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Abstract: Weconsider theweakly asymmetric simple exclusion process in the presence
of a slowbond and starting from the invariant state, namely theBernoulli productmeasure
of parameter ρ ∈ (0, 1). The rate of passage of particles to the right (resp. left) is 1

2
+ a

2nγ

(resp. 1
2

− a
2nγ ) except at the bond of vertices {−1, 0} where the rate to the right (resp.

left) is given by α
2nβ + a

2nγ (resp. α
2nβ − a

2nγ ). Above, α > 0, γ ≥ β ≥ 0, a ≥ 0. For
β < 1, we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process
defined on the Schwartz space if γ > 1

2 , while for γ = 1
2 it is an energy solution of

the stochastic Burgers equation. For γ ≥ β = 1, it is an Ornstein–Uhlenbeck process
associated to the heat equation with Robin’s boundary conditions. For γ ≥ β > 1, the
limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat
equation with Neumann’s boundary conditions.

1. Introduction

Over the last decades, there has been an intense research activity in the derivation of
macroscopic laws from suitable underlying stochastic microscopic dynamics. For inter-
acting particle systems of exclusion type, the scenario is more or less well understood
as soon as the jump rates are symmetric (see [18,24]), but for weakly asymmetric sys-
tems only partial answers have been given, and there are still challenging behaviors to
establish. Even harder is the derivation of macroscopic laws for microscopic dynam-
ics with local defects. By this we mean that the microscopic particle system is locally
perturbed, and depending on the type of perturbation, the macroscopic laws can hold
different boundary conditions.

In this paper we consider the simplest microscopic dynamics of exclusion type: we
add a weak asymmetry, and we also perturb the dynamics at one particular bond. More
precisely, our interest focuses on establishing the crossover of the equilibrium density
fluctuations for theweakly asymmetric simple exclusion process (WASEP)with strength
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Fig. 1. Illustration of the jump rates. The bond of vertices {−1, 0} has particular rates associated to it

asymmetry an2−γ (with a ≥ 0 and γ ≥ 1
2 ) and with a jump rate at the bond {−1, 0}

that is slower than the rate at other bonds.
Let us go into more details: particles are distributed on the line Z, with the condition

that at most one particle per site is allowed. The dynamics can be described as follows:
particles at different sites wait independent exponential times; when a clock rings, a
particle at the site x jumps to x + 1 (resp. x − 1) at rate 1

2
+ a

2nγ (resp. 1
2

− a
2nγ ), but

the jump rate from −1 to 0 (resp. 0 to −1) is equal to α
2nβ + a

2nγ (resp. α
2nβ − a

2nγ ), with
α > 0 and β ≥ 0; see Fig. 1 below. In order to have positive rates we have to impose
some conditions on the parameters a, β, α, γ , see (2.1).

For the choice a = β = 0 and α = 1, we recover the symmetric simple exclusion
process (SSEP), which has been deeply investigated in the literature and whose density
fluctuations are given by an Ornstein–Uhlenbeck (OU) process (see [22]), and conse-
quently the fluctuations are Gaussian. The choice α = γ = 1 and β = 0 corresponds
to the WASEP whose equilibrium density fluctuations were studied in [5] and the non-
equilibrium fluctuations were studied in [6]. For this regime of the strength asymmetry,
namely γ = 1, the limiting process is an OU process taking values in the Schwartz space
and consequently the fluctuations are Gaussian again. The only difference with respect
to the SSEP limit is that this OU process has a drift term (coming from the asymmetric
part of the dynamics) which can be removed by taking the system in a reference frame,
or else, by performing a Galilean transformation of the system, from where we recover
exactly the OU limit of the SSEP. When removing the drift to the system, there is no
effect of the asymmetry, and therefore one has to strengthen the asymmetry by decreas-
ing the value of γ . In this very same regime, but for a stronger asymmetry, namely
γ = 1

2 , the non-equilibrium fluctuations were derived in [4], and the limiting process is
a solution of the stochastic Burgers equation (SBE). In this case, the strong asymmetry
gives rise to a non-linear term in the stochastic partial differential equation. Finally, the
crossover for the equilibrium density fluctuations, in the regime γ ∈ [ 12 , 1], has been
established in [11,13]. More precisely, for γ ∈ ( 12 , 1] the limit is the same OU process
as in the SSEP limit, and for this reason the process belongs to the Edwards–Wilkinson
[7] universality class, but for γ = 1

2 the limit is a solution of the SBE and the system
belongs to the Kardar–Parisi–Zhang (KPZ) [17] universality class.

In all the previous results the slow bond was not taken into account. The SSEP with
a slow bond has been investigated in [8] without the weak asymmetry. In that paper the
equilibrium density fluctuations were derived for α > 0, β ≥ 0 and a = 0. The authors
proved a phase transition depending on the regime of β: for β < 1 the limit is the same
OU process as in the SSEP limit, for β = 1 the limit is an OU process defined on a
Fréchet space in which the functions have a boundary condition of Robin’s type; and
for β > 1 the limit is an OU process defined on a Fréchet space in which the functions
have a boundary condition of Neumann’s type.
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Fig. 2. Macroscopic density fluctuations. In the region β > γ the process is not defined (negative rates)

In this paper we superpose all these dynamics, since we perturb the SSEP by a weak
asymmetry of strength an2−γ (with a ≥ 0 and γ ≥ 1

2 ) and we introduce a slow bond
at {−1, 0}. The system is taken under the invariant state, namely the Bernoulli product
measure of parameter ρ ∈ (0, 1) that we denote by νρ . We also take it in a reference
frame so that we do not see the transport behavior of the system. In order to make the
presentation simpler, we choose ρ = 1

2 for which the transport velocity is zero and
the Galilean transformation is not necessary. Nevertheless, all our results hold for other
values ofρ.Moreover, we point out that the strength of importance is in fact γ ∈ [1/2, 2],
because for γ > 2 the asymmetry strength n2−γ goes to zero. Since the proofs stand
also for γ > 2 we state the results in the general setting.

We also emphasize that by perturbing the system microscopically, one can lose nice
properties on its invariant states, as it is the case, for example, for the totally asymmetric
simple exclusion process, see [23]. For that model, the invariant states are no longer the
Bernoulli product measures and for that reason the asymptotic behavior of the system is
very hard to derive. However in our case, and as it happens for the models of [8], even
with the weak asymmetry, the Bernoulli product measures are still invariant. This point
is crucial in what follows. We derive the density fluctuations of the system and we prove
the crossover from the Edwards–Wilkinson universality class to the KPZ universality
class as in [13,14] for the regime β < 1; in the other cases we obtain the limiting
processes as in [8] (see Fig. 2).

The structure of the proof is standard and consists in showing tightness plus the char-
acterization of the limit points by a martingale problem. However, the main argument of
the proof needs a very careful investigation: more precisely, the derivation of a second
order Boltzmann–Gibbs principle, as stated in [13, Theorem 7] and [14, Theorem 3.2],
is challenging. This principle allows one to replace certain additive functionals of local
functions of the dynamics by additive functionals given in terms of the density of parti-
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cles. However, the ideas of [13,14] do not apply to the model considered here, since our
rates are not bounded from below and the usual spectral gap inequality is unknown. In
this paper we expose a new way to estimate the error in the replacement performed in
the Boltzmann–Gibbs principle which avoids the spectral gap inequality. Our new argu-
ment consists in splitting the asymmetric part of the current in certain local functions
of the dynamics. In each one of these functions we are able to replace the occupation
site variable by its average on big boxes, through a multi-scale analysis as in the spirit
of [10,13,14]. The presence of the slow bond makes this analysis more complicated but
we are able to control the errors in such a way that we recover the same behavior of the
system as if there was no slow bond.

The method presented here is not limited to our model and can be applied to other
works: for instance, with our approach we are able to recover the results of [10], where
it has been proved that the density fluctuation field for the asymmetric simple exclusion

process does not evolve up to the time scale tn
4
3 . More remarkably, we recover the same

behavior for the energy fluctuation field in the one-dimensional Hamiltonian systemwith
exponential interactions considered in [1]. In that paper, to overcome the non-existence
of the spectral gap, Bernardin and Gonçalves propose an alternative approach, which
is based on duality properties in Hilbert spaces and computations of some resolvent
norms, and is more complicated than the direct estimates that we give here. We also
emphasize that our method can be used to derive the density fluctuations for more
general interacting particle systems for which the spectral gap inequality is not known,
like exclusion processes, zero-range processes and stochastically perturbed Hamiltonian
systems with polynomial potentials. Let us remark that for stochastically perturbed
Hamiltonian systems with general interactions, to our knowledge, the only known result
on the energy fluctuations is the work of [21] where the stochastic noise has to be strong
enough in order to get the correct bound for the spectral gap inequality. In [2,3] it was
considered an harmonic potential with an exchange noise, and the non-existence of
the spectral gap was overcome by using the structure of the invariant measure and the
linearity of the deterministic dynamics which permit to use Fourier transforms.

We believe that our technique can be carried out for proving new results: for instance,
in the class of Hamiltonian systemswithout the spectral gap property, one couldwork out
the case of polynomial potentials or, at least, some small perturbation of the harmonic
potential; and furthermore, one could investigate the class of kinetically constrained
lattice gases that have been introduced and intensively studied in the literature, see
[14,15]. For these models, one should be able to repeat our multi-scale argument for
higher degree polynomial functions, as done in [12]. These are works in progress.

Finally, for the model considered in this paper, we could also derive the equilibrium
fluctuations for the current of particles as in [13] by relating the density fluctuation field
with the current of particles and we would get the same results as if there was no slow
bond, see [8,13] for details.

Here follows an outline of the paper. In Sect. 2 we first introduce the model, we
define the Fréchet spaces where the density fluctuations fields are defined and study
the invariant measures. Section 3 is devoted to stating the main results, namely the
second order Boltzmann–Gibbs principle (Theorem 3.1), the convergence to the OU
process (Theorem 3.6) depending on the values of the parameters and the crossover to
the SBE (Theorem 3.7). The derivation of the equilibrium density fluctuations is detailed
in Sects. 4 and 5. The second order Boltzmann–Gibbs principle is entirely proved in
Sect. 6, and then, in Sect. 7, we use the new techniques developed in the latter section in
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order to obtain two auxiliary estimates. Appendix A provides some necessary conditions
on the semi-groups associated to the macroscopic fluctuations.

2. Notations and Definitions

2.1. The model. Let n be a positive integer and � = {0, 1}Z be the state space of the
Markov process {ηt ; t ≥ 0}whose dynamics can be entirely defined by its infinitesimal
generator Ln . The latter is defined on local functions f : � → R by

Ln f (η) =
∑

x∈Z
ξnx,x+1(η)∇x,x+1 f (η) + ξnx,x−1(η)∇x,x−1 f (η)

where for η ∈ � and x, y ∈ Z, we denote ∇x,y f (η) = f (ηx,y) − f (η) and ηx,y ∈ � is
defined as

ηx,y(z) =
⎧
⎨

⎩

η(y); z = x
η(x); z = y
η(z); z �= x, y.

The rates introduced above are chosen in the following way: for x �= −1,

ξnx,x+1(η) =
(1
2
+

a

2nγ

)
η(x)(1 − η(x + 1)),

ξn−1,0(η) =
( α

2nβ
+

a

2nγ

)
η(−1)(1 − η(0)),

and for x �= 0,

ξnx,x−1(η) =
(1
2

− a

2nγ

)
η(x)(1 − η(x − 1)),

ξn0,−1(η) =
( α

2nβ
− a

2nγ

)
η(0)(1 − η(−1)),

where α > 0, a ≥ 0, β ≥ 0, γ ≥ 1
2 are real parameters. See Fig. 1 for an illustration of

the dynamics. In order to avoid negative rates, in the following we always assume

(γ > β) or (β = γ and α ≥ a). (2.1)

Notice that we allow the case γ = β and a = α. In this situation, the slow bond {−1, 0}
is totally asymmetric with left rate ξn0,−1 equal to zero, and right rate ξn−1,0 vanishing as
n → ∞.

Let us fix T > 0. We are interested in the evolution of this exclusion process in
the diffusive time scale, thus we denote by {ηtn2 ; t ∈ [0, T ]} the Markov process on
� associated to the generator n2Ln . The path space of trajectories which are right-
continuous, with left-limits and taking values in � is denoted by D([0, T ],�). For
any initial probability measure μ on �, we denote by Pμ the probability measure on
D([0, T ],�) induced by μ and the Markov process {ηtn2 ; t ∈ [0, T ]}.
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2.2. Definition of S ′
β(R) and of the operators ∇β and 
β .

Definition 2.1. Fix α > 0. For any function ϕ : R → R we define the norm:

‖ϕ‖22,β =
∫

R

ϕ2(u)du + 1β=1

(ϕ2(0)

α
+ 1γ=1

a ϕ2(0)

α2

)
.

Let L2
β(R) be the space of functions ϕ : R → R such that ‖ϕ‖2,β < +∞.

When β �= 1, the norm ‖ · ‖2,β is the usual L2(R)-norm with respect to the Lebesgue
measure, and for the sake of simplicity we will rewrite it as ‖ · ‖2. Despite the norm
above depends on a, α and γ , for simplicity of notation we do not index on them. Given
ϕ : R → R, we denote:

ϕ(0+) := lim
u→0
u>0

ϕ(u) and ϕ(0−) := lim
u→0
u<0

ϕ(u),

whenever these limits exist.

Definition 2.2. We define S (R\{0}) as the space of functions ϕ : R → R such that:

(i) ϕ is smooth on R\{0}, i.e. ϕ ∈ C∞(R\{0}),
(ii) ϕ is continuous from the right at 0,
(iii) for all non-negative integers k, �, the function ϕ satisfies

‖ϕ‖k,� := sup
u �=0

∣∣∣(1 + |u|�)d
kϕ

duk
(u)

∣∣∣ < ∞. (2.2)

Remark 2.1. It is a consequence of (2.2) that the side limits

dkϕ

duk
(0+) and

dkϕ

duk
(0−)

exist for any integer k ≥ 0.

Definition 2.3. (1) For β < 1, we define

Sβ(R) := S (R\{0}) ∩ C∞(R).

In other words, in this caseSβ(R) is the usual Schwartz spaceS (R).

(2) For β = 1, we define Sβ(R) as the subset of S (R\{0}) composed of functions ϕ

such that

d2k+1ϕ

du2k+1
(0+) = d2k+1ϕ

du2k+1
(0−) = α

(d2kϕ
du2k

(0+) − d2kϕ

du2k
(0−)

)
(2.3)

for any integer k ≥ 0.
(3) For β > 1, we define Sβ(R) as the subset of S (R\{0}) composed of functions ϕ

such that

d2k+1ϕ

du2k+1
(0+) = d2k+1ϕ

du2k+1
(0−) = 0

for any integer k ≥ 0.

Finally, let S ′
β(R) be the topological dual of Sβ(R).
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Definition 2.4. We define ∇β : Sβ(R) → S (R\{0}) and 
β : Sβ(R) → Sβ(R) as
the operators acting on functions ϕ ∈ Sβ(R) as

∇βϕ(u) =

⎧
⎪⎨

⎪⎩

dϕ

du
(u), if u �= 0,

dϕ

du
(0+), if u = 0,

and 
βϕ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

d2ϕ

du2
(u), if u �= 0,

d2ϕ

du2
(0+), if u = 0.

When β < 1, the operator ∇β (resp. 
β ) coincides with the usual gradient operator
∇ (resp. Laplacian operator 
). Notice that the definitions above are closely related to
Definitions 2.3–2.6 given in [8], except that here we add a minor correction. Under the
new Definitions 2.3 and 2.4, if ϕ ∈ Sβ(R), then


βT
β
t ϕ ∈ Sβ(R) , (2.4)

where T β
t is the semi-group of the partial differential equation associated to the macro-

scopic evolution, as defined in Appendix A (see also [8, Section 2.3]). The inclusion
above is required when characterizing the limit points of the processes (see Sect. 5.7).
We left to Appendix A the proof of (2.4).

Finally, for ϕ ∈ Sβ(R), x ∈ Z and n ∈ N, we define the discrete approximations of
the first and second derivatives of ϕ as follows:

∇n
x ϕ := n

{
ϕ
( x + 1

n

)
− ϕ

( x
n

)}
and 
n

xϕ := n2
{
ϕ
( x + 1

n

)
− 2ϕ

( x
n

)
+ϕ

( x − 1

n

)}
.

2.3. Invariant measures. Let ρ ∈ (0, 1) and let νρ be the product Bernoulli measure on
� with density ρ:

νρ{η(x) = 1} = ρ.

The measures {νρ ; ρ ∈ (0, 1)} are invariant but not reversible with respect to the
evolution of {ηt ; t ≥ 0}. To assure the invariance, it is enough to check that

∫

�

Ln f (η) νρ(dη) = 0 (2.5)

for any local function f : {0, 1}Z → R. Given a local function f , let L ∈ N be such
that f depends only on the occupation of sites I = {−L ,−L + 1, . . . , L}. Therefore, f
can be identified with a function f : {0, 1}I → R. Given a set A, we denote by 1A(u)

the function which equals 1 when u ∈ A, and 0 when u /∈ A. By the identity

f (η) =
∑

η̃∈{0,1}I
f (η̃)1{η̃}(η),

and observing that

1{η̃}(η) =
∏

x∈Z

(
1 − |η(x) − η̃(x)|),
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we can rewrite f as a weighted sum of products of η(x) or 1−η(x). By linearity, in order
to obtain (2.5) it is enough to prove it for functions of the form f (η) = η(x1) · · · η(xk),
where x1, ..., xk are integers. Let us illustrate the case f (η) = η(0). In this situation,

Ln f (η) =
( α

2nβ
+

a

2nγ

)
η(−1)(1 − η(0)) −

( α

2nβ
− a

2nγ

)
η(0)(1 − η(−1))

+
(1
2

− a

2nγ

)
η(1)(1 − η(0)) −

(1
2
+

a

2nγ

)
η(0)(1 − η(1)),

leading to (2.5). To check the remaining cases is a long albeit simple calculation and we
leave it to the reader.

We denote by χ(ρ) the static compressibility of the system defined as χ(ρ) :=
ρ(1−ρ). In the following we consider theMarkov process starting from the equilibrium
measure νρ . For the sake of clarity we denote the probability measure Pνρ by Pρ and the
corresponding expectation by Eρ .

3. Statement of the Main Results

3.1. Boltzmann–Gibbs principle. The second order estimate below plays an essential
role in the proof of density fluctuations. Based on [13], we give a new version of the
second-order Boltzmann–Gibbs principle. Roughly speaking, we look at the first-order
correction for the usual limit projection of the space-time fluctuations of some specific
field. More precisely, we focus on the functional (η(x)−ρ)(η(x +1)−ρ) and show how
its fluctuations can be written as a linear functional of the density field plus a quadratic
functional of this same field. The crucial point relies on the sharp quantitative bounds on
the error that we are able to obtain when we perform the aforementioned replacement.

Hereafter we denote η̄(y) = η(y) − ρ the centered occupation variable at the site
y ∈ Z. In the following, we letC denote a constant that does not depend on the variables
L , n nor t introduced below.

Theorem 3.1 (Second-order Boltzmann–Gibbs principle). Let v : Z → R be a function
such that

‖v‖22,n := 1

n

∑

x∈Z
v2(x) < ∞. (3.1)

There exists a constant C > 0, such that for any t > 0, and any positive integers L , n:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)

{
η̄sn2(x)η̄sn2(x + 1) − (−→η L

sn2(x)
)2 +

χ(ρ)

L

}
ds

)2]

≤ Ct
{ L
n
+
nβ

αn
+

tn

L2

}
‖v‖22,n + Ct

{nβ(log2(L))2

αn

}1
n

∑

x �=−1

v2(x), (3.2)

where −→η L(x) denotes the empirical average on the box of size L situated at the right
of site x, and is defined by

−→η L(x) = 1

L

x+L∑

y=x+1

η̄(y). (3.3)



Crossover to the Stochastic Burgers Equation for the WASEP with a Slow Bond 809

We report the proof of Theorem 3.1 to Sect. 6. At the macroscopic level, the density
fluctuation field turns out to be of two types (depending on the values of the parameters):
either an OU process driven by the heat equation with some boundary conditions, or an
energy solution of the SBE equation (as it has been introduced in [13]). The next two
subsections give the corresponding definitions.

3.2. The Ornstein–Uhlenbeck process. Following [8], we give here a characterization
of the generalized OU process Y β

· which is a solution of

dY β
t = 1

2

βY

β
t dt +

√
χ(ρ)∇βdW

β
t , (3.4)

in terms of amartingale problem, where {W β
t ; t ∈ [0, T ]} is aS ′

β(R)-valued Brownian
motion.

From here on, let D([0, T ],S ′
β(R)) (resp. C ([0, T ],S ′

β(R))) denote the set of tra-
jectories which are right-continuous and have left limits (resp. continuous) taking values
inS ′

β(R).

Proposition 3.2. [8, Section 5] There exists a unique field Y
β
· which takes values in

C ([0, T ],S ′
β(R)) such that

(i) for every ϕ ∈ Sβ(R),

M
β
t (ϕ) := Y

β
t (ϕ) − Y

β
0 (ϕ) − 1

2

∫ t

0
Y β
s (
βϕ) ds

N
β
t (ϕ) := (

M
β
t (ϕ)

)2 − χ(ρ)t
∥∥∇βϕ

∥∥2
2,β

aremartingaleswith respect to the filtrationFt := σ
(
Y

β
s (ϕ) ; s ≤ t, ϕ ∈ Sβ(R)

)
;

(ii) the fieldY β
0 is aGaussian field of mean zero and covariance given onϕ,ψ ∈ Sβ(R)

by

Eρ

[
Y

β
0 (ϕ)Y

β
0 (ψ)

] = χ(ρ)

∫

R

ϕ(u)ψ(u)du.

Moreover, for each ϕ ∈ Sβ(R), the stochastic process {Y β
t (ϕ) ; t ∈ [0, T ]} is

Gaussian, being the distribution of Y β
t (ϕ) conditionally to {Fu ; u ≤ s}, normal

of mean Y
β
s (T β

t−sϕ) and variance

∫ t−s

0

∥∥∇βT
β
r ϕ

∥∥2
2,β dr, (3.5)

where T β
t is the semi-group associated to 
β as defined in Appendix A.

We call the random field Y β
· the generalized OU process of characteristics ∇β and 
β .

The proof of Proposition 3.2 is completely similar to the proof given in [8, Section 5].
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3.3. The stochastic Burgers equation. In this section we recall from [13] the notion of
stationary energy solutions for the SBE, which reads as

dYt = 1

2

Yt dt + a∇Y 2

t dt +
√

χ(ρ)∇dWt , (3.6)

where {Wt ; t ∈ [0, T ]} is aS ′(R)-valued Brownian motion. For ε > 0 and x ∈ R, we
define iε(x) : R → R as iε(x)(y) = ε−11x<y≤x+ε for any y ∈ R.

Definition 3.1. A stochastic process {Yt ; t ∈ [0, T ]} is a stationary energy solution of
the SBE (3.6) if

(1) the process {Yt ; t ∈ [0, T ]} is stationary, namely, for each t ∈ [0, T ], the S ′(R)

random variable Yt is a white noise of variance χ(ρ), and it satisfies the following
energy estimate: there exists a positive constant κ such that
(a) for any ϕ ∈ S (R) and any s, t ∈ [0, T ], s < t ,

Eρ

[( ∫ t

s
Yr (
ϕ)dr

)2] ≤ κ(t − s)‖∇ϕ‖22. (3.7)

(b) for any ϕ ∈ S (R), any δ, ε ∈ (0, 1), δ < ε, and any s, t ∈ [0, T ], s < t ,

Eρ

[(
A ε

s,t (ϕ) − A δ
s,t (ϕ)

)2] ≤ κ(t − s)ε‖∇ϕ‖22, (3.8)

where

A ε
s,t (ϕ) =

∫ t

s

∫

R

Yr
(
iε(x)

)2∇ϕ(x)dxdr.

(2) for any test function ϕ ∈ S (R) and any t ∈ [0, T ], the process

Yt (ϕ) − Y0(ϕ) − 1

2

∫ t

0
Ys(
ϕ) ds − aAt (ϕ)

is a continuous martingale of quadratic variation tχ(ρ)‖∇ϕ‖22, where the process
{At ; t ∈ [0, T ]} is obtained through the following limit, which holds in theL2(Pρ)-
sense:

At (ϕ) − As(ϕ) := lim
ε→0

A ε
s,t (ϕ). (3.9)

The proof of the existence of {At ; t ∈ [0, T ]} given by (3.9) is completely done in
[13, Theorem 1]. We recall here the result:

Theorem 3.3 ([13]). Let {Yt ; t ∈ [0, T ]} be a stationary process such that (3.8) is
satisfied. Then, there exists a S ′(R)-valued stochastic process {At ; t ∈ [0, T ]} with
continuous paths such that

At (ϕ) = lim
ε→0

∫ t

0

∫

R

Yr
(
iε(x)

)2∇ϕ(x)dxdr

is in L2(Pρ), for any t ∈ [0, T ] and any ϕ ∈ S (R).

Remark 3.4. Let us notice that the function iε(x) does not belong to the space of test
functions ofYr . Nevertheless, by doing a similar argument to the one of [9, Lemma 4.6]
(see also [13, Remark 4]), one can show that Yr (iε(x)) is well defined.

We are now ready to state the main theorems.
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3.4. The density fluctuation field. Fix β ≥ 0, γ > 0 and n ∈ N. The density fluctuation
field {Y β,γ,n

t ; t ∈ [0, T ]} is theS ′
β(R)-valued process given on ϕ ∈ Sβ(R) by

Y
β,γ,n
t (ϕ) := 1√

n

∑

x∈Z
(ηtn2(x) − ρ)ϕ

( x
n

)
.

When there is no asymmetry (which corresponds to a = 0), we already know from
[8] the asymptotic behavior of the density fluctuation field. More precisely:

Theorem 3.5 ([8]). If a = 0, the sequence of processes {Y β,γ,n
t ; t ∈ [0, T ]}n∈N

converges in distributionwith respect to the Skorokhod topology ofD([0, T ];S ′
β(R)), as

n → ∞, to theOUprocess given by the solution of (3.4) (in the sense of Proposition 3.2).

Here we are interested in the case a �= 0. We redefine

Y
β,γ,n
t (ϕ) := 1√

n

∑

x∈Z
(ηtn2(x) − ρ)ϕ

(
x − n2−γ a(1 − 2ρ)t

n

)
(3.10)

for any ϕ ∈ Sβ(R). For the sake of clarity, from now on, we denote Y β,γ,n
t by Y n

t , but
we keep in mind that the fluctuation field (as well as its limit) strongly depends on β

and γ . For the reader convenience, let us assume that ρ = 1/2. We notice however that
all the results hold for any ρ.

Theorem 3.6 (Ornstein–Uhlenbeck process). If one of these two conditions are satisfied:

• β ≤ 1/2 and γ > 1/2,
• γ ≥ β > 1/2,

then the sequence of processes {Y n
t ; t ∈ [0, T ]}n∈N converges in distribution with

respect to the Skorokhod topology of D([0, T ] ; S ′
β(R)), as n → ∞, to the OU

process given by (3.4), in the sense of Proposition 3.2.

In the regime described above, the asymmetry has no effect in the limit, since we
recover (in particular) the results of [8]. However, for the special case β = γ = 1, the
symmetry and the asymmetry scale with the same strength at the slow bond, and this
particularity translates into a different strength for the noise. In particular, the variance
given in (3.5) has an extra term which depends on a (the asymmetry parameter), see
Definition 2.1.

On the other hand, when γ = 1/2, the asymmetry is quite strong and gives rise to
the non-linear term in the SBE:

Theorem 3.7 (Stochastic Burgers equation). Assume γ = 1/2. For any β ≤ 1/2, the
sequence of processes {Y n

t ; t ∈ [0, T ]}n∈N is tight with respect to the Skorokhod
topology of D([0, T ] ; S ′

β(R)) and any limit point is a stationary energy solution of
the stochastic Burgers equation (3.6).

In other words, for β < 1, in which case Sβ(R) is the classical Schwartz space
S (R), we recover two known results:

• when we consider the process without the slow bond (i. e. the classical SSEP, which
corresponds to α = 1, β = 0, a = 0): see [22];

• when we consider the process without the slow bond but with a weak asymmetry
(which corresponds to α = 1, β = 0 and γ ∈ (1/2, 1]): see [13].
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4. Elements of Proof

The strategy of the proof consists in analysing the following martingale:

M n
t (ϕ) := Y n

t (ϕ) − Y n
0 (ϕ) −

∫ t

0
n2Ln

{
Y n
s (ϕ)

}
ds, (4.1)

for any ϕ ∈ Sβ(R). The fact that {M n
t (ϕ) ; t ≥ 0} is a martingale is a consequence of

Dynkin’s formula, see [18, Lemma A.1.5.1]. In this section we give some properties of
M n

t , after rewriting it in a suitable way.

4.1. Microscopic current. Since the dynamics conserves the total number of particles,
for any x ∈ Z there exist instantaneous currents jnx,x+1 such that

n2Ln(η(x)) = jnx−1,x (η) − jnx,x+1(η).

Straightforward computations show that the instantaneous current reads

jnx,x+1(η) = jn,S
x,x+1(η) + jn,A

x,x+1(η)

where

jn,A
x,x+1(η) = an2

2nγ
(η(x + 1) − η(x))2, x ∈ Z,

jn,S
x,x+1(η) = n2

2
(η(x) − η(x + 1)), x �= −1,

jn,S
−1,0(η) = αn2

2nβ
(η(−1) − η(0)).

For any x ∈ Z, the expectation of the instantaneous current jnx,x+1 with respect to the
measure νρ is equal to an2−γ χ(ρ). In other words, some transport behavior appears
in the density fluctuations. In order to see a non-trivial evolution, we need to recenter
the density fluctuation field as in (3.10), except if ρ = 1/2, meaning that the transport
velocity vanishes.

4.2. Martingale decomposition. Let us introduce the operator Ln := L
A
n + L

S
n , where

L
A
n and L

S
n are acting on functions ϕ ∈ Sβ(R) as

L
A
n ϕ

( x
n

)
:= a

√
n

2nγ

{
ϕ
( x + 1

n

)
− ϕ

( x
n

)}

L
S
nϕ

( x
n

)
:= ζ n

x,x+1

{
ϕ
( x + 1

n

)
− ϕ

( x
n

)}
+ ζ n

x−1,x

{
ϕ
( x − 1

n

)
− ϕ

( x
n

)}

where

ζ n
x,x+1 :=

{
1/2; x �= −1
α/(2nβ); x = −1.
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After simple computations we can rewrite the last term of (4.1) as

∫ t

0
n2Ln

{
Y n
s (ϕ)

}
ds =

∫ t

0

1√
n

∑

x∈Z
n2LS

nϕ
( x
n

)
ηsn2(x) ds

+
∫ t

0

1√
n

∑

x∈Z
n2LA

n ϕ
( x
n

)
(ηsn2(x) − ηsn2(x + 1))2 ds

and by the definition of LA
n and L

S
n we have that

M n
t (ϕ) := Y n

t (ϕ) − Y n
0 (ϕ) − I n

t (ϕ) − Rn
t (ϕ) − Bn

t (ϕ),

where

I n
t (ϕ) := 1

2

∫ t

0
Y n
s (
βϕ) ds = 1

2

∫ t

0

1√
n

∑

x∈Z
(ηsn2(x) − ρ)
βϕ

( x
n

)
ds,

Rn
t (ϕ) :=

∫ t

0

1√
n

∑

x∈Z
n2LS

nϕ
( x
n

)
ηsn2(x) ds − I n

t (ϕ),

and since
∑

x∈Z ∇n
x ϕ = 0, the last term Bn

t (ϕ) can be written as

Bn
t (ϕ) :=

∫ t

0

∑

x∈Z
τx Fn(ηsn2)∇n

x ϕ ds,

where τx denotes the translation operator that acts on a function h : � → R

as (τxh)(η) := h(τxη), and τxη is the configuration obtained from η by shifting:
(τxη)y = ηx+y and with Fn : � → R defined by

Fn(η) := a
√
n

2nγ

{
(η(1) − η(0))2 − 2χ(ρ)

}
.

Let us remark that in the case ρ = 1/2 we have

(η(1) − η(0))2 − 2χ(ρ) = −2(η(1) − ρ)(η(0) − ρ).

Recalling the notation for x ∈ Z, η̄(x) = η(x) − ρ, we get

Fn(η) = −a
√
n

nγ
η̄(1)η̄(0).

Remark 4.1. Notice that the field I n
t comes from the symmetric part of the current

therefore it does not depend on a nor γ ; whileBn
t comes from the asymmetric part and

it depends on a, β and γ (the dependence on β is hidden in the boundary condition of
the test function ϕ).



814 T. Franco, P. Gonçalves, M. Simon

4.3. Effects of the slow bond. We first observe that for any β ≥ 0, Rn
t (ϕ) is negligible

in L2(Pρ) for every ϕ ∈ Sβ(R). Since Rn
t does not depend on a nor γ , the proof is

similar to the one given in [8] for Proposition 3.1. We notice however that the model in
[8] corresponds in our case to the choice a = 0 and [8, Proposition 3.1] is a consequence
of [8, Lemma 7.2], which can be derived in the same way for our model by noticing that
the Dirichlet form defined in (6.39) is greater or equal than the Dirichlet form of the
model in [8]. We refer the reader to that paper, and we only state the result:

Proposition 4.2. [8] Let us consider t ∈ [0, T ] and ϕ ∈ Sβ(R). Then,

lim
n→∞Eρ

[(
Rn

t (ϕ)
)2] = 0.

To sum up, we can rewrite the martingale, for n sufficiently large, as

M n
t (ϕ) := Y n

t (ϕ) − Y n
0 (ϕ) − 1

2

∫ t

0
Y n
s (
βϕ) ds − Bn

t (ϕ) + o(1), (4.2)

where o(1) vanishes in L2(Pρ), as n → ∞. There exists a range of (γ, β) for which the
contribution of the antisymmetric part of the current is negligible, as this can be seen
through the following proposition:

Proposition 4.3. If one of these two conditions are satisfied:

• β ≤ 1/2 and γ > 1/2,
• γ ≥ β > 1/2,

we have, for any t ∈ [0, T ] and for any ϕ ∈ Sβ(R),

lim
n→∞Eρ

[(
Bn

t (ϕ)
)2] = 0.

The proof of Proposition 4.3 is given in Sect. 5.1.

4.4. Quadratic variation. The quadratic variation of the martingale M n
t (ϕ) is

〈M n(ϕ)〉t =
∫ t

0

1

2n

∑

x �=−1

τxGn(ηsn2)
(∇n

x ϕ
)2

ds+
∫ t

0

1

2n
Hn(ηsn2)

(∇n−1ϕ
)2

ds, (4.3)

where Gn, Hn : � → R are defined by

Gn(η) := (η(1) − η(0))2 +
a

nγ
η(1)(1 − η(0)),

Hn(η) := α

nβ
(η(−1) − η(0))2 +

a

nγ
η(0)(1 − η(−1)).

Lemma 4.4. For any γ ≥ β ≥ 0, and ϕ ∈ Sβ(R), the quadratic variation 〈M n(ϕ)〉t
converges in L2(Pρ), as n → ∞, towards tχ(ρ)‖∇βϕ‖22,β .
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Proof. According to (4.3), we write Eρ

[〈M n(ϕ)〉t
]
as the sum below of four terms:

∫ t

0

1

2n

∑

x �=−1

Eρ

[
(ηsn2(x + 1) − ηsn2(x))

2
](∇n

x ϕ
)2
ds (4.4)

+
∫ t

0

a

2n1+γ

∑

x �=−1

Eρ

[
ηsn2(x + 1)(1 − ηsn2(x))

](∇n
x ϕ

)2
ds (4.5)

+
∫ t

0

α

2n1+β
Eρ

[
(ηsn2(0) − ηsn2(−1))2

]
n2

{
ϕ
(0
n

)
− ϕ

(−1

n

)}2
ds (4.6)

+
∫ t

0

a

2n1+γ
Eρ

[
ηsn2(0)(1 − ηsn2(−1))

]
n2

{
ϕ
(0
n

)
− ϕ

(−1

n

)}2
ds. (4.7)

First, we notice that the limits of (4.4) and (4.5) do not depend on β, since the sum
avoids the slow bond, and for any regime of β the function ϕ which is involved in the
sum is smooth. More precisely:

• (4.4) converges to tχ(ρ)‖∇βϕ‖22 as n → ∞;
• if γ > 0, (4.5) converges to 0 as n → ∞.

Now we divide the proof into three cases depending on the range of β.

(1) Case β < 1. In this case, the test function ϕ belongs toS (R). Therefore,
• (4.6) is of order Oϕ(n−(1+β)) and (4.7) is of order Oϕ(n−(1+γ )), so they both

vanish as n → ∞.
(2) Case β = 1. In this case, ϕ satisfies the boundary condition (2.3). Then one can

easily see that
• (4.6) converges as n → ∞ to

tχ(ρ)α
(
ϕ(0+) − ϕ(0−)

)2 = tχ(ρ)

α

(dϕ

du
(0+)

)2
.

• if γ > 1, (4.7) vanishes as n → ∞;
• if γ = 1, (4.7) converges as n → ∞ to

tχ(ρ)a
(
ϕ(0+) − ϕ(0−)

)2 = tχ(ρ)a

α2

(dϕ

du
(0+)

)2
.

(3) Case β > 1. In this case, for any γ ≥ β, (4.6) and (4.7) vanish as n → ∞.

��

5. Proof of Theorems 3.6 and 3.7

The main ingredient for proving both theorems is the second order Boltzmann–Gibbs
principle stated in Theorem 3.1, whose proof is postponed to Sect. 6, which gives rise
to the SBE (Theorem 3.7).

We start by showing the zero contribution ofBn
t in some particular range of (β, γ ).In

what follows, we will write εn, resp. cn, for �εn�, resp. �cn�, its integer part.
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5.1. Proof of Proposition 4.3. Recall that Bn
t (ϕ) can be written as

Bn
t (ϕ) = −a

√
n

nγ

∫ t

0

∑

x∈Z
η̄sn2(x + 1)η̄sn2(x)∇n

x ϕ ds,

where, for x ∈ Z, η̄(x) = η(x) − ρ.
From the convexity inequality (x + y + z)2 ≤ 3(x2 + y2 + z2), we can bound the

L2(Pρ)-norm ofBn
t (ϕ) by

3
a2 n

n2γ
Eρ

[( ∫ t

0

∑

x �=−1

∇n
x ϕ

{
η̄sn2(x + 1)η̄sn2(x) − (−→η L

sn2(x)
)2 +

χ(ρ)

L

}
ds

)2]
(5.1)

+ 3
a2 n

n2γ
Eρ

[( ∫ t

0

∑

x �=−1

∇n
x ϕ

{(−→η L
sn2(x)

)2 − χ(ρ)

L

}
ds

)2]
(5.2)

+ 3
a2 n

n2γ
(∇n−1ϕ)2 Eρ

[( ∫ t

0
η̄sn2(−1)η̄sn2(0) ds

)2]
. (5.3)

By Theorem 3.1 the first term (5.1) is bounded by

Ct
a2 n

n2γ

{ L
n
+
nβ

αn
+

tn

L2 +
nβ(log2(L))2

αn

}
× 1

n

∑

x �=−1

(∇n
x ϕ)2. (5.4)

By independence and by the Cauchy–Schwarz inequality the second term (5.2) is
bounded by

Ct2
a2 n

n2γ

{
L

∑

x �=−1

(∇n
x ϕ)2

} ∫ ((−→η L(0)
)2 − χ(ρ)

L

)2
νρ(dη)

≤ Ct2
a2 n

n2γ
× n

L

{1
n

∑

x �=−1

(∇n
x ϕ)2

}
. (5.5)

The last term (5.3) is estimated by using Proposition 7.2, which is stated and proved in
Sect. 7. This term is the most delicate one because it depends on the continuity of the
test function at 0: indeed, when ϕ ∈ Sβ(R), the quantity ∇n−1ϕ can be of order 1 if
β < 1, or of order n if β ≥ 1. For that purpose we distinguish now two cases:

(1) If β < 1 then the test function ϕ is in the Schwartz space S (R), therefore

(∇n−1ϕ)2 −−−→
n→∞

{dϕ

du
(0)

}2
,

and

sup
n≥0

{
1

n

∑

x �=−1

(∇n
x ϕ

)2
}

< +∞, (5.6)

hence, from Proposition 7.2 and the bounds (5.4) and (5.5) above, we have: for any
L ∈ N and ε > 0, Eρ[(Bn

t (ϕ))2] can be bounded by

C(t, a, ϕ)
n

n2γ

{ L
n
+
nβ

αn
+

tn

L2 +
nβ(log2(L))2

αn
+
tn

L
+

1

n1+ε

}
(5.7)

which vanishes, as n → ∞, for any γ > 1/2, after taking L = cn, with c > 0
being a positive constant.
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(2) If β ≥ 1, then the test function ϕ has a discontinuity at 0, and we have

{
ϕ
(−1

n

)
− ϕ

(0
n

)}2 −−−→
n→∞

{
ϕ(0+) − ϕ(0−)

}2
.

Notice however that (5.6) remains valid, and we deduce that, for any L ∈ N and
ε > 0, Eρ[(Bn

t (ϕ))2] can be bounded by

C(t, a, ϕ)
n

n2γ

{ L
n
+
nβ

αn
+

tn

L2 +
nβ(log2(L))2

αn
+
tn

L
+ n1−ε

}
. (5.8)

Notice that the term n1−ε comes from Proposition 7.2 plus the fact that (∇n−1ϕ)2

is of order n2. If one lets n → ∞, and then L → ∞, then one can see that (5.8)
vanishes for every γ ≥ β ≥ 1, which concludes the proof of Proposition 4.3.

Let us now follow the lines of [13]: first, for any value of β we prove that the sequence
of processes {Y n

t ; t ∈ [0, T ]}n∈N is tight with respect to the Skorokhod topology of
D([0, T ] ;S ′

β(R)). Then, we prove that

• if β ≤ 1/2 and γ = 1/2, then any limit point of that sequence is an energy solution
of the SBE (3.6);

• in the other cases (whenever (2.1) is satisfied), any limit point of that sequence solves
the martingale problem given in Proposition 3.2.

5.2. Tightness of the density field. We prove tightness of the sequence of processes
{Y n

t ; t ∈ [0, T ]}n∈N. The proof relies on three well-known criteria. The first one is
due to Mitoma [20] and reduces the proof of tightness for distribution-valued processes
to the proof of tightness for real-valued processes. We notice that we can use Mitoma’s
criterion, since for all the regimes of β, the space Sβ(R) is a Fréchet space (see [8]).
The second criterion is due to Aldous (see [13,18] for example) and allows us to work
with the Skorokhod topology, whereas the last one, due to Prohorov, Kolmogorov and
Centsov [16], treats the case of processes with continuous paths. The proofs are similar
to those of [13].We recall here themain steps for the sake of completeness, and underline
the new role played by the slow bond, which was already done in [8].

From Mitoma’s criterion, the sequence {Y n
t ; t ∈ [0, T ]}n∈N is tight if we prove

tightness for the sequence of real-valued processes {Y n
t (ϕ) ; t ∈ [0, T ]}n∈N for every

ϕ ∈ Sβ(R). In view of the decomposition (4.2), we are reduced to prove the tightness
of the four sequences:

{Y n
0 (ϕ)}n∈N, {M n

t (ϕ) ; t ∈ [0, T ]}n∈N,

{I n
t (ϕ) +Rn

t (ϕ) ; t ∈ [0, T ]}n∈N, {Bn
t (ϕ) ; t ∈ [0, T ]}n∈N.

5.3. Tightness for {Y n
0 (ϕ)}n∈N. This is the simplest: after computing the characteristic

function ofY n
0 (ϕ), one can easily check thatY n

0 converges in distribution to a Gaussian
field Y0 with zero mean and covariances given on ϕ,ψ ∈ Sβ(R) by

Eρ

[
Y0(ϕ)Y0(ψ)

] = χ(ρ)

∫

R

ϕ(u)ψ(u)du.
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5.4. Tightness for {M n
t (ϕ) ; t ∈ [0, T ]}n∈N. From the Aldous’ criterion [13, Proposi-

tion 12], we fix a stopping time τ bounded by T . We have, for any λ > 0,

Pρ

[∣∣M n
τ+λ(ϕ) − M n

τ (ϕ)
∣∣ > ε

]

≤ 1

ε2
Eρ

[(
M n

τ+λ(ϕ) − M n
τ (ϕ)

)2]

≤ 1

ε2
Eρ

[ ∫ τ+λ

τ

1

2n

∑

x �=−1

τxGn(ηsn2)
(∇n

x ϕ
)2

ds +
∫ τ+λ

τ

1

2n
Hn(ηsn2)

(∇n−1ϕ
)2

ds

]

≤ λ

ε2

1

n

∑

x �=1

(∇n
x ϕ

)2 +
λα

ε2

n

nβ

{
ϕ
(0
n

)
− ϕ

(−1

n

)}2
+

λa

ε2

n

nγ

{
ϕ
(0
n

)
− ϕ

(−1

n

)}2
.

By using the same arguments as in the proof of Lemma 4.4, and since ϕ ∈ Sβ(R), one
can prove that the right-hand side above converges to (λ/ε2)‖∇βϕ‖22,β as n → ∞. We
also have

Eρ

[(
M n

t (ϕ)
)2] ≤ tχ(ρ)‖∇βϕ‖22,β .

Therefore, for anyfixed time t ∈ [0, T ], the sequence {M n
t (ϕ)}n∈N is uniformly bounded

in L2(Pρ). The tightness of {M n
t (ϕ) ; t ∈ [0, T ]}n∈N follows from Aldous’ criterion,

and we also have that any limit point of the sequence {M n
t (ϕ) ; t ∈ [0, T ]}n∈N is

concentrated on continuous trajectories.

5.5. Tightness for {I n
t (ϕ) +Rn

t (ϕ) ; t ∈ [0, T ]}n∈N. Recall that

I n
t (ϕ) +Rn

t (ϕ) :=
∫ t

0

1√
n

∑

x∈Z
n2LS

nϕ
( x
n

)
ηsn2(x) ds.

Then, the proof is exactly the same as in [8, Section 3.2], since the above quantity does
not depend on γ .

5.6. Tightness for {Bn
t (ϕ) ; t ∈ [0, T ]}n∈N. Here we only have to prove tightness in

the case β ≤ 1/2 and γ = 1/2, since in the other cases, by Proposition 4.3, it gives no
contribution in the limit in L2(Pρ).

Recall the bound (5.7) that we have obtained for Eρ[(Bn
t (ϕ))2]. Since γ = 1/2, this

bound becomes

Eρ

[(
Bn

t (ϕ)
)2] ≤ Ct

{ L
n
+
nβ

αn

(
1 +

(
log2(L)

)2) +
tn

L2 +
tn

L

}
‖∇nϕ‖22,n .

We choose L equal to the integer part of n
√
t . The quantity

tnβ

αn

(
1 +

(
log2(L)

)2)

vanishes as n → ∞ because β < 1, and we obtain that there exists a constant K (that
does not depend on ϕ) such that, for all t ≥ (1/n2),

Eρ

[(
Bn

t (ϕ)
)2] ≤ Kt3/2‖∇nϕ‖22,n .
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For small times t ≤ (1/n2), we use a simple Cauchy–Schwarz inequality together with
the independence property. We obtain:

Eρ

[(
Bn

t (ϕ)
)2] ≤ t2n‖∇nϕ‖22,n ≤ t3/2‖∇nϕ‖22,n .

Since the process {ηtn2 ; t ∈ [0, T ]} is stationary, the following estimate follows:

Eρ

[(
Bn

t (ϕ) − Bn
s (ϕ)

)2] ≤ K |t − s|3/2‖∇nϕ‖2,n .

5.7. Characterization of limit points. Provided with the respective tightness of the
processes, we proceed to the proof of Theorem 3.6 and Theorem 3.7. We closely follow
[8] (for Theorem 3.6) and [13] (for Theorem 3.7) and only give the main arguments.

From the tightness of the four sequences below,we can consider (up to extraction) that
{Y n

t ; t ∈ [0, T ]}, {M n
t ; t ∈ [0, T ]}, {I n

t +Rn
t ; t ∈ [0, T ]}, and {Bn

t ; t ∈ [0, T ]}
converge as n → ∞ to {Yt ; t ∈ [0, T ]}, {Mt ; t ∈ [0, T ]}, {It +Rt ; t ∈ [0, T ]},
and {Bt ; t ∈ [0, T ]}, respectively.
Proof of Theorem 3.6. From Proposition 4.3 and Lemma 4.4, it is not difficult to show
(see [8] for details) that {Yt ; t ∈ [0, T ]} is in C ([0, T ] ;S ′

β(R)), and also that, for
ϕ ∈ Sβ(R),

Mt (ϕ) = Yt (ϕ) − Y0(ϕ) − 1

2

∫ t

0
Ys(
β(ϕ)) ds

is amartingale of quadratic variation given by tχ(ρ)‖∇βϕ‖22,β (using Lemma4.4). Then,
Theorem 3.6 is a direct consequence of Proposition 3.2. ��
Proof of Theorem 3.7. We are now focusing on the case β ≤ 1/2 and γ = 1/2, hence
we work with the usual Schwartz space S (R) and the usual operators ∇ and 
. We
refer the reader to [13] to see that:

• the process {Yt ; t ∈ [0, T ]} has continuous trajectories with respect to the strong
topology of S ′(R),

• the process {Yt ; t ∈ [0, T ]} is stationary.
The key ingredients to prove Theorem 3.7 are (3.7) and (3.8). An easy consequence of
Theorem 3.1 (which can be derived as in Sect. 5.1 after taking � = L = εn) is the
following: there exists a constant K such that, for any ϕ ∈ S (R),

Eρ

[(
Bt (ϕ) − Bs(ϕ) − χ(ρ)A ε

s,t (ϕ)
)2] ≤ K (t − s)ε‖∇ϕ‖22.

Keeping this inequality in mind, then adding and subtracting χ(ρ)−1(Bt (ϕ) − Bs(ϕ))

inside the square in Eρ[(A ε
s,t (ϕ) − A δ

s,t (ϕ))2] we are lead to the desired inequality in
(3.8).

Moreover, to prove (3.7) it is enough to have

lim
n→∞Eρ

[(
I n

t (ϕ)
)2] = lim

n→∞Eρ

[(1
2

∫ t

0
Y n
s (
ϕ) ds

)2] ≤ κ t‖∇ϕ‖22. (5.9)
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Let us decompose the line Z into boxes of size � ∈ N. We have
∫ t

0
Y n
s (
ϕ) ds =

∫ t

0

1√
n

∑

x∈Z

ϕ

( x
n

)
η̄sn2(x) ds

=
∫ t

0

1√
n

∑

j∈Z

�∑

k=1

[

ϕ

( j� + k

n

)
− 
ϕ

( j�

n

)]
η̄sn2( j� + k) ds

(5.10)

+
∫ t

0

1√
n

∑

j∈Z

[

ϕ

( j�

n

) �∑

k=1

η̄sn2( j� + k)
]
ds. (5.11)

Due to the smoothness and the fast decaying of ϕ, by the Cauchy–Schwarz inequality,
we can deal with (5.10) as follows:

Eρ

[( ∫ t

0

1√
n

∑

j∈Z

�∑

k=1

[

ϕ

( j� + k

n

)
− 
ϕ

( j�

n

)]
η̄sn2( j� + k) ds

)2]

≤ Ct2
1

n

∑

j∈Z

�∑

k=1

[

ϕ

( j� + k

n

)
− 
ϕ

( j�

n

)]2 ≤ C ′t2 �2

n2
,

where C,C ′ > 0 are real positive constants that do not depend on � nor n. We now turn
to (5.11). Recall from (3.3) the definition of −→η �(x). It holds that:

Eρ

[( ∫ t

0

1√
n

∑

j∈Z

[

ϕ

( j�

n

) �∑

k=1

η̄sn2( j� + k)
]
ds

)2]

= Eρ

[( ∫ t

0

�√
n

∑

j∈Z

ϕ

( j�

n

)−→η �
sn2( j�) ds

)2]

= Eρ

[( ∫ t

0

�√
n

∑

j∈Z

n

�

[
∇ϕ

( j�

n

)
− ∇ϕ

( j� − �

n

)]−→η �
sn2( j�) ds

)2]
+ O

( �2

n2

)
.

After summing by parts, and taking � = εn (ε > 0), we deduce that

Eρ

[( ∫ t

0
Y n
s (
ϕ) ds

)2]

= Eρ

[( ∫ t

0

√
n
∑

j∈Z
∇ϕ

( jεn

n

){−→η εn
sn2( jεn) − −→η εn

sn2(( j + 1)εn)
}
ds

)2]

+O(ε2).

Therefore, for proving (5.9) it is enough to show that

lim sup
ε→0

lim sup
n→∞

Eρ

[(√
n
∫ t

0

∑

x∈εnZ

∇ϕ
( x
n

){−→η εn
sn2(x) − −→η εn

sn2(x + εn)
}
ds

)2]

≤ κt‖∇ϕ‖22.
Last inequality above is a direct consequence of Corollary 7.1, stated and proved in
Sect. 7. ��
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6. Proof of the Boltzmann–Gibbs Principle

In this section we present a proof of the second-order Boltzmann–Gibbs principle, stated
in Theorem 3.1, which is the main technical difficulty in this work. For that purpose we
recall (3.3) and similarly, for L ∈ N, we define ←−η L(x) as the empirical average to the
left of the site x , that is:

←−η L(x) := 1

L

x−1∑

y=x−L

η̄(y).

The main idea to prove Theorem 3.1 consists in introducing averages over boxes of a
certain intermediate size �, until reaching the desired box of size L . To achieve that
goal a multi-scale analysis is done for a particular function, starting at the initial size
�0 which does not depend on n. In order to prove Theorem 3.1, we use the following
decomposition:

η̄(x)η̄(x + 1) − (−→η L(x)
)2 +

χ(ρ)

L

= η̄(x)
(
η̄(x + 1) − −→η �0(x)

)
(6.1)

+ −→η �0(x)
(
η(x) − ←−η �0(x)

)
(6.2)

+ ←−η �0(x)
(−→η �0(x) − −→η L(x)

)
(6.3)

+ −→η L(x)
(←−η �0(x) − η(x)

)
(6.4)

+ −→η L(x)η̄(x) − (−→η L(x)
)2 +

(
η̄(x) − η̄(x + 1)

)2

2L
(6.5)

−
(
η̄(x) − η̄(x + 1)

)2

2L
+

χ(ρ)

L
. (6.6)

The decomposition above involves six main terms, which we treat separately. Let us
sketch an outline of the section:

• the term (6.1) is estimated in Sect. 6.1 by what we wall the one-block estimate
(Proposition 6.1). With a very similar argument, both terms (6.2) and (6.4) can also
be worked out, see Proposition 6.3;

• the term (6.3) is the most trickiest one, for which we need to perform a multi-scale
analysis, presented in Sect. 6.2;

• a simpleCauchy–Schwarz estimate allows to control (6.6) and is exposed inSect. 6.4;
• finally, (6.5) is treated separately in Sect. 6.3.

The main idea that permits to obtain sharp bounds consists in counting very carefully
the number of times we need to cross the slow bond {−1, 0}whenwemake replacements
of type −→η �(x) �→ −→η L(x) for some �, L ∈ N (for instance). For that purpose, and to
facilitate the reading, we introduce the notation

��
y := {−� − y, . . . ,−y − 1}, � ∈ N, y ∈ Z.

To keep the notation simple in the following argument, we let C = C(ρ) denote a
constant (that does not depend on n nor on t nor on the sizes of the boxes involved) that
may change from line to line. In all what follows, v : Z → R is a function satisfying
(3.1). Along the proofs we will consider several finite boxes in Z.
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6.1. Estimate of (6.1) (6.2) and (6.4): one-block estimates. To bound (6.1) we use the
following:

Proposition 6.1 (One-block estimate to the right). Let �0 ∈ N and ψ : � → R a local
function whose support does not intersect the set of points {1, . . . , �0}. We assume that
ψ has mean zero with respect to νρ and we denote by Var(ψ) its variance.

Then, for any t > 0:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)τxψ(ηsn2)

(
η̄sn2(x + 1) − −→η �0

sn2
(x)

)
ds

)2]

≤ C(ρ)tVar(ψ)

(
�20

n
‖v‖22,n +

�0nβ

n2α

∑

x∈�
�0−1
1

v2(x)

)
,

recalling that ��0−1
1 = {−�0, . . . ,−2}.

Remark 6.2. In particular, notice that
∑

x∈�
�0−1
1

v2(x) ≤
∑

x �=−1

v2(x).

Proof. By [19, Lemma 2.4], we can bound the previous expectation from above by

Ct

∥∥∥∥
∑

x∈Z
v(x)τxψ(η)

(
η̄(x + 1) − −→η �0(x)

)∥∥∥∥
2

−1
,

where the H−1-norm is defined through a variational formula, and in particular the
previous expression is equal to

Ct sup
f ∈L2(νρ)

{
2
∫ ∑

x∈Z
v(x)τxψ(η)

(
η̄(x + 1) − −→η �0(x)

)
f (η)νρ(dη) − n2Dn( f )

}
,

where Dn( f ) is the Dirichlet form associated to the Markov process, and is defined as
Dn( f ) = ∫

f (η)Ln f (η)νρ(dη), see (6.39). Now we notice that

η̄(x + 1) − −→η �0(x) = 1

�0

x+�0∑

y=x+2

y−1∑

z=x+1

(η̄(z) − η̄(z + 1)).

Now, we write the integral above as twice its half and in one of the terms we make the
exchange η to ηz,z+1, for which the measure νρ is invariant. Since the support of τxψ

does not intersect this set of points, it also remains invariant, and we get

2
∫ ∑

x∈Z
v(x)τxψ(η)

{ 1

�0

x+�0∑

y=x+2

y−1∑

z=x+1

(η̄(z) − η̄(z + 1))
}
f (η)νρ(dη)

= 2
∫ ∑

x∈Z
v(x)τxψ(η)

{ 1

�0

x+�0∑

y=x+2

y−1∑

z=x+1

(η̄(z + 1) − η̄(z))
}
f (ηz,z+1)νρ(dη)

=
∫ ∑

x∈Z
v(x)τxψ(η)

{ 1

�0

x+�0∑

y=x+2

y−1∑

z=x+1

(η̄(z) − η̄(z + 1))
}
( f (η) − f (ηz,z+1))νρ(dη).
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At this point we have to be careful and to split the sum over x , according to the points
for which the slow bond {−1, 0} belongs to the following set of bonds

E �0
x := {

(z, z + 1) : x + 1 ≤ z ≤ y − 1 and x + 2 ≤ y ≤ x + �0
}
. (6.7)

For that purpose, recall that ��0−1
1 = {−�0, . . . ,−2}. A simple computation shows that

for x ∈ �
�0−1
1 the slow bond belongs to the set E �0

x , otherwise, it does not. According
to this observation, the last integral can be written as the sum of

∫ ∑

x /∈�
�0−1
1

v(x)τxψ(η)
{ 1

�0

x+�0∑

y=x+2

y−1∑

z=x+1

(η̄(z) − η̄(z + 1))
}
( f (η) − f (ηz,z+1))νρ(dη)

(6.8)
and

∫ ∑

x∈�
�0−1
1

v(x)τxψ(η)
{ 1

�0

x+�0∑

y=x+2

y−1∑

z=x+1

(η̄(z) − η̄(z + 1))
}
( f (η) − f (ηz,z+1))νρ(dη).

(6.9)
By Young’s inequality, for any (Ax )x∈Z of positive real numbers, (6.8) is bounded by

1

�0

∑

x /∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

v(x)
Ax

2

∫
(τxψ(η))2(η̄(z) − η̄(z + 1))2νρ(dη)

+
1

�0

∑

x /∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

v(x)

2Ax
Iz,z+1( f ),

where we define

Iz,z+1( f ) :=
∫ (

f (η) − f (ηz,z+1)
)2

νρ(dη). (6.10)

By choosing, for each x ∈ Z, 2Ax = �0v(x)/n2 and by independence, the first term
above is bounded by

C(ρ)
Var(ψ)

n2
∑

x /∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

v2(x) ≤ C(ρ)Var(ψ)
�20

n2
∑

x /∈�
�0−1
1

v2(x), (6.11)

for some positive constant C(ρ). The second one is bounded from above by

n2

�20

∑

x /∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

Iz,z+1( f ). (6.12)

Now, we use again Young’s inequality to bound the second integral (6.9) by
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1

�0

∑

x∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

v(x)Ax

2�n
z,z+1

∫
(τxψ(η))2(η̄(z) − η̄(z + 1))2νρ(dη) (6.13)

+
1

�0

∑

x∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

v(x)�n
z,z+1

2Ax
Iz,z+1( f ). (6.14)

Notice that we have introduced the positive numbers �n
z,z+1 which are defined below in

(6.40) and correspond to the coefficients of theDirichlet form (6.39). These numbers have
to be added in the case x ∈ �

�0−1
1 for which case the slow bond belongs to the set E �0

x .
By taking, for each x ∈ Z, 2Ax = �0v(x)/n2, the first term (6.13) can be bounded by

Var(ψ)

n2
∑

x∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

v2(x)

�n
z,z+1

C(ρ). (6.15)

Now, we remark that if x = −�0 then the slow bond appears only once in E �0
x , but for

x = −�0 +1 then the slow bond appears twice in E �0
x , and so on, and finally for x = −2,

the slow bond appears �0−1 times in E �0
x . Therefore, we can bound the previous sum by

C(ρ)

�n−1,0

[
v2(−�0)+2v

2(−�0+1)+· · ·+(�0−1)v2(−2)
]
+
C(ρ)

n2
∑

x∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1
z �=−1

v2(x)

�n
z,z+1

(6.16)
so that (6.15) is bounded from above by

C(ρ)Var(ψ)
(�0nβ

n2α
+

�20

n2

) ∑

x∈�
�0−1
1

v2(x).

The second term (6.14) is bounded by

n2

�20

∑

x∈�
�0−1
1

x+�0∑

y=x+2

y−1∑

z=x+1

�n
z,z+1 Iz,z+1( f ). (6.17)

Putting together (6.11), (6.12), (6.16) and (6.17), the integral in the statement of Propo-
sition 6.1 is bounded from above by

C(ρ)Var(ψ)

(
�20

n
‖v‖22,n +

�0nβ

n2α

∑

x∈�
�0−1
1

v2(x)

)
+
n2

�20

∑

x∈Z

x+�0∑

y=x+2

y−1∑

z=x+1

�n
z,z+1 Iz,z+1( f ).

We now refer to Lemma 6.11 below, which gives estimates on the Dirichlet form: by
(6.36) applied with � = �0 − 1 the result follows. ��

This one-block estimate is enough to control (6.1) by taking τxψ(η) = η̄(x). To treat
the remaining terms (6.2) and (6.4), since the averages are taken to the left of the site x ,
we need to adapt the previous argument, as given in Proposition 6.3 below.
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Proposition 6.3 (One-block estimate to the left). Let �0 ∈ N and ψ : � → R a local
function whose support does not intersect the set of points {−�0, . . . , 0}. We assume that
ψ has mean zero with respect to νρ and we denote by Var(ψ) its variance.

Then, for any t > 0:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)τxψ(ηsn2)

(
η̄sn2(x) − ←−η �0

sn2
(x)

)
ds

)2]

≤ C(ρ)tVar(ψ)

(
�20

n
‖v‖22,n +

�0nβ

n2α

∑

x∈�
�0−�0

v2(x)

)
,

recalling that ��0−�0
= {0, . . . , �0 − 1}.

Remark 6.4. It still holds that
∑

x∈�
�0−�0

v2(x) ≤
∑

x �=−1

v2(x).

Proof. Since the proof is very similar to the previous one, we only give the main argu-
ments: we have to control

Ct

∥∥∥∥
∑

x∈Z
v(x)τxψ(η)

(
η̄(x) − ←−η �0(x)

)∥∥∥∥
2

−1
,

and we notice that

η̄(x) − ←−η �0(x) = 1

�0

x−1∑

y=x−�0

x−1∑

z=y

(η̄(z + 1) − η̄(z)).

As before, when we split the make the exchange η to ηz,z+1 (for which νρ and τxψ

remain invariant) in the integrals which are involved, we have to be careful and to split
the sum over x , according to the points for which the slow bond {−1, 0} belongs to the
following set of bonds

Ẽ �0
x := {

(z, z + 1) : y ≤ z ≤ x − 1 and x − �0 ≤ y ≤ x − 1
}
.

Here, recall that��0−�0
= {0, . . . , �0−1}. A simple computation shows that for x ∈ �

�0−�0

the slow bond belongs to the set Ẽ �0
x , otherwise, it does not. Afterwards, the argument

is straightforwardly identical to the proof of the previous proposition. One can conclude
that the integral in the statement of Proposition 6.3 is bounded from above by

C(ρ)Var(ψ)

(
�20

n
‖v‖22,n +

�0nβ

n2α

∑

x∈�
�0−�0

v2(x)

)
+
n2

�20

∑

x∈Z

x−1∑

y=x−�0

x−1∑

z=y

�n
z,z+1 Iz,z+1( f ).

Now, by Lemma 6.11, precisely (6.37), the result follows. ��
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ByProposition 6.3, the terms (6.2) and (6.4) are controlled using τxψ(η) = −→η �(x+1)
for some � ∈ N. Finally, the sum of (6.1) (6.2) and (6.4) gives a total error contribution
bounded by

Ct
(
1 +

1

�0
+

1

L

)(�20

n

∥∥v
∥∥2
2,n +

�0nβ

n2α

∑

x �=−1

v2(x)

)
.

Since �0 is supposed to be independent of n, this bound can be simplified as

Ct

(
1

n

∥∥v
∥∥2
2,n +

nβ

n2α

∑

x �=−1

v2(x)

)
.

6.2. Estimate of (6.3): multi-scale analysis. The idea behind the estimate of (6.3) is
as follows: instead of replacing −→η �0(x) by −→η L(x) in one step, we do it gradually, by
doubling the size of the box of size �0 at each step. For that purpose, let �k+1 = 2�k and
assume first that L = 2M�0 for some M ∈ N. Then, rewrite (6.3) as

←−η �0(x)
(−→η �0(x) − −→η L(x)

) =
M−1∑

k=0

←−η �k (x)
(−→η �k (x) − −→η �k+1(x)

)
(6.18)

+
M−2∑

k=0

−→η �k+1(x)
(←−η �k (x) − ←−η �k+1(x)

)
(6.19)

+ −→η L(x)
(←−η �M−1(x) − ←−η �0(x)

)
. (6.20)

We start with the estimate of the terms that appear in sums (6.18) and (6.19).

Proposition 6.5 (Doubling the box). Let �k ∈ N, �k+1 = 2�k and ψ : � → R a local
function whose support does not intersect the set of points {1, . . . , �k+1}. In the same
way, let ψ̃ : � → R be a local function whose support does not intersect the set of
points {−�k+1, . . . ,−1}.We assume that ψ (resp. ψ̃) have mean zero with respect to νρ

and we denote by Var(ψ) (resp. Var(ψ̃)) its variance.
Then, for any t > 0:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)τxψ(ηsn2)

(−→η �k
sn2

(x) − −→η �k+1
sn2

(x)
)
ds

)2]

≤ C(ρ)tVar(ψ)

(
�2k

n
‖v‖22,n +

nβ�k

n2α

∑

x �=−1

v2(x)

)
. (6.21)

Eρ

[( ∫ t

0
ds

∑

x∈Z
v(x)τx ψ̃(ηsn2)

(←−η �k
sn2

(x) − ←−η �k+1
sn2

(x)
)
ds

)2]

≤ C(ρ)tVar(ψ̃)

(
�2k

n
‖v‖22,n +

nβ�k

n2α

∑

x �=−1

v2(x)

)
. (6.22)
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Proof. We only prove (6.21). The same argument can easily be written for (6.22), in the
same spirit as for Proposition 6.3. First, we notice that

−→η �k (x) − −→η �k+1(x) = 1

2�k

x+�k∑

y=x+1

(η̄(y) − η̄(y + �k)).

By [19, Lemma 2.4], a change of variables y �→ y − x and the convexity inequality

(a1 + · · · + a�)
2 ≤ �(a21 + · · · + a2� ),

the expectation in the left-hand side of (6.21) is bounded from above by

Ct�k

�k∑

y=1

∥∥∥∥
∑

x∈Z
v(x)τxψ(η)

1

2�k
(η̄(y + x) − η̄(y + x + �k))

∥∥∥∥
2

−1
. (6.23)

By the variational formula for the H−1 norm, the quantity inside the sum is equal to

sup
f ∈L2(νρ)

{
2
∫ ∑

x∈Z
v(x)τxψ(η)

1

2�k
(η̄(y + x)−η̄(y + x + �k)) f (η)νρ(dη) − n2Dn( f )

}
.

As above, we write

η̄(y + x) − η̄(y + x + �k) =
y+x+�k−1∑

z=y+x

(η̄(z) − η̄(z + 1)),

and we write the integral in the variational formula above as twice its half and in one of
the terms we make the exchange η to ηz,z+1, for which the measure νρ is invariant. By
the imposed conditions on the support of ψ we get that

2
∫ ∑

x∈Z
v(x)τxψ(η)

1

2�k
(η̄(y + x) − η̄(y + x + �k)) f (η)νρ(dη)

=
∫ ∑

x∈Z
v(x)τxψ(η)

1

2�k

y+x+�k−1∑

z=y+x

(η̄(z) − η̄(z + 1))( f (η) − f (ηz,z+1))νρ(dη).

At this point we have to split the sum in x above, according to the points for which the
slow bond (−1, 0) belongs to the set of bonds

Ẽ �k
x,y := {

(z, z + 1) : y + x ≤ z ≤ y + x + �k − 1
}
.

A simple computation shows that for x ∈ �
�k
y = {−�k − y, . . . ,−y − 1} the slow bond

belongs to the set Ẽ �k
x,y , otherwise, it does not. From this, we can rewrite last integral as

∫ ∑

x /∈�
�k
y

v(x)τxψ(η)
1

2�k

y+x+�k−1∑

z=y+x

(η̄(z) − η̄(z + 1))( f (η) − f (ηz,z+1))νρ(dη) (6.24)
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+
∫ ∑

x∈�
�k
y

v(x)τxψ(η)
1

2�k

y+x+�k−1∑

z=y+x

(η̄(z) − η̄(z + 1))( f (η) − f (ηz,z+1))νρ(dη).

(6.25)

By Young’s inequality we bound the first expression (6.24) above by

∑

x /∈�
�k
y

y+x+�k−1∑

z=y+x

v(x)Ax

4�k

∫
(τxψ(η))2(η̄(z) − η̄(z + 1))2νρ(dη)

+
∑

x /∈�
�k
y

y+x+�k−1∑

z=y+x

v(x)

4�k Ax

∫
( f (η) − f (ηz,z+1))2νρ(dη).

By taking 4Ax = v(x)/n2 and doing similar estimates as above, we bound last expres-
sion by

C(ρ)

n2
Var(ψ)

∑

x /∈��
y

v2(x) +
n2

�

∑

x /∈��
y

y+x+�−1∑

z=y+x

Iz,z+1( f ). (6.26)

To bound the second term (6.25), we use again Young’s inequality and we bound it by

∑

x∈�
�k
y

y+x+�k−1∑

z=y+x

v(x)Ax

4�k�n
z,z+1

∫
(τxψ(η))2(η̄(z) − η̄(z + 1))2νρ(dη)

+
∑

x∈�
�k
y

y+x+�k−1∑

z=y+x

v(x)�n
z,z+1

4�k Ax

∫
( f (η) − f (ηz,z+1)2νρ(dη).

By taking 4Ax = v(x)/n2 and repeating the same arguments as in the previous lemma
we bound last expression by

C(ρ)Var(ψ)
( nβ

n2α�k
+

1

n2

) ∑

x∈�
�k
y

v2(x) +
n2

�k

∑

x∈�
�k
y

y+x+�k−1∑

z=y+x

�n
z,z+1 Iz,z+1( f ). (6.27)

Putting together (6.26) and (6.27) we get the bound

C(ρ)Var(ψ)

(
1

n
‖v‖22,n +

nβ

n2α�k

∑

x∈�
�k
y

v2(x)

)
+
n2

�k

∑

x∈Z

y+x+�k−1∑

z=y+x

�n
z,z+1 Iz,z+1( f ).

Now, summing over y ∈ {1, . . . , �k}, recalling (6.23) and invoking Lemma 6.11, (6.38),
the proof ends. ��

Finally, last term (6.20) is treated similarly as in Proposition 6.3, as follows:
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Proposition 6.6. For any �0, L , M ∈ N, such that M ≥ 1, and any t > 0:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)−→η L

sn2(x)
(←−η 2M−1�0

sn2
(x) − ←−η �0

sn2
(x)

))2
ds

]

≤ C(ρ)t

(
�20

Ln
‖v‖22,n +

nβ�0

n2αL

∑

x �=−1

v2(x)

)
. (6.28)

Proof. We omit its proof since the argument is the same as for Proposition 6.3. Let
us notice that the support of ψ(η) := −→η L(0) does not intersect {−2M−1�0, . . . ,−1},
which is enough to make the proof work. ��

Putting Propositions 6.5 and 6.6 together, we now can reach the box of size L ≥ �0.

Proposition 6.7. For any �0 ≤ L ∈ N and t > 0:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)←−η �0

sn2
(x)

(−→η �0
sn2

(x) − −→η L
sn2(x)

)
ds

)2]

≤ C(ρ)t

({ �20

Ln
+
L

n

}
‖v‖22,n +

nβ

n2 α

{�0

L
+ (log2(L))2

} ∑

x �=−1

v2(x)

)
. (6.29)

Remark 6.8. Since �0 is supposed to be independent of n, (6.29) is also bounded by

Ct

(
L

n
‖v‖22,n +

nβ (log2(L))2

αn2
∑

x �=−1

v2(x)

)
.

Proof. We start by showing the result in the case where L = �M = 2M�0 for M a
positive integer. We use the decomposition (6.18)+(6.19)+(6.20).

By the convexity inequality (a +b+ c)2 ≤ 3(a2 +b2 + c2) and using the Minkowski’s
inequality twice, the expectation in the statement of the proposition is bounded from
above by

3

{ M−1∑

k=0

(
Eρ

[( ∫ t

0

∑

x∈Z
v(x)←−η �k

sn2
(x)

{−→η �k
sn2

(x) − −→η �k+1
sn2

(x)
}
ds

)2])1/2}2

+ 3

{ M−2∑

k=0

(
Eρ

[( ∫ t

0

∑

x∈Z
v(x)−→η �k+1

sn2
(x)

{←−η �k
sn2

(x) − ←−η �k+1
sn2

(x)
}
ds

)2])1/2}2

+ 3 Eρ

[( ∫ t

0
ds

∑

x∈Z
v(x)−→η L

sn2(x)
(←−η �M−1

sn2
(x) − ←−η �0

sn2
(x)

)
ds

)2]
.

The last term in the previous expression can be bounded by Proposition 6.6. By Propo-
sitions 6.5 and 6.6, assuming

τxψ(η) = ←−η �k (x), τx ψ̃(η) = −→η �k+1(x),
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which have both a variance of order C/�k , we can deduce that the first two terms in the
expression above are bounded from above by

C(ρ)t

(
2
M−1∑

k=0

(�k

n
‖v‖22,n +

nβ

αn2
∑

x �=−1

v2(x)
)1/2)2

≤ C(ρ)t

( M−1∑

k=0

(�k

n
‖v‖22,n

)1/2
+
( nβ

αn2
∑

x �=−1

v2(x)
)1/2)2

≤ C(ρ)t
2

n

( M−1∑

k=0

2k/2�1/20

)2

‖v‖22,n + 2M2 nβ

αn2
∑

x �=−1

v2(x)

≤ C(ρ)t

(
L

n
‖v‖22,n +

M2nβ

αn2
∑

x �=−1

v2(x)

)
.

Putting together the two previous bounds we obtain the result. In the other cases we
choose M sufficiently big such that 2M�0 ≤ L ≤ 2M+1�0 and a similar computation to
the one above proves the claim. ��

6.3. Estimate of (6.5).

Proposition 6.9. For any L ∈ N and t > 0:

Eρ

[( ∫ t

0

∑

x∈Z
v(x)

{
η̄sn2(x)

−→η L
sn2(x) − (−→η L

sn2(x))
2 +

1

2L

(
η̄sn2(x) − η̄sn2(x + 1)

)}
ds

)2]

≤ C(ρ)t
( L
n
+
nβ

nα

)
‖v‖22,n .

Proof. By [19, Lemma 2.4] and following the same arguments as in Proposition 6.1 we
have to compute the H−1 norm of the function in the statement of the proposition. For
that purpose notice that

2
∫ ∑

x∈Z
v(x)−→η L(x)

{
η̄(x) − −→η L(x)

}
f (η)νρ(dη) (6.30)

= 2
∫ ∑

x∈Z
v(x)−→η L(x)

{
η̄(x) − η̄(x + 1) +

L − 1

L

(
η̄(x + 1) − η̄(x + 2)

)

+ · · · + 1

L

(
η̄(x + L − 1) − η̄(x + L)

)}
f (η)νρ(dη).

Now we write the previous expression as

2
∫ ∑

x∈Z
v(x)−→η L(x)

{
η̄(x) − η̄(x + 1)

}
f (η)νρ(dη)

+ 2
∫ ∑

x∈Z
v(x)−→η L(x)

L − 1

L

{
η̄(x + 1) − η̄(x + 2)

}
f (η)νρ(dη)

+ · · · + 2
∫ ∑

x∈Z
v(x)−→η L(x)

1

L

{
η̄(x + L − 1) − η̄(x + L)

}
f (η)νρ(dη).
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In each one of the terms above, we write it as twice its half, and in one of the integrals we
make the change η to ηz,z+1 (for some suitable z), for which the measure νρ is invariant.
Thus, the last expression equals
∫ ∑

x∈Z
v(x)−→η L(x)

{
η̄(x) − η̄(x + 1)

}(
f (η) − f (ηx,x+1)

)
νρ(dη) (6.31)

+
∫ ∑

x∈Z
v(x)−→η L(x)

L − 1

L

{
η̄(x + 1) − η̄(x + 2)

}(
f (η) − f (ηx+1,x+2)

)
νρ(dη)

+ · · · (6.32)

+
∫ ∑

x∈Z
v(x)−→η L(x)

1

L

{
η̄(x + L − 1) − η̄(x + L)

}(
f (η) − f (ηx+L ,x+L+1)

)
νρ(dη)

+
∫ ∑

x∈Z
v(x)

η̄(x + 1) − η̄(x)

L

{
η̄(x) − η̄(x + 1)

}
f (η)νρ(dη). (6.33)

Notice that the last term (6.33) comes from the change of variables η to ηx,x+1 in the
first term (6.31) above. The whole sum can be rewritten as

∫ ∑

x∈Z
v(x)−→η L(x)

1

L

x+L∑

y=x+1

y−1∑

z=x

{
η̄(z) − η̄(z + 1)

}(
f (η) − f (ηz,z+1)

)
νρ(dη) (6.34)

−
∫ ∑

x∈Z
v(x)

1

L

(
η̄(x) − η̄(x + 1)

)2
f (η)νρ(dη). (6.35)

The integral in the statement of the proposition is exactly equal to the sum of (6.30)
and (6.35), therefore it is bounded by the first term in the previous expression, namely
(6.34). As before, at this point we have to be careful and split the sum in x according to
whether the slow bond intersects the set of bonds

Ê L
x = {(z, z + 1) : x ≤ z ≤ y − 1 and x + 1 ≤ y ≤ x + L}.

A simple computation shows that for x ∈ �L
0 = {−L , . . . ,−1} the slow bond belongs

to the set Ê L
x , otherwise, it does not. Then, the first term in last expression is equal to

∫ ∑

x /∈�L
0

v(x)−→η L(x)
1

L

x+L∑

y=x+1

y−1∑

z=x

{
η̄(z) − η̄(z + 1)

}(
f (η) − f (ηz,z+1)

)
νρ(dη)

+
∫ ∑

x∈�L
0

v(x)−→η L(x)
1

L

x+L∑

y=x+1

y−1∑

z=x

{
η̄(z) − η̄(z + 1)

}(
f (η) − f (ηz,z+1)

)
νρ(dη).

Now, we use the same arguments as above. In each of the terms above we use Young’s
inequality with 2Ax = Lv(x)/n2 and we bound the first term by

C(ρ)
L

n2
∑

x /∈�L
0

v2(x) +
n2

L2

∑

x /∈�L
0

x+L∑

y=x+1

y−1∑

z=x

Iz,z+1( f ).
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The second term is bounded by

C(ρ)

(
nβ

n2α

∑

x∈�L
0

v2(x) +
L

n2
∑

x∈�L
0

v2(x)

)
+
n2

L2

∑

x∈�L
0

x+L∑

y=x+1

y−1∑

z=x

�n
z,z+1 Iz,z+1( f ).

Putting together the two previous estimates plus Lemma 6.11, precisely (6.36) with
� = L , the proof ends. ��

6.4. Estimate of (6.6): Cauchy–Schwarz inequality.

Proposition 6.10. For any L ∈ N and t > 0:

E
n
ρ

[( ∫ t

0

∑

x∈Z
v(x)

{ (η̄sn2(x) − η̄sn2(x + 1))2

2L
− χ(ρ)

L

}
ds

)2] ≤ C(ρ)
t2n

L2 ‖v‖22,n .

Proof. The proof is straightforward using the Cauchy–Schwarz inequality. ��

6.5. Technical lemma: estimates in the Dirichlet form.

Lemma 6.11. Recall the definition (6.10). For any � ∈ N it holds that

n2

�2

∑

x∈Z

x+�∑

y=x+1

y−1∑

z=x

�n
z,z+1 Iz,z+1( f ) ≤ n2Dn( f ), (6.36)

n2

�2

∑

x∈Z

x−1∑

y=x−�

x−1∑

z=y

�n
z,z+1 Iz,z+1( f ) ≤ n2Dn( f ), (6.37)

n2

�2

∑

x∈Z

�∑

y=1

y+x+�−1∑

z=y+x

�n
z,z+1 Iz,z+1( f ) ≤ n2Dn( f ). (6.38)

Proof. We present the proof for the first estimate (6.36), but one can do exactly the same
argument for the other two ones. By definition, we have

Dn( f ) =
∑

x∈Z
�n

x,x+1 Ix,x+1( f ), (6.39)

where

�n
x,x+1(η) =

{
1
2 + a

2nγ ; x �= −1
α

2nβ + a
2nγ ; x = −1.

(6.40)

Moreover, if x /∈ ��
0, then, by translation invariance of the measure νρ , for all z in E �

x
(the set of bonds defined in (6.7)) we have

�n
z,z+1 Iz,z+1( f ) = �n

x+1,x+2 Ix+1,x+2( f ).
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From that observation, the quantity

n2

�2

∑

x /∈��
0

x+�∑

y=x+1

y−1∑

z=x

�n
z,z+1 Iz,z+1( f )

is bounded from above by

n2
∑

x /∈��
0

�n
x+1,x+2 Ix+1,x+2( f ). (6.41)

Now, if x ∈ ��
0, we have to isolate the bond {−1, 0}, that appears exactly �2 times. For

the other bonds, the same translation invariance argument holds. More precisely,

∑

x∈��
0

x+�∑

y=x+1

y−1∑

z=x

�n
z,z+1 Iz,z+1( f ) = �2�n−1,0 I−1,0( f ) + �2

∑

x∈��
0

�n
x+1,x+2 Ix+1,x+2( f ).

Multiplying by n2/�2, and putting the previous expression together with (6.41), the proof
ends. ��

7. Auxiliary Results

We give here two auxiliary results which can be obtained very similarly, following the
proof of Proposition 6.1. We need the Corollary 7.1 (stated below) for the case β < 1
in Sect. 5.7 when we prove the energy estimate, namely (5.9). We need Proposition 7.2
below in Sect. 5.1.

Corollary 7.1. Let v : Z → R be a measurable function that satisfies (3.1). Then, there
exists C(ρ) > 0 such that for any t > 0 and any �, n ∈ N:

Eρ

[(√
n
∫ t

0

∑

x∈�Z

v(x)
{−→η �

sn2(x) − −→η �
sn2(x + �)

}
ds

)2]

≤ C(ρ)t

{
�

n

∑

x∈�Z

v2(x) +
nβ

αn

(
v2(−�) + v2(−2�)

)}
.

In particular, assumeβ < 1and letϕ ∈ S (R). If � = εn (ε fixed), and v(x) = ∇ϕ(x/n),
then

lim sup
n→∞

Eρ

[(√
n
∫ t

0

∑

x∈εnZ

∇ϕ
( x
n

){−→η εn
sn2(x) − −→η εn

sn2(x + εn)
}
ds

)2]

≤ C(ρ)tε
∑

x∈Z

(∇ϕ(εx)
)2

. (7.1)
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Proof. As in the one-block estimate, namely, Proposition 6.1, we need to bound the
following norm

n
�∑

y=1

∥∥∥∥
∑

x∈�Z

v(x)
1

�
(η̄(y + x) − η̄(y + x + �))

∥∥∥∥
2

−1
.

Repeating the proof of Proposition 6.5 (more precisely, one needs to bound almost the
same quantity as (6.23), except that the sum runs out of �Z and we cancel out the term
τxψ), one can easily show that this quantity is bounded by

C(ρ)n
�∑

y=1

(
1

n2
∑

x∈�Z

v2(x) +
nβ

αn2�

∑

x∈��
y

v2(x)

)
.

Notice that, for any y ∈ Z, the set ��
y ∩ �Z only contains one element, which can be

either −� or −2�. Since y runs over � elements, the last quantity is bounded by

C(ρ)

(
�

n

∑

x∈�Z

v2(x) +
nβ

αn

{
v2(−�) + v2(−2�)

})
.

This ends the first part of the proof. Now, take � = εn (ε fixed), and v(x) = ∇ϕ(x/n)

with ϕ ∈ S (R). The bound becomes

C(ρ)

(
ε

∑

x∈εnZ

(
∇ϕ

( x
n

))2
+
nβ

αn

{(∇ϕ(−ε)
)2 +

(∇ϕ(−2ε)
)2}

)
.

Since, in the case β < 1,

nβ

αn

(∇ϕ(−ε)
)2 −−−→

n→∞ 0,

we have proved (7.1). ��
Proposition 7.2. There exists a constant C > 0, such that for any ε ∈ [0, 1

4 ], any t > 0
and any n ∈ N:

E
n
ρ

[( ∫ t

0
η̄sn2(0)η̄sn2(−1) ds

)2] ≤ Ct

n1+ε
. (7.2)

Proof. In order to prove the proposition we use the following decomposition:

η̄(−1)η̄(0) = η̄(0)
(
η̄(−1) − ←−η �(−1)

)
(7.3)

+ ←−η �(−1)
(
η(0) − −→η L(0)

)
(7.4)

+ ←−η �(−1)−→η L(0), (7.5)

with �, L ∈ N. Now we notice that by [8, Lemma 7.1] we have

Eρ

[( ∫ t

0
η̄sn2(0)

(
η̄sn2(−1) − ←−η �

sn2(−1)
)
ds

)2] ≤ Ct
�

n2
, (7.6)
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and by a similar argument as in the proof of [8, Lemma 7.1] one can easily obtain that

Eρ

[( ∫ t

0

←−η �
sn2(−1)

(
ηsn2(0) − −→η L

sn2(0)
)
ds

)2] ≤ Ct
L

n�
. (7.7)

Finally, by the Cauchy–Schwarz inequality, and the fact that the two empirical averages
below do not intersect, we get

Eρ

[( ∫ t

0

←−η �
sn2(−1)−→η L

sn2(0) ds
)2] ≤ C

t2

�L
.

Now we make the choice � = Lnε = n1−ε from which the result follows.
Let us notice that the estimates given in (7.6) and (7.7) can also be recovered as

particular cases of Propositions 6.1 and 6.3. ��
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Appendix A. Semi-Group Tools

In this appendix, we present an useful result on the semi-groups associated to the oper-
ators 
β defined on Sβ(R), namely, the condition (2.4). This property was already
needed in [8], but not proved there. We start by recalling the three PDE’s associated
to the different regimes of β. We also remark that the operator 
β is essentially the
Laplacian operator in a specific domain.

A.1. Regime β ∈ [0, 1). The PDE associated to this regime is the heat equation on the
line, or else,

{
∂t u(t, x) = 1

2∂
2
xxu(t, x), t ≥ 0, x ∈ R,

u(0, x) = g(x), x ∈ R.
(A.1)

It is a classical fact that the semi-group related to (A.1) is given by

Tt g(x) := 1√
2π t

∫

R

e− (x−y)2

2t g(y) dy , for x ∈ R. (A.2)

If g ∈ S (R) then Tt g ∈ S (R) and consequently 
Tt g ∈ S (R), which proves (2.4).
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A.2. Regime β ∈ (1,∞]. Here, the associated PDE is the heat equation with a boundary
condition of Neumann’s type at x = 0 given by

⎧
⎪⎨

⎪⎩

∂t u(t, x) = 1
2∂

2
xxu(t, x), t ≥ 0, x ∈ R\{0},

∂xu(t, 0+) = ∂xu(t, 0−) = 0, t ≥ 0,

u(0, x) = g(x), x ∈ R.

(A.3)

Its semi-group reads as

TNeu
t g(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
2π t

∫ +∞

0

[
e− (x−y)2

2t + e− (x+y)2

2t

]
g(y) dy , for x > 0 ,

1√
2π t

∫ +∞

0

[
e− (x−y)2

2t + e− (x+y)2

2t

]
g(−y) dy , for x < 0.

(A.4)

We claim that ∂2xx Tt g is again solution of (A.3), but with initial condition ∂2xx g, which
immediately leads to (2.4) in this case. One way to see this is to check it directly by
differentiating twice the expression (A.4). Otherwise, one can recall how (A.4) is usually
deduced in the literature: in the positive half-line, one has to extend the initial profile g
to an even function in the whole line, then make this even function evolves according
to (A.2), the semi-group of heat equation in R. Since the semi-group (A.2) preserves
even functions, and a smooth even function has zero derivative at zero, we conclude
that (A.4) is the solution of (A.3) in the positive half-line. The same argument applies
to the negative half-line. Moreover, an even smooth function has all null derivatives of
odd order at zero. This easily implies that ∂2xx T

Neu
t g is a solution of (A.3) with initial

condition ∂2xx g, leading to (2.4).

A.3. Regime β = 1. The PDE associated to this regime is the heat equation with a
boundary condition of Robin’s type at x = 0 given by

⎧
⎪⎨

⎪⎩

∂t u(t, x) = 1
2∂

2
xxu(t, x), t ≥ 0, x ∈ R\{0},

∂xu(t, 0+) = ∂xu(t, 0−) = α{u(t, 0+) − u(t, 0−)}, t ≥ 0,

u(0, x) = g(x), x ∈ R.

(A.5)

Denote by geven (resp. godd) the even (resp. odd) parts of a function g : R → R: for
x ∈ R,

geven(x) = g(x) + g(−x)

2
and godd(x) = g(x) − g(−x)

2
.

The semi-group associated to (A.5) has been obtained in [8] by symmetry arguments.
Its expression is

T α
t g(x) = 1√

2π t

{∫

R

e− (x−y)2

2t geven(y) dy

+
∫ +∞

x
e−2α(z−x)

∫ +∞

0

[( z − y + 2αt

t

)
e− (z−y)2

2t

+
( z + y − 2αt

t

)
e− (z+y)2

2t

]
godd(y) dy dz

}
,
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for x > 0 and

T α
t g(x) = 1√

2π t

{∫

R

e− (x−y)2

2t geven(y) dy

−
∫ +∞

−x
e−2α(x+z)

∫ +∞

0

[( z − y + 2αt

t

)
e− (z−y)2

2t

+
( z + y − 2αt

t

)
e− (z+y)2

2t

]
godd(y) dy dz

}
,

for x < 0. Here, more important than the formula above is the symmetry that leads to
its deduction. Decomposing the initial condition g in its odd and even parts, and using
a similar symmetry argument, one can figure out that

T α
t g(x) =

{
Tt geven(x) + T̃ α

t godd(x) , for x > 0 ,

Tt geven(x) − T̃ α
t godd(−x) , for x < 0 ,

(A.6)

where T̃ α
t is the semi-group of the following partial differential equation in the half-line:

⎧
⎪⎨

⎪⎩

∂t u(t, x) = 1
2∂

2
xxu(t, x), t ≥ 0, x > 0,

∂xu(t, 0+) = 2αu(t, 0+), t ≥ 0,

u(0, x) = g(x), x > 0.

(A.7)

We claim now that ∂2xx T
α
t g is again a solution of (A.5) with initial condition ∂2xx g.

Provided by (A.6), it is enough to show that ∂2xx T̃
α
t godd is again a solution of (A.7)

with initial condition ∂2xx godd. In other words, we must assure that differentiating twice
(in space) a solution of (A.7) yields again a solution of (A.7) with the same boundary
condition (but different initial condition). Denote by u the solution of (A.7) and consider

v = 2αu − ∂xu , (A.8)

which is the solution of the following equation
⎧
⎪⎨

⎪⎩

∂tv(t, x) = 1
2∂

2
xxv(t, x), t ≥ 0, x > 0,

v(t, 0+) = 0, t ≥ 0,

v(0, x) = v0(x), x > 0.

(A.9)

with v0 = 2αg − ∂x g. Last equation is the heat equation with a boundary condition of
Dirichlet’s type. The semigroup TDir

t v0(x) associated to last equation is given by

TDir
t v0(x) := 1√

2π t

∫ +∞

0

[
e− (x−y)2

2t − e− (x+y)2

2t

]
v0(y) dy. (A.10)

If we show that ∂2xx T
Dir
t v0 is again a solution of (A.9), solving the ODE (A.8) we will

conclude that ∂2xx T̃
α
t godd is again a solution of (A.5).

Expression (A.10) is obtained by a symmetry argument analogous to the previous one.
More precisely, given an initial condition in the half-line, we extend it to an odd function
in the entire real line and then make it evolve according to (A.2). Since (A.2) preserves
odd functions, and any odd smooth function vanishes at the origin, we conclude that
(A.10) is the solution of (A.9). We point out that the second derivative at zero of a
smooth odd function vanishes. Hence ∂2xx T

Dir
t v0 is a solution of (A.9), which leads to

(2.4).



838 T. Franco, P. Gonçalves, M. Simon

References

1. Bernardin, C., Gonçalves, P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponen-
tial interactions. Commun. Math. Phys. 325(1), 291–332 (2014)

2. Bernardin, C., Gonçalves, P., Jara, M.: 3/4-Fractional superdiffusion in a system of harmonic oscillators
perturbed by a conservative noise. Arch. Rational Arch. Anal. 220(2), 505–542 (2016)

3. Bernardin, C., Gonçalves, P., Jara, M., Sasada, M., Simon, M.: From normal diffusion to superdiffusion
of energy in the evanescent flip noise limit. J. Stat. Phys. 159(6), 1327–1368 (2015)

4. Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math.
Phys. 183(3), 571–607 (1997)

5. De Masi, A., Presutti, E., Scacciatelli, E.: The weakly asymmetric simple exclusion process. Ann. Inst.
H. Poincaré Probab. Stat. 25(1), 1–38 (1989)

6. Dittrich, P.,Gärtner, J.:A central limit theorem for theweakly asymmetric simple exclusion process.Math.
Nachr. 151(1), 75–93 (1991)

7. Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc.
A 381(1780), 17–31 (1982)

8. Franco, T., Gonçalves, P., Neumann, A.: Phase transition in equilibrium fluctuations of symmetric slowed
exclusion. Stoch. Proc. Appl. 123(12), 4156–4185 (2013)

9. Franco, T., Gonçalves, P., Neumann, A.: Occupation time of exclusion processes with conductances. J.
Stat. Phys. 156(5), 975–997 (2014)

10. Gonçalves, P.: Central limit theorem for a tagged particle in asymmetric simple exclusion. Stoch. Proc.
Appl. 118(3), 474–502 (2008)

11. Gonçalves, P., Jara, M.: Crossover to the KPZ Equation. Ann. H. Poincaré 13(4), 813–826 (2012)
12. Gonçalves, P., Jara, M.: Scaling limits of additive functionals of interacting particle systems. Commun.

Pure Appl. Math. 66(5), 649–677 (2013)
13. Gonçalves, P., Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch.

Rational Mech. Anal. 212(2), 597–644 (2014)
14. Gonçalves, P., Jara, M., Sethuraman, S.: A stochastic Burgers equation from a class of microscopic

interactions. Ann. Probab. 43(1), 286–338 (2015)
15. Gonçalves, P., Landim, C., Toninelli, C.: Hydrodynamic limit for a particle system with degenerate

rates. Ann. Inst. H. Poincaré Probab. Stat. 45(4), 887–909 (2009)
16. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics,

vol. 113, 2nd edn. Springer, New York (1998)
17. Kardar, M., Parisi, G., Zhang, Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–

892 (1986)
18. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen

Wissenschaften, vol. 320, 1st edn. Springer, Berlin (1999)
19. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes, Grundlehren der mathematis-

chen Wissenschaften, vol. 345, 1st edn. Springer, Berlin (2012)
20. Mitoma, I.: Tightness of probabilities on C([0, 1];Y ′) and D([0, 1];Y ′). Ann. Probab. 11(4), 989–

999 (1983)
21. Olla, S., Sasada, M.: Macroscopic energy diffusion for a chain of anharmonic oscillators. Probab. Theory

Related Fields 157(3–4), 721–775 (2013)
22. Ravishankar, K.: Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in

Z
d . Stoch. Proc. Appl. 42(1), 31–37 (1992)

23. Seppäläinen, T.: Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J.
Stat. Phys. 102(1–2), 69–96 (2001)

24. Spohn, H.: Large Scale Dynamics of Interacting Particles. Theoretical and Mathematical Physics, 1st
edn. Springer, Berlin (1991)

Communicated by H. Spohn


	Crossover to the Stochastic Burgers Equation for the WASEP with a Slow Bond
	Abstract:
	1 Introduction
	2 Notations and Definitions
	2.1 The model
	2.2 Definition of mathscrS'β(mathbbR) and of the operators β and Δβ
	2.3 Invariant measures

	3 Statement of the Main Results
	3.1 Boltzmann--Gibbs principle
	3.2 The Ornstein--Uhlenbeck process
	3.3 The stochastic Burgers equation
	3.4 The density fluctuation field

	4 Elements of Proof
	4.1 Microscopic current
	4.2 Martingale decomposition
	4.3 Effects of the slow bond
	4.4 Quadratic variation

	5 Proof of Theorems 3.6 and 3.7
	5.1 Proof of Proposition 4.3
	5.2 Tightness of the density field
	5.3 Tightness for {mathscr Y0n(varphi)}n in mathbb N
	5.4 Tightness for {mathscr Mtn(varphi);t in[0,T]}n in mathbb N
	5.5 Tightness for {mathscr Itn(varphi)+mathscr Rtn(varphi);t in [0,T]}n in mathbb N
	5.6 Tightness for {mathscr Btn(varphi);t in [0,T]}n in mathbb N
	5.7 Characterization of limit points

	6 Proof of the Boltzmann--Gibbs Principle
	6.1 Estimate of (6.1) (6.2) and (6.4): one-block estimates
	6.2 Estimate of (6.3): multi-scale analysis
	6.3 Estimate of (6.5)
	6.4 Estimate of (6.6): Cauchy--Schwarz inequality
	6.5 Technical lemma: estimates in the Dirichlet form

	7 Auxiliary Results
	Acknowledgments.
	Appendix A Semi-Group Tools
	A.1 Regime βin[0,1)
	A.2 Regime βin(1,infty]
	A.3 Regime β=1

	References




