LF (ξu) du |Fs
]
1A

]
= Eν

[
Eν
[
θξs ◦

u∫
0

LF (ξu+s) du |Fs
]
1A

]

= Eν
[
Eξs
[ u∫

0

LF
(
ξu+s

)
du

]
1A

]
= Eν [Eξs [F (ξt) − F (ξs)]1A]

= Eν [Eν [F (ξt) − F (ξs)|Fs]1A].

Thus

E
[
F (ξt) − F (ξ0) −

t∫
0

L1F (ξs) ds |Fs
]

= F (ξs) − F (ξ0) −
s∫

0

L1F (ξy) dy,

and therefore M(ξt) is a mean zero Pν-martingale.

Definition 2.7. We say that the measurable random variable ξ, or equivalently its dis-
tribution Pν , solves the (L, ν)-martingale problem if

Pν
[
ξ0 = ν

]
= 1

and

F
(
ξt
)
− F

(
ξ0

)
−

t∫
0

LF
(
ξs
)
ds

is a mean-zero Pν-martingale for all F ∈ D(L).
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A classical theorem in the theory of probability due to Stroock and Varadhan [8,
Theorem 4.2, Chapter 4, page 184] tell us that if there exist two solutions of a given
martingale problem which has the same one-dimensional distributions then this solu-
tion is unique, therefore is important understand this characterization for the branching
Brownian motion ξt to get convergence when t → ∞.

Theorem 2.2 (Characterization via a martingale problem). The distribution Pν of
branching Brownian motion with initial value ν is the unique solution to the (L1, ν)
martingale problem in (Ω1,F).

The demonstration of this theorem is an easy modification of the general theorem
which proof the uniqueness of Dawson-Watanabe superprocess and therefore we will
omit it.

Lemma 2.1. Let {M θ
t }θ∈ (0,1) be a family of (Ft)-martingale where Ft denote the natural

σ-algebra. Consider that ∂
∂θM

θ
t exists almost surely and∥∥∥∥ ∂∂θM θ

t

∥∥∥∥
∞
< ∞. (2.10)

Then, ∂
∂θM

θ
t |θ=θ0 is a Ft-martingale for all θ0 ∈ (0, 1).

Proof. The process is adapted because it is a limit of adapted processes. The condi-
tion (2.10) guarantees that the process is in L1. It remains to show that for all s ≤ t,
E
[
∂
∂θM

θ
t |θ=θ0 |Fs

]
= ∂

∂θM
θ
s |θ=θ0 . Let A ∈ Fs. Since M θ

t is a martingale,∫
A
E
[
M θ
t |Fs

]
dP =

∫
A
M θ
t dP.

differentiating both sides of the above equation with respect to θ, it follows that

∂

∂θ

∫
A
M θ
s dP =

∂

∂θ

∫
A
M θ
t dP,

and by the Lebesgue Differentiation theorem under the sign of integral [2, Corollary 5.9,
page 46] it follows that ∫

A

∂

∂θ
M θ
s dP =

∫
A

∂

∂θ
M θ
t dP.

Since the result holds for all θ, particularly it is true for θ = θ0.

We characterize the branching Brownian motion as solution of the martingale prob-
lem as follows.

Lemma 2.2. If ξ solves the (L1, ν)-martingale problem, then for each φ ∈ C+
b (Rd)∩D(∆),

〈φ, ξs〉 is a semimartingale. Moreover,

Mt(φ) := 〈φ, ξt〉 − 〈φ, ξ0〉 −
t∫

0

〈1
2

∆φ, ξs〉 ds −
t∫

0

〈V
(
Ψ′(1) − 1

)
φ, ξs〉 ds

is a mean-zero Pν-martingale with quadratic variation

[
M(φ)

]
t

=

t∫
0

〈
2∇φ.∇φ + 2V

[
Ψ(exp (−φ)) − exp (−φ)

exp (−φ)
+
(
Ψ′(1) − 1

)
φ

]
, ξs

〉
ds .
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Proof. Note that by the Theorem 2.2, the process 〈ψ, ξt〉 is a Pν-semimartingale. Indeed,

Mt(ψ) := F (ξt) − F (ξ0) −
∫ t

0
L1F (ξs) ds

is a mean zero Pν-martingale as seen previously and since F (ξ0) +
∫ t

0 L1F (ξs) ds is a
predictable process of bounded variation, it follows that F (ξt) is a semimartingale.

Let F (ξ) = exp (〈logψ, ξ〉) and take ψ = exp (−θφ) then it follows that Fθ(ξ) =
exp (−〈θφ, ξ〉), and since

∆ exp (−θφ) = ∇(∇ exp (−θφ)) = ∇(exp (−θφ)(−θ∇φ))

= exp (−θφ)(−θ∇φ)2 + exp (θφ)(−θ∆φ) ,

we have that

L1Fθ(ξs) =

〈 1
2∆ψ − V

(
Ψ(ψ)− ψ

)
ψ

, ξs

〉
exp (〈log(ψ), ξs〉)

=

〈
1

2

(
− θ∆φ+ θ2∇φ.∇φ

)
+ V

[
Ψ(exp (−θφ))− exp (−θφ)

]
exp (−θφ)

, ξs

〉
exp (〈−θφ, ξs〉).

(2.11)

Since ξ solves the (L1, ν)-martingale problem, it follows that

Eν
[
Fθ(ξt+u)− Fθ(ξt)−

t+u∫
t

L1Fθ(ξs) ds

]
= 0.

Observe that

d

dθ

〈
1

2

(
− θ∆φ+ θ2∇φ.∇φ

)
+ V

[
Ψ(exp (−θφ))− exp (−θφ)

]
exp (−θφ)

, ξs

〉
exp (〈−θφ, ξs〉)

=

〈
1

2

(
−∆φ+ 2θ∇φ.∇φ

)
+ V φ

[
−Ψ′(exp (−θφ)) + exp (−θφ)

]
exp (−θφ)

, ξs

〉
exp (〈−θφ, ξs〉)

−
〈

1

2

(
− θ∆φ+ θ2∇φ.∇φ

)
+ V

[
Ψ(exp (−θφ))− exp (−θφ)

]
exp (−θφ)

, ξs

〉
exp (〈−θφ, ξs〉)〈φ, ξs〉.

Thus differentiating the martingale and evaluating it in θ = 0, since Ψ(1) = 1 it follows
that

d

dθ

(
Fθ(ξt+u) − Fθ(ξt) −

t+u∫
t

L1Fθ(ξs) ds

)∣∣∣∣
θ=0

= 〈φ, ξt〉 − 〈φ, ξ0〉

−
∫ t+u

t
〈1
2

∆φ − V (Ψ′(1) − 1)φ, ξs〉ds.
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Thus, by the Lebesgue Differentiation theorem under the sign of integral

0 =
d

dθ
Eν
[
Fθ(ξt+u) − Fθ(ξt) −

t+u∫
t

L1Fθ(ξs) ds

]∣∣∣∣
θ=0

= Eν
[
d

dθ

(
Fθ(ξt+u) − Fθ(ξt) −

t+u∫
t

L1Fθ(ξs) ds

)∣∣∣∣
θ=0

]

= Eν
[
〈φ, ξt〉 − 〈φ, ξ0〉 −

u∫
0

〈1
2

∆φ − V
(
Ψ′(1) − 1

)
φ, ξs〉 ds

]
.

This equation is enough to ensure thatMt(φ) is a mean-zero Pν-martingale. Observe that
d
dθFθ(ξt)|θ=0 is a semimartingale as previously seen which proves the first statement.
Now since the process 〈φ, ξt〉 is a semimartingale by the Itô’s formula [5, Theorem 14,
page 135],

F (〈φ, ξt〉) = F (〈φ, ξ0〉) +

t∫
0

F ′(〈φ, ξs−〉)d〈φ, ξ−s 〉 +
1

2

t∫
0

F ′′(〈φ, ξs−〉)d
[
〈φ, ξ−s 〉

]
s−
, (2.12)

which is a semimartingale for any F twice continuously differentiable. Observe that we
can write the semi-martingale as

〈φ, ξt〉 = Mt(φ) + 〈φ, ξ0〉 +

∫ t

0
〈1
2

∆φ − V (Ψ′(1) − 1)φ, ξs〉ds,

therefore (2.12) becomes

F (〈φ, ξt〉) = F (〈φ, ξ0〉)

+

t∫
0

F ′(〈φ, ξs−〉)d
(
Mt(φ) + 〈φ, ξ0〉 +

∫ t

0
〈1
2

∆φ − V (Ψ′(1) − 1)φ, ξs〉ds
)

+
1

2

t∫
0

F ′′(〈φ, ξs−〉)d
[
Mt(φ) + 〈φ, ξ0〉 +

∫ t

0
〈1
2

∆φ − V (Ψ′(1) − 1)φ, ξs〉ds
]
s−
,

and once that d〈φ, ξ0〉 = 0 and d
[ ∫ t

0 〈
1
2∆φ − V (Ψ′(1) − 1)φ, ξs〉

]
s

= 0, it follows that

F (〈φ, ξt〉) = F (〈φ, ξ0〉)

+

t∫
0

F ′(〈φ, ξs−〉)dMs−(φ) +

t∫
0

F ′(〈φ, ξs−〉)〈
1

2
∆φ − V (Ψ′(1) − 1)φ, ξs〉ds

+
1

2

t∫
0

F ′′(〈φ, ξs−〉)d[M(φ)]s− ,
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where
t∫

0

F ′(〈φ, ξs−〉)dMs−(φ) is a martingale [4, Theorem 5.4, chapter 5, page 101]. Thus,

taking F (x) = exp (−x), the function F satisfies the Itô’s Formula hypothesis, therefore

t∫
0

exp (−〈φ, ξs−〉)dMs−(φ) = exp (−〈φ, ξt〉) − exp (−〈φ, ξ0〉)

+

t∫
0

〈1
2

∆φ+ V (Ψ′(1)− 1)φ, ξs〉 exp (−〈φ, ξs〉)ds −
1

2

t∫
0

exp (−〈φ, ξs〉)d
[
M(φ)

]
s
,

(2.13)

is Pν-martingale. Consider Fθ(ξ) and its generator (2.11). By the Dynkin’s formula, the
process (2.9) define a martingale Nt(φ) with θ = 1. Then

Nt(φ) = exp (−〈φ, ξt〉) − exp (−〈φ, ξ0〉)

−
∫ t

0

〈
1

2
(2∇φ∇φ − ∆φ) + V

Ψ′(exp (−φ)) − exp (φ)

exp (−φ)
, ξs

〉
exp (−〈φ, ξs〉)ds,

(2.14)

which is a mean-zero Pν-martingale. Since the decomposition of semimartingale is
unique by the Proposition 1.3, equating (2.13) with (2.14) we have that

t∫
0

exp (−〈φ, ξs〉)d
[
M(φ)

]
s

=

t∫
0

exp (−〈φ, ξs〉)2
〈
∇φ.∇φ + V

[
Ψ(exp(−φ)) − exp(−φ)

exp(−φ)
+ (Ψ′(1) − 1)φ

]
, ξs

〉
ds,

which gives the second statement.

The above Lemma uses a slightly different definition for the quadratic variation than
found in classical references like [18] and in this case, they are equivalent, see [24].

Remark 2.10. The Lemma 2.2 is an important piece to show the existence of the Dawson-
Watanabe superprocess.



Chapter 3

The Dawson-Watanabe
superprocess

In this chapter, we will construct the so-called Dawson-Watanabe superprocess as a
limit scale of branching Brownian motion.

3.1 Re-scaling and Tightness

The Dawson-Watanabe superprocess is construct as a re-scaling limit of branching
Brownian motion as follows:

Firstly, at the 1-th stage, the re-scaled process is the branching Brownian motion.
For the n-th stage of re-scaling, we give to the system O(n) amount of individuals in
the following way, if the re-scaled process has size x, then there are nx particles alive.
Thus, in the next generation, the number of individuals alive is given by the sum of nx
independent Poisson random variables each of them with parameter one, in which each
particle has 1

n mass. It corresponds to the initial measure ν at time zero.
Each particle of the system has an independent exponential lifetime with parameter

nV with a spatial position given by a Brownian motion. Also, observe that at time zero,
it is impossible to distinguish if the system is in the n-th or m-th re-scaling stage, for
m 6= n. Since we normalized the mass of all particles alive at time zero, and each of them
behaves according to a Brownian motion, there is no method to distinguish which stage
of re-scaling it is. Besides, note that once the lifetime of each particle has parameter nV ,
each of them dies faster than the usual branching Brownian motion.

As previously seen for the branching Brownian motion, whenever each particle dies,
it leaves behind at the same position with a random number of descendants given by
the probability generating function Φ. Also, the re-scaling process inherits this property.
Finally, for any time t of the re-scaled process, we give nt time to the branching Brownian
motion evolve. As previously seen, whenever each particle dies, it leaves behind at the
same position with a random number of descendants given by the probability generating
function Φ and the re-scaling process inherits this property.

Rigorously, we define the re-scaled process in terms of branching Brownian motion
ξt =

∑
i∈Nt

δY i
t
, as following:

52
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Let {X(n)}n≥1 to be the process such that

X
(n)
0 =

1

n
ξ

(n)
0 , (3.1)

and for any time t,

Xn
t =

1

n
ξ

(n)
nt . (3.2)

Observe that the process at time zero converges to X∞0 , by the weak law of large
numbers [6, Theorem 2.2.9., page 54]. Indeed, since

X
(n)
0 =

1

n

∑
i∈N0

δxi ,

and {xi : i ∈ N0} is a Poisson point process which is independent and identically dis-
tributed, thus {δxi : i ∈ N0} also it is. Moreover E[|δx1 |] < ∞, and hence the result
follows.

In addition, in agreement with Roelly-Copoleta [22, page 60], we assume that the
branching mechanism is critical, i.e., Φ′(1) = 1. Denote the variance by σ2 which is
given by Φ′′(1).

Proposition 3.1. Suppose that the branching process is critical. Then {〈1, X(n)
t 〉}n≥1 is

a P(n)-martingale.

Remark 3.1. Note that this result is a kind of variation of the Proposition 2.2, once we
suppose that the process is critical, i.e., µn = 1 for all n ∈ N.

Proof. Let denote Y (n)
t := 〈1, X(n)

t 〉 to be the total mass of continuous-time branching
process. Clearly the process is adapted to the natural σ-algebra Ft,n = σ(〈1, Xn

s 〉 : 0 ≤
s ≤ t, n ∈ N) and observe that

E(n)[
∣∣∣Y (n)
t

∣∣∣] = E(n)
[ ∣∣∣〈1, X(n)

t 〉
∣∣∣ ] = E(n)

[
〈1, X(n)

t 〉
]
< ∞,

once the process is critical.
Let s < t. Since the branching process is Markovian and Yt is the total mass at

time t,
E(n)[Y

(n)
t | Fs] = E(n)[θs ◦ Y (n)

t−s | Fs] = E(n)
Xs

[Y
(n)
t−s ] = YsE

(n)
1 [Y

(n)
t−s ] (3.3)

Let B = {occur a branching up to time t}, R = {number of particles after branching}.
Without loss of generality, take n = 1. Thus

f(t) := E(n)
1 [Y

(n)
t ] = E(n)

1 [Y
(n)
t 1[B>t] + Y

(n)
t 1[B≤t]1

⋃
k≥0

R=k]

= E(n)
1 [11[B>t]] +

∑
k≥0

E(n)
1 [Y

(n)
t 1[B≤t]1R=k]

= exp (−V t) +
∑
k≥0

kP1[R = k]

∫ t

0
V exp (−V s)f(t− s) ds .
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Now, since the process {Y (n)
t }t≥0 is critical

∑
k≥0 kP1[R = k] = 1, so we have the following

O.D.E. {
d
dtf(t) = −V exp (−V t) + V exp (−V t)f(0)

f(0) = 1.

Observe that d
dtf(t) = 0 for all t ≥ 0 and since f(0) = 1 it follows that f(t) ≡ 1. By

(3.3), we have that {Yt}t≥1 is a P(n)-martingale.

Although the Corollary 1.1 gives us a strong condition for tightness, in real processes,
it is not malleable. David Aldous in 1978 [1] has been constructed a helpful criterion to
determine if a process is tight. In 1980, Rebolledo et al. [21], make a criterion using
semi-martingales to determines if a process is tight or not, and once we had character-
ized the quadratic variation and the predictable process of finite variation process of the
semi-martingale given by the branching Brownian motion, we will use this criterion.

Theorem 3.1 (Aldous-Rebolledo Criterion). Let {Y (n)}n≥1be a sequence of real valued
semimartingales with càdlàg paths. Consider V (n) for the corresponding predictable fi-
nite variation process and [M (n)]t = 〈M (n),M (n)〉t the quadratic variation of the martin-
gale part of Y (n). Suppose that the following conditions are satisfied.

(i) For each fixed t, {Y (n)
t }n≥1 is tight.

(ii) Given a sequence of stopping times τn, bounded by T , for each ε > 0 there exists
δ > 0 and n0 such that

sup
n≥n0

sup
θ∈ [0,δ]

P
[ ∣∣∣V (n)(τn + θ) − V (n)(τn)

∣∣∣ > ε
]
≤ ε,

and
sup
n≥n0

sup
θ∈ [0,δ]

P
[ ∣∣∣[M (n)]τn+θ − [M (n)]τn

∣∣∣ > ε
]
≤ ε.

Then, the sequence {Y (n)}n≥1 is tight.

The next theorem, [8, chapter 3, Theorem 9.1, page 142], state a relationship between
the tight condition of a process {X(n)}n≥1 and their image {f(X(n))}n≥1 where f belongs
to a dense subset Θ of the bounded continuous function which will be useful for working
with a relatively simpler class of process.

Theorem 3.2. Let (E, ρ) be a complete and separable metric space. Consider {X(n)}n≥1 be
a family of process with sample path in D(R+, E). Suppose that the compact containment
condition holds. Let Θ be a dense subset of bounded continuous function with the topology
of uniform convergence on compact sets. Then {X(n)}n≥1is relatively compact if and only
if {f(X(n))}n≥1 is relatively compact as a family of process in DR[0,∞) for each f ∈ Θ.

Let MF (S) the space of all finite measure defined on S, i.e., MF (Rd) := {µ ∈ M1(Rd) :
|〈1, µ〉| < K, for K < ∞} is not a compact set in M1(Rd) with the weak topology. Indeed,
it is enough take the measure µn = δn. We have that 〈1, µn〉 = 1 for all n. Note that
as n → ∞, the mass escape to the infinity and therefore, we cannot extract convergent
sub-sequence in MF (Rd).

To deal with this problem, we consider the space R̂d which is the one point compact-
ification of Rd. We equip R̂d with the usual topology with addition to the infinity point,
i.e., we consider the sets of the form V ∪ {∞} where V { is compact set in Rd.
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Theorem 3.3. Let {X(n)}n≥1 the sequence of re-scaled process defined as (3.1) and (3.2)
such that the branching mechanism is critical. Then {X(n)}n≥1 is tight in MF (R̂d).

Remark 3.2. Dividing the proof into two parts: Firstly, we will check the compact con-
tainment condition 1.17 to achieve the tight condition of {X(n)

t }n≥1 for each t by the
theorem 3.2. After that, we will show the hypothesis of Aldous-Rebolledo Criterion 3.1
to conclude the proof.

Proof. Define Y (n)
t = 〈φ,X(n)

t 〉 for any φ in a dense subset of C+
b (R̂d). Observe that to

show the compact containment condition for Y (n)
t it is equivalent to show for 〈1, X(n)

t 〉
once ‖φ‖∞ < ∞. Then, for each fixed T > 0, we want to show that given ε > 0 there
exists K > 0 such that

P
[

sup
0≤t≤T

〈1, X(n)
t 〉 ≤ K

]
≥ 1 − ε.

By the Proposition 3.1 the process {〈1, X(n)
0 〉}n≥1 is a P(n)-martingale and by the

Doob’s inequality we have that

P(n)
[

sup
0≤t≤T

〈1, X(n)
t 〉 > K

]
≤ 1

K
E(n)

[
〈1, X(n)

t 〉
]

=
1

K
E(n)[〈1, X(n)

0 〉].

Now, since {X(n)
0 }n≥1 converges almost surely, 〈1, X(n)

0 〉 < ∞ for all n ∈ N. Taking
K → ∞, the right side of the above equation tends to zero uniformly in n. We show
that the hypothesis of the theorem 3.2 is satisfied, moreover, we show that the process
{〈φ,X(n)

t 〉}n≥1 is tight for each t fixed.
Let {τn}n≥1 be a sequence of stopping times bounded by n. By the Lemma 2.2, since

{〈ψ, ξt〉}t∈R is a Pν-semimartingale for all ψ ∈ C+
b (Rd) ∩D(∆). Observe that

〈ψ,X(n)
t 〉 = 〈ψ, 1

n
ξ

(n)
nt 〉 = 〈 1

n
ψ, ξ

(n)
nt 〉

and it follows that the process {〈ψ,X(n)
t 〉}t∈R is a Pν-semimartingale. Using that Φ′(1) =

1, its predictable process is given by

V (n)(t) = 〈ψ,X(n)
0 〉 −

∫ t

0
〈1
2

∆ψ,X(n)
s 〉 ds,

and, since

∆(ψ2) − 2ψ∆ψ = ∇(2ψ∇ψ) − 2ψ∆ψ

= 2∇ψ∇ψ + 2ψ∆ψ − 2ψ∆ψ = 2∇ψ∇ψ ,

the process has the following quadratic variation [M(ψ)]t of the martingale part

[M(ψ)]t =

∫ t

0
〈∆(ψ2) − 2ψ∆ψ + 2V

(
Ψ(exp (−ψ)) − exp (−ψ)

exp (−ψ)

)
, X(n)

s 〉 ds.
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Thus, given ε > 0 let δ = 2ε2

‖∆ψ‖∞〈1,X
(∞)
0 〉

where X(∞)
0 will denotes the limit process of

{X(n)
0 }n≥1. Hence

sup
0≤ θ≤ δ

P(n)
[ ∣∣∣V (n)(τn + θ) − V (n)(τn)

∣∣∣ >ε] = sup
0≤ θ≤ δ

P(n)

[ ∣∣∣∣∫ τn+θ

τn

〈1
2

∆ψ,X(n)
s 〉 ds

∣∣∣∣ > ε

]
≤ sup

0≤ θ≤ δ
P(n)

[ ∫ τn+θ

τn

∣∣∣∣〈12∆ψ,X(n)
s 〉

∣∣∣∣ ds > ε

]
≤ sup

0≤ θ≤ δ
P(n)

[
1

2
‖∆ψ‖∞

∫ τn+θ

τn

〈1, X(n)
s 〉ds > ε

]
≤ P(n)

[
1

2
‖∆ψ‖∞ δ sup

0≤t≤n+δ
〈1, X(n)

t 〉 > ε

]
.

(3.4)

Since 〈1, X(n)
t 〉 is a P(n)-martingale, we apply the Doob’s inequality and (3.4) is bounded

by ‖∆ψ‖∞δ〈1,X
(∞)
0 〉

2ε , so the predictable process has variation in probability lesser than ε.
Now, we do the same argument to the quadratic variation of the martingale part it
follows that

sup
0≤θ≤δ

P(n)
[ ∣∣∣[M (n)]τn+θ − [M (n)]τn

∣∣∣ > ε
]

= sup
0≤θ≤δ

P(n)

[∣∣∣∣ ∫ t

0
〈∆(ψ2) − 2ψ∆ψ

+ 2V

(
Ψ(exp (−ψ)) − exp (−ψ)

exp (−ψ)

)
, X(n)

s 〉 ds
∣∣∣∣ > ε

]
.

Denote B =
∥∥∆ψ2

∥∥
∞ + ‖2ψ∆ψ‖∞ +

∥∥∥2V Ψ(exp (−ψ))− exp (−ψ)
exp (−ψ)

∥∥∥
∞

which is bounded once

that ψ ∈ C+
b (Rd) ∩D(∆).

So as the same way that we did to the predictable process it follows that the quadratic
variation of the martingale part is bounded,

sup
0≤θ≤δ

P(n)
[ ∣∣∣[M (n)]τn+θ − [M (n)]τn

∣∣∣ > ε
]
≤ P(n)

[
Bδ sup

0≤θ≤δ
〈1, X(n)

t 〉 > ε

]
≤ Bδ

ε
〈1, X(n)

0 〉.

Taking δ = ε2

B〈1,X(∞)
0 〉

we conclude by the Aldous-Rebolledo criterion 3.1 that the

process {〈ψ,X(n)〉} is tight.

Observe that the re-scaled process is relatively compact with the weak topology in
MF (R̂d). Indeed, by the theorem 3.3 {X(n)}n≥ 1 is tight and, since the space MF (R̂d) is
Polish, by the Prohorov’s Theorem 1.7, it follows that {X(n)}n≥1 is relatively compact
in its space. Now we will identify the limit points of the sequence as solutions to a
martingale problem.

Note that nX(n) is a branching Brownian motion with branch rate nV hence we can
apply the Lemma 2.2 to characterize the predictable process and quadratic variation of
the martingale part given by the Theorem 2.2 to some function F ∈ D(L1).

Define the test functions fn = 1 − φ
n to some φ ∈ C+

b (Rd) ∩D(∆) and observe that
fn ∈ C+

b (Rd) ∩D(∆). For each n ∈ N define Fn(·) = exp (〈log fn, ·〉). We know that for
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each n ∈ N the process

exp (〈log fn, nX
(n)
t 〉) − exp (〈log fn, nX

(n)
0 〉)

−
∫ t

0

〈 1
2∆fn + nV (Ψ(fn) − fn)

fn
, nX(n)

s

〉
exp (〈log fn, nX

(n)
s 〉) ds

(3.5)

is a mean-zero P(n)-martingale. We know that Ψ(1) =
∑∞

k=0 pk(1)k = 1. Making the
Taylor’s expansion for the probability generating function centering at 1 it follows that

Ψ(fn) = Ψ
(

1 − φ

n

)
= Ψ(1) − φ

n
Ψ′(1) +

φ

2n2
Ψ′′(1) + o

( 1

n2

)
= 1 − φ

n
+

φ2

2n2
σ2 + o

( 1

n2

)
.

(3.6)

Thus, the P(n)-martingale (3.5) becomes

exp

(〈
n log

(
1 − φ

n

)
, X

(n)
t

〉)
− exp

(〈
n log

(
1 − φ

n

)
, X

(n)
0

〉)

−
∫ t

0

〈n1
2∆(1 − φ

n) + n2V
(

1 − φ
n + φ2

2n2σ
2 − (1 − φ

n)
)

(1 − φ
n)

, X(n)
s

〉
× exp (〈n log (1 − φ

n
), X(n)

s 〉) ds

and since
(
1 − ψ

n

)n → exp (−ψ), as n → ∞ it follows that (3.5) converges, and its limit
is given by

exp (−〈φ,Xt〉) − exp (−〈φ,X0〉) −
∫ t

0

〈
− 1

2
∆φ +

1

2
V σ2φ2, Xs

〉
exp (−〈φ,Xs〉)ds . (3.7)

We claim that the expression (3.7) is a P(n)-martingale. Observe that, if A is the limit of
the equation (3.5) and X is the process (3.7) it follows that

E(n)[|A − X|] = lim
n→∞

o

(
1

n2

)
= 0, (3.8)

Therefore we have a well approximation for martingale of the limit of rescaled branching
Brownian motion.

The next theorem (c.f. [8, Theorem 4.8.10, page 234]) will guarantee that the limit of
(3.7) converges to some process in MF (R̂d) which is the solution of martingale problem
in D(R+,MF (R̂d)), in other words, the martingale property is preserved under passage
to the limit.

Theorem 3.4. Let (E, ρ) be complete and separable metric space. Let A ⊂ Cb(E) × Cb(E)
and ν ∈ P(E) and suppose that the D(R+, E) martingale problem for (A, ν) has at most
one solution. Suppose that Xn is Fnt -adapted process with sample path in D(R+, E),
{Xn}n∈N is relatively compact, PXn(0)−1⇒ ν, and M ⊂ Cb(E) is separating. Then, the
following statements are equivalent:

(i) There exists a solutionX of the (A, ν)-martingale problem inD(R+, E), andXn⇒X.
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(ii) There exists a countable set Γ ⊂ [0,∞) such that for each (f, g) ∈ A,

lim
n→∞

E
[(
f(Xn(t+ s)) − f(Xn(t)) −

∫ t+s

t
g(Xn(u)du)

) k∏
j=1

hj(Xn(tj))

]
= 0

for all k ≥ 0, 0 ≤ t1 < . . . < tk ≤ t < t + s with ti, t, t+s /∈ Γ and h1, . . . hk ∈ M .

Observe that the re-scaled branching Brownian motion {X(n)}n∈N satisfies the hy-
pothesis of Theorem 3.4. Let us check that {X(n)}n∈N satisfies the second hypothesis for
test function fn as previously defined.

Let 0 < t1 < . . . < tk ≤ t < t + s as in theorem and h1, . . . , hk ∈ Cb(MF (R̂d)).
Thus, the second condition is translated to

lim
n→∞

E
[(

exp

(〈
n log

(
1 − φ

n

)
, X

(n)
t+s

〉)
− exp

(〈
n log

(
1 − φ

n

)
, X

(n)
t

〉)

−
∫ t+s

t

〈n1
2∆(1 − φ

n) + n2V
(

1 − φ
n + φ

2n2σ
2 − (1 − φ

n)
)

(1 − φ
n)

, X(n)
s

〉

× exp (〈n log (1 − φ

n
), X(n)

s 〉) ds
) k∏
j=1

hj

(
X

(n)
tj

)]
.

(3.9)

Since hj(X
(n)
tj

) ∈ Fnt and the process (3.9) of re-scaled branching Brownian motion
inside the expectation is expressed in terms of Lemma 1.4, it follows that the expectation
is equal to zero because the process is, for each n, a mean-zero P(n)-martingale.

Now, observe that each hj is bounded, and since the process inside of conditional
expectation is also bounded, by the Dominated Convergence Theorem, we conclude that
the limit of the expectation is zero. Using the Theorem 3.4 it follows that exists a solution
to the martingale problem for the Dawson-Watanabe measure X such that X(n)⇒X as
n → ∞.

Lemma 3.1. Let Ttψ the heat semi-group for ψ ∈ C+
b (Rd) ∩ D(∆) and X the Dawson-

Watanabe measure. Then E[〈ψ,Xt〉] = E[〈Ttψ,X0〉].

Proof. Let F (·) = exp (〈log φ, ·〉) to φ ∈ C+
b (Rd)∩D(∆). Since the infinitesimal generator

of the branching Brownian motion is the same as the Dawson-Watanabe superprocess it
follows that

d

dt
E[F (Xt)] = E

[
exp (〈log φ,Xt〉)

〈−1
2∆φ + V [Ψ(φ) − φ]

φ
,Xt

〉]
. (3.10)
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Let φ = exp (−θψ) for some ψ ∈ C+
b (Rd) ∩D(∆). Thus

d

dθ
exp (〈log φ(θ), Xt〉)

〈−1
2∆φ(θ) + V [Ψ(φ(θ)) − φ(θ)]

φ(θ)
, Xt

〉
=

d

dθ
exp (〈−θψ,Xt〉)

×
〈−1

2∆ exp (−θψ) + V [Ψ(φ(θ)) − φ(θ)]

exp (−θψ)
, Xt

〉
= −〈ψ,Xt〉 exp (−〈θψ,Xt〉)

〈−1
2∆ exp (−θψ) + V [Ψ(exp(−θψ)) − exp(−θψ)]

exp (−θψ)
, Xt

〉
+ exp (−〈θψ,Xt〉)

〈
− 1

2
(2θ∇ψ∇ψ − ∆ψ) + V φ

[
−Ψ′(exp (−θφ)) + exp (−θφ)

]
exp (−θφ)

, Xt

〉
.

(3.11)

Evaluating (3.11) at θ = 0 and since Ψ′(1) = 1 it follows by the Lebesgue Differentiation
Theorem under the sign of Integral that

E
[
〈1
2

∆ψ,Xt〉
]

=
d

dθ

d

ds
E
[
Fθ(Xs)

]∣∣∣
θ=0

=
d

ds
E
[ d
dθ
Fθ(Xs)

∣∣∣
θ=0

]
.

Observe that, again by the semi-group theory argument and by the Fubini’s Theorem,
integrating the time s over [0, t], it follows that

E
[ ∫ t

0
〈1
2

∆ψ,Xs〉ds
]

= E
[ d
dθ
Fθ(Xt)

∣∣∣
θ=0
− d

dθ
Fθ(X0)

∣∣∣
θ=0

]
= E[〈ψ,Xt〉 − 〈ψ,X0〉].

Therefore

E[〈ψ,Xt〉] = E
[
〈ψ,X0〉 +

∫ t

0
〈1
2

∆ψ,Xs〉 ds
]
.

Now we will show that the process takes it is values in the smaller space. Consider
φ = 1{‖x‖>R} for some R ∈ R+. Thus, if X denotes the Dawson-Watanabe measure, by
the Markov inequality,

P[Xt{‖x‖ > R} > ε] = P[〈φ,Xt〉 > ε] ≤ 1

ε
E[〈φ,Xt〉] . (3.12)

So, by the Lemma 3.1 the equation 3.12 is bounded by 1
εE[〈Tt1{‖x‖>R}, X0〉], which

converges to zero as R → ∞. We give an intuition about that: Observe that at time zero,
since the process is a Poisson point process, there is no infinite cluster. Thus whenever
R tends to infinity, the indicator function φ is almost surely equal to zero and, only the
particles that are to infinity will be considered.

Remark 3.3. A strong result shows that the Dawson-Watanabe measure has compact
support [7, Corollary 6.8, page 110].

Now, we can conclude that the Dawson-Watanabe superprocess is a measure defined
in MF (Rd) equipped with the weak topology.
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3.2 Uniqueness of solution of the martingale problem

To show the uniqueness of the Dawson-Watanabe superprocess, we will character-
ize the Dawson-Watanabe martingale problem as was done to the branching Brownian
motion, we will do the same kind of logic and then, we will show that they has a dual
deterministic process which have unique solution.

Proposition 3.2. The measure PX0 ∈ M1(MF (R̂d)) solves the (L, X0)-martingale prob-
lem, then for each φ ∈ C+

b (Rd) ∩D(∆), 〈φ,Xt〉 is a semimartingale. Moreover

Nt(φ) = 〈φ,Xt〉 − 〈φ,X0〉 −
∫ t

0
〈1
2

∆φ,Xs〉ds

is PX0-martingale and its quadratic variation is given by

[N(φ)]t = V σ2

∫ t

0
〈φ2, Xs〉ds.

Remark 3.4. The proof of this proposition is quite similar to the demonstration of
Lemma 2.2. Moreover, the infinitesimal generator L is L1 with the Taylor expansion of
the probability generating function (3.6), critical branching mechanism and finite vari-
ance Ψ′′(1) = σ2.

Proof. Let ψ be the function taken in the test function to be equal to ψ = exp (−θφ) for
θ ∈ (0, 1) and φ ∈ C+

b (Rd) ∩D(∆). Consider Fθ(·) = exp (〈logψ(θ), ·〉). Since PX0 solves
the (L, X0)-martingale problem, it follows that

EX0

[
Fθ(Xt) − Fθ(X0) −

∫ t

0
LFθ(Xs)ds

]
= 0 .

We know that the derivative with respect to θ of above equation is also a martingale thus
differentiate and make θ = 0 it follows that Nt(φ) is a PX0-martingale and consequently
d
dθFθ(Xt)|θ=0 is a semimartingale. Since

〈φ,Xt〉 = Nt(φ) + 〈φ,X0〉 +

∫ t

0
〈1
2

∆φ,Xs〉ds

and F (x) = exp (−x) by Itô’s formula we have that
t∫

0

exp (−〈φ,Xs−〉)dNs−(φ) = exp (−〈φ,Xt〉) − exp (−〈φ,X0〉)

+

t∫
0

〈1
2

∆φ, ξs〉 exp (−〈φ, ξs〉)ds −
1

2

t∫
0

exp (−〈φ, ξs〉)d
[
N(φ)

]
s

(3.13)

is PX0-martingale. By the uniqueness of decomposition of semimartingale and equating
(3.13) with (3.7) it follows that

1

2

t∫
0

exp (−〈φ, ξs〉)d
[
N(φ)

]
s

=

∫ t

0
exp (−〈φ,Xs〉)〈

1

2
V σ2φ2, Xs〉ds

which proves the second statement.
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An interesting assumption that we can make is asymptotically approximating the
expected number of descendants. Consider f ∈ Cb(Rd) which depends of the spatial
position of individual, and make the following approximation in the expectation. Φ′(1) =
1 + f

n . So the equation (3.7) will convert to

exp (−〈φ,Xt〉) − exp (−〈φ,X0〉) −
∫ t

0

〈
− 1

2
∆φ +

1

2
V fσ2φ,Xs

〉
exp (−〈φ,Xs〉)ds .

Following the same reasoning, we will have that the sequence will be rigid and any limit
point solves the martingale problem

Mt(φ) = 〈φ,Xt〉 − 〈φ,X0〉 −
∫ t

0
〈1
2

∆φ + fV φ,Xs〉ds.

with same quadratic variation given in Proposition 3.2.
Let us show that the process is unique using the method of duality which relates two

processes. Both of them will have the same evolution in time, and if one process has a
unique solution, the other also will have.

Theorem 3.5 (The method of duality). Let E1, E2 metric spaces and suppose that P1 and
P2 (equivalently X and Y are stochastic processes) are distribution on the Skorohod space
D(R+, E1) and D(R+, E2) respectively. Let f, g bounded functions defined on E1×E2 that
satisfies

(i) For each y ∈ E2, f(·, y) and g(·, y) are continuous functions on E1.

(ii) For each x ∈ E2, f(x, ·) and g(x, ·) are continuous functions on E2.

(iii) For each y ∈ E2,

My(X) := f(X(t), y) −
∫ t

0
g(X(s), y)ds

is a P1-martingale.

(iv) For each x ∈ E1

Mx(Y ) := f(x, Y (s)) −
∫ t

0
g(x, Y (s))ds

is a P1-martingale.

Then
EP1

X(0)

[
f(X(t), Y (0))

]
= EP2

Y (0)

[
f(X(0), Y (t))

]
. (3.14)

Proof. Define h : R2 → R such that h(t1, t2) = EP1×P2 [f(X(t1), Y (t2))] and for each t ∈ R
let gt : [0, t] → [0, t]2 defined as gt(s) = (s, t − s). Observe that, since both functions h
and gt are continuous differentiable, it follows by the chain rule that

d

ds
h ◦ gt(s) =

d

ds
EP2 [f(X(s), Y (t− s))] − d

ds
EP1 [f(X(s), Y (t− s))] . (3.15)
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Observe that for each y ∈ E2 fixed, we have that

d

ds
EP1 [f(X(t), y)] =

d

ds
EP1

[
My(X) +

∫ t

0
g(X(s), y)ds

]
=

d

ds
EP1 [My(X)] +

d

ds
EP1

[ ∫ t

0
g(X(s), y)ds

]
= EP1 [g(X(t), y)]

where we have used Fubini’s Theorem in the second equality and the fact that the ex-
pectation of a martingale is constant to obtain the identity above. In the same way,

d

ds
EP2 [f(x, Y (s))] = EP2 [g(x, Y (s))]

for each x ∈ E1 fixed. Therefore (3.15) equal to zero. Thus

d

ds
EP1 [f(X(t), y)] =

d

ds
EP2 [f(x, Y (s))]. (3.16)

Integrating (3.16) with respect to s over [0, t] it follows that∫ t

0

d

ds
EP1 [f(X(s), Y (t− s))]ds =

∫ t

0

d

ds
EP2 [f(X(s), Y (t− s))]ds (3.17)

and this equality is enough to conclude.

Proposition 3.3. The equation (3.14) is sufficient to guarantee uniqueness of solutions
of martingale problem.

Proof. Let X be a solution of a martingale problem and Y it is the dual process of X
such that both satisfies the hypothesis of the Theorem 3.5. Moreover, suppose that X ′

is another solution to the martingale problem, which also satisfies the hypothesis of the
theorem it follows that X(0) = X ′(0), and for all t ≥ 0

EP1 [f(X(t), Y (0))] = EP2 [f(X(0), Y (t))] = EP2 [f(X ′(0), Y (t))] = EP1 [f(X ′(t), Y (0))].

Thus, by the Portmanteau Theorem (see [4, page 24]), in terms of the Theorem, mak-
ing the sequence identically to X it follows that the distribution of X converges weakly
to X ′, i.e., they have the same distribution, and hence the solution of the martingale
problem is unique.

Remains to show that the Dawson-Watanabe have a dual deterministic process which
satisfies, with the solution of the martingale problem, the equation (3.14).

Corollary 3.1. The Dawson-Watanabe superprocess has a deterministic dual process
prescribed as follows: For φ ∈ C+

b (Rd) ∩D(∆),

E[exp (−〈φ,Xt〉)] = exp (−〈u(t, ·), X0〉),

where u solves {
∂
∂tu = 1

2∆u − 1
2V σ

2u2

u(0, x) = φ(x).
(3.18)

Consequently the solution of the Dawson-Watanabe martingale problem is unique.
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Remark 3.5. (i) The equation (3.18) is often called the evolution equation for the
Dawson-Watanabe superprocess.

(ii) Observe that the Theorem 2.2 is a particular case of the Corollary 3.1 and therefore,
it follows that the solution of the martingale problem of branching Brownian motion
is also unique.

Proof. Let Y to be the solution of the partial differential equation (3.18) and X to be
the solution of Dawson-Watanabe martingale process. Consider f(x, y) = exp (−〈y, x〉)
and g(x, y) = 〈 ∂∂ty, x〉 exp (−〈y, x〉). Observe that for each x ∈ M1(MF (Rd)) and for each
y ∈ C+

b (Rd) ∩D(∆), f(y, ·), g(y, ·) and f(·, x), g(·, x) are continuous.
Define

Mt(X) := f(X(t), Y (0)) −
∫ t

0
g(X(t), Y (0))ds,

and

Nt(Y ) := f(X(0), Y (t)) −
∫ t

0
g(X(0), Y (s))ds.

Let us show that Mt(X) and Nt(Y ) are martingales with their respectively distri-
butions. Observe that Mt(X) is given by (3.7) which is a P (n)-martingale. For show
that Nt(Y ) is a martingale, consider the natural σ-algebra Ft. Then Nt(Y ) clearly is
adapted. Since f and g are continuous bounded function the process Nt(Y ) is L1. Define
h(t) := Nt(Y ) and observe that Y is deterministic. Then, is enough to show that h ≡ 0.
Observe that

h(t) = exp (−〈ut, X0〉) − exp (−〈φ,X0〉) −
∫ t

0
〈−1

2
∆us +

1

2
V σ2u2

s, X0〉 exp (−〈us, X0〉)ds.

We have the following O.D.E.,{
d
dth(t) = − exp (−〈ut, X0〉) ∂∂t〈ut, X0〉 + 〈12∆ut − 1

2V σ
2u2
t , X0〉 exp (−〈ut, X0〉),

h(0) = 0.

By equation (3.18) it follows that d
dth ≡ 0. Using the initial condition, we have that

h ≡ 0 and since u is a deterministic process Nt(Y ) is a martingale. By the Theorem 3.5
we finish the prove.



Appendix A

Some extra standard tools

A.1 Generating function

The probability generating function is a useful tool for dealing with discrete random
variables and, therefore, a discrete process. In general, it is difficult to find the distri-
bution of a sum using the traditional probability function. The probability generating
function transforms a sum into a product which makes it easier to deal with such a
problem.

Definition A.1. Let X be a random variable taking values in the non-negative integer
{0, 1, . . .}. The probability generating function (PGF) of X is GX(s) = E[sX ], for all s ∈ R
for which the sum converges.

Theorem A.1. Let X be a discrete random variable with PGF GX(s). Then

(i) E[X] = G′X(s),

(ii) E[X(X − 1)(X − 2) · · · (X − k + 1)] = dk

dsk
GX(s)|s=0.

Theorem A.2. Let X1, X2, . . . , Xk independent random variables and let Y = X1 +
. . . , Xk. Then

GY (s) =

k∏
i=1

GXi(s).

A.2 Conditional expectation

Definition A.2 (conditional expectation). Let X ∈ L1(Ω,U,P) (or non-negative) and F ⊂
U. A random variable Z ∈ L1(Ω,U,P) is called conditional expectation of X given F and
written Z = E[X|F], if

1. Z is F-measurable;

2. For all B ∈ F,
E[Z · 1B] = E[X · 1B].

The random variable E[X|F] is P-unique. For a measurable space (S, S) and an arbi-
trary random variable Y : Ω→S we define E[X|Y ] := E[X|σ(Y )]

64
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Theorem A.3. let X,Y and Xn be non-negative or integrable random variables on
(Ω,U,P) and let F,G ⊂ U be σ-algebras. The following statements hold:

(i) Linearity: E[λX + µY |F] = E[λX|F] + E[µY |F] P-a.s. for all λ, µ ∈ R,

(ii) Monotonicity: X ≥ 0 P-a.s. implies E[X|F] ≥ 0 P-a.s.,

(iii) X = Y P-a.s. implies that E[X|F] = E[Y |F], P-a.s.,

(iv) Monotone convergence: if {Xn : n ∈ N} is increasing with X1 ≥ 0, then

E
[

limXn|F
]

= limE
[
Xn|F

]
,

(v) Tower property: If G ⊂ F, then

E
[
E
[
X|F

]
|G
]

= E
[
X|G

]
,

(vi) Let Y be F-measurable and Y, Y ·X ∈ L1. Then

E[XY |F] = Y E[X|F],

(vii) Independence: If X is independent of F, then E[X|F] = E[X],

(viii) Doob’s Inequality: Let {Xt : t ≥ 0} be a right-continuous sub-martingale. Then,

P[sup
s≤t

Xs ≥ K] ≤ 1

K
E[X]

for every K > 0.

A.3 Operator semigroups

Semi-group operators is an algebraic structure with an associative binary operation
and are fundamental for the existence of theorems for a particular class of Markov pro-
cesses.

We will say that a family of bounded linear operators {T (t); t ≥ 0} on a Banach space
L with norm ‖·‖ is a semigroup if T (0) = 1 and T (s+ t) = T (s) + T (t) for all s, t ≥ 0.
Furthermore, if

lim
t↓0

T (t)f = f

for all f ∈ L we will say that the semi-group is strongly continuous. Also it is said to be
a contraction semi-group if ‖T (t)‖ ≤ 1 for all t ≥ 0.

Definition A.3 (Feller semi-group). A strongly continuous semigroup on L is called a
Feller semigroup if

(i) T (t)1 = 1 and

(ii) T (t)f ≥ f for all nonnegative f ∈ L.
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Example A.1. Consider a bounded linear operator B ∈ L. Define

exp(tB) =
∞∑
k=0

1

k!
tkBk.

Note that exp((t+ s)B) = exp(tB) exp(sB) for all s, t ≥ 0. Indeed,

∞∑
k=0

1

k!
(t+ s)kBk =

∞∑
k=0

1

k!
Bk

k∑
j=0

k!

j!(k − j)!
tjsk−j

=
∞∑
k=0

k∑
j=0

1

j!
tjBj 1

(k − j)!
sk−jBk−j ,

which is enough to conclude. Hence, {exp(tB)} is a semigroup. Also {exp(tB)} is strongly
continuous. Observe that, for all f ∈ L

lim
t↓0

exp (tB)f = lim
t↓0

∑
k≥0

1

k!
tkBkf = f + lim

t↓0

∑
k≥1

1

k!
tkBk = f.

Furthermore,

‖exp(tB)‖ =

∥∥∥∥∥
∞∑
k=0

1

k!
tkBk

∥∥∥∥∥ ≤
∞∑
k=0

tk
∥∥∥Bk

∥∥∥ = exp(t ‖B‖).

An inequality of this type holds in general for strongly continuous semi-groups.

Proposition A.1. Let {T (t)}t≥0 be a strongly countinuous semigroup in L. Then there
exists constants M ≥ 1 and w ≥ 0 such that

‖T (t)‖ ≤ M exp(wt)

Proof. There exists constants M ≥ 1 and t0 ≥ 0 such that ‖T (t)‖ ≤ M for all 0 ≤ t ≤ t0.
Indeed, if this constant does not exists then we could find a sequence (tn) of positive
numbers tend to zero such that ‖T (tn)‖ → ∞, but by the uniform boundedness principle
this would imply that sup ‖T (tn)f‖ = ∞ for some f ∈ L, but {T (t)}t≥0 is strongly
continuous which gives us a contradiction.

Let t0 = w logM for some w ≥ 0. Hence, given t ≥ 0, write t = kt0 + s for some k
nonnegative integer and 0 ≤ s ≤ t0, follows

‖T (t)‖ = ‖T (kt0 + s)‖ = ‖T (kt0)T (s)‖

=
∥∥∥T (to)

kT (s)
∥∥∥ ≤ ‖T (s)‖ ‖T (t0)‖k

≤MMk ≤ MM
t
t0 = M exp(wt)

if 0 ≤ h ≤ t.

Corollary A.1. let {T (t)}t≥0 be a strongly continuous semigroup on L. Then, for each
f ∈ L, the map t 7→ T (t)f is a continuous function from [0,∞) into L
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Proof. Let f ∈ L. By proposition A.1, of t ≥ 0 and h ≥ 0

‖T (t+ h)f − T (t)f‖ = ‖T (t)T (h)f − T (t)f‖
=
∥∥T (t)

[
T (h)f − f

]∥∥
≤M exp(wt) ‖T (h)f − f‖ .

If 0 ≤ h ≤ t

‖T (t− h)f − T (f)f‖ = ‖T (t− h) − T (t− h+ h)‖
= ‖T (t− h)f − T (t− h)T (h)f‖
=
∥∥T (t− h)

[
T (h)f − f

]∥∥
≤M exp(wt) ‖T (h)f − f‖ .

As T (t) is strongly continuous operator, the result follows.

Remark A.1. Let {T (t)}t≥0 be a strongly continuous semigroup on Banach space L and
define S(t) = exp(−wt)T (t) for each t ≥ 0. Then {S(t)} is strongly continuous semigroup
in L such that

‖S(t)‖ ≤ ‖exp (−wt)T (t)‖ ≤ M exp (wt) exp (−wt) ≤ M, (A.1)

for t ≥ 0. In particular, if M = 1, then {S(t)} is strongly continuous contraction
semigroup on L.

Consider {S(t)}t≥0 to be a strongly continuous semigroup on L such that (A.1) holds.
Define the norm ‖·‖1 on L by

‖f‖1 = sup
t≥0
‖S(t)f‖ .

Note that ‖f‖ ≤ ‖f‖1 ≤ M ‖f‖ for each f ∈ L, hence the norm ‖·‖1 is equivalent
to the original ‖·‖. Moreover, S with the norm ‖·‖1 is strongly continuous contraction
semigroup on L

Definition A.4. The (infinitesimal) generator of a semigroup {T (t)} on L is the linear
operator A defined by

Af = lim
t↓0

1

t

[
T (t)f − f

]
.

The domain D(A) of A is the subspace of all f ∈ L for which this limit exists.

Let [a, b] a closed interval of (−∞,∞) for some a < b and denote C([a, b], L) the space
of continuous functions u : [a, b]→L and C1([a, b], L) to be the space of continuously
differentiable functions u : [a, b]→L.

The function u : [a, b]→L is said Riemann integrable over [a, b], if

lim
δ↓0

n∑
k=1

u(sk)(tk − tk−1)

exists, where {tk}nk=1 is a partition of [a, b] and max{tk − tk−1} = δ.
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Lemma A.1. (i) If u ∈ C([a, b], L) and
∫

[a,b]

‖u(t)‖ dt < ∞ then u is Riemann integrable

and ∥∥∥∥∥∥∥
∫

[a,b]

u(t) dt

∥∥∥∥∥∥∥ ≤
∫

[a,b]

‖u(t)‖ dt.

(ii) Let B a closed linear operator in L. Suppose that u ∈ C([a, b], L)), u(t) ∈ D(B) for
all t ∈ [a, b], Bu ∈ C([a, b], L), an both u and Bu are integrables over [a, b]. Then∫

[a,b] u(t) dt ∈ D(B) and

B

∫
[a,b]

u(t) dt =

∫
[a,b]

Bu(t) dt.

(iii) if u ∈ CL[a, b] then
b∫
a

d

dt
u(t) dt = u(b) − u(a).

Proof. Let {tk}nk=1 be a partition of [a, b] with max{tk − tk−1} = δ then∫
[a,b]

u(t) dt = lim
δ↓0

∞∑
k=1

u(sk)(tk − tk−1),

where sk ∈ (tk−1, tk). Therefore,∥∥∥∥∥∥∥
∫

[a,b]

u(t) dt

∥∥∥∥∥∥∥ =

∥∥∥∥∥lim
δ↓0

∞∑
k=1

u(sk)(tk − tk−1)

∥∥∥∥∥
≤ lim

δ↓0

∞∑
k=1

‖u(sk)(tk − tk−1)‖

= lim
δ↓0

∞∑
k=1

‖u(sk)‖ (tk − tk−1)

=

∫
[a,b]

‖u(t)‖ dt.

Since
∫

[a,b] ‖u(t)‖ dt <∞, we have that u is integrable which proves the first statement.
Consider {T (t)} a semigroup on L which defines the linear operator B, i.e.,

Bf = lim
s↓0

1

s

[
T (s)f − f

]
.
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Thus

B

∫
[a,b]

u(t) dt = lim
s↓0

1

s

[
T (s)

∫
∆

u(t) dt −
∫

[a,b]

u(t) dt

]

= lim
s↓0

1

s

[ ∫
[a,b]

T (s)u(t) dt −
∫

[a,b]

u(t) dt

]

= lim
s↓0

1

s

∫
[a,b]

[
T (s)u(t)− u(t)

]
dt

=

∫
[a,b]

lim
s↓0

1

s

[
T (s)u(t)− u(t)

]
dt.

As u(t) ∈ D(B) it follows that
∫

[a,b] u(t) dt ∈ D(B) and

B

∫
[a,b]

u(t) dt =

∫
[a,b]

Bu(t) dt.

Applying the Theorem of differentiate under the signal of the integral we conclude the
proof.

Proposition A.2. Let {T (t)} be a strongly continuous semigroup on L with generator A.

(i) If f ∈ L and t ≥ 0, then
t∫

0

T (s)f ds ∈ D(A) and

T (t)f − f = A

t∫
0

T (s)f ds.

(ii) If f ∈ D(A) and t ≥ 0, then T (t)f ∈ D(A) and

d

dt
T (t)f = AT (t)f = T (t)Af.

(iii) If f ∈ D(A) and t ≥ 0, then

T (t)f − f =

t∫
0

AT (s)f ds =

t∫
0

T (s)Af ds.
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Proof. for all h ≥ 0, define Ah := 1
h

[
T (h) − I

]
. We have that

Ah

t∫
0

T (s)f ds =
1

h

[
T (h) − I

] t∫
0

T (s)f ds

=
1

h

t∫
0

[T (h)T (s)f − T (h)f ] ds

=
1

h

t∫
0

[T (h+ s)f − T (h)f ] ds

=
1

h

[ t+h∫
h

T (t)ff ds −
t∫

0

T (s)f ds

]

=
1

h

t+h∫
t

T (s)f ds − 1

h

h∫
0

T (s)f ds.

Taking h↓0, the first statement follows. For the second item, for all h ≥ 0

AhT (t)f =
1

h

[
T (h)− I

]
T (t)f

=
1

h

[
T (h+ t)f − T (t)f

]
= T (t)

1

h

[
T (h)− I

]
f

= T (t)Ahf,

therefore T (t)Af ∈ D(A). Its remain to show that d+

dt T (t)f = d−

dt T (t)f for all 0 ≤ h ≤ t.
Note that

1

h

[
T (t)f − T (t− h)f

]
− T (t)Af = T (t− h)

[
Ah −A

]
f

+
[
T (t+ h)− T (t)

]
Af.

Thus∥∥∥∥T (t)f − T (t− h)f

h
− T (t)Af

∥∥∥∥ ≤
∥∥∥∥∥T (t− h)

(
T (h)f − f

h
−AF

)∥∥∥∥∥
+
∥∥T (t− h)

(
Af − T (h)Af

)∥∥
≤ ‖T (t− h)‖

[∥∥∥∥T (h)f − f
h

−Af
∥∥∥∥ + ‖Af − T (h)Af‖

]
.

Hence, since we have ‖T (t− h)‖ ≤ 1 and taking h↓0, the result follows. Finally, to last
statement apply A.1 (3).

Corollary A.2. Let A be a generator of a strongly continuous semi-group {T (t)}t≥0 on L,
then D(A) is dense in L and A is closed.
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Proof. Let f ∈ L arbitrary. Since {T (t)}t≥0 is a strongly continuous semi-group, we have
that limt↓0 T (t)f = f and hence it follows that

lim
t↓0

1

t

∫ t

o
T (t)f ds = f

By the item (i) of the proposition A.2, we have the density of D(A) in L. To show that A
is closed, let {fn}n≥1 satisfying fn → f and Afn → g to some f, g ∈ L. Note that, for
each each t ≥ 0 it follows that

T (t)fn − fn =

∫ t

0
T (s)Afn ds,

and, as n → ∞ we have that T (t)f − f =
∫ t

0 T (s)g ds. Thus

Af = lim
t↓0

1

h
(T (t)f − f) = lim

t↓0

1

t

∫ t

0
T (s)g ds = g.

which proves that g ∈ D(A).
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