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Abstract We discusss here the hydrodynamic limit of independent quan-
tum random walks evolving on Z. As main result, we obtain that the time
evolution of the local equilibrium is governed by the convolution of the cho-
sen initial profile with a rescaled version of the limiting probability density
obtained in the law of large numbers for a single quantum random walk.
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1 Introduction

An important subject in Statistical Physics is the comprehension of the hy-
drodynamic behavior of interacting particle systems. Roughly speaking, given
a discrete system that evolves in time, its hydrodynamic limit consists in the
limit for the time trajectory of the spatial density of particles (as some pa-
rameters are rescaled, in general, space and time). Proving rigorously such
scaling limit is often a mathematical problem of deep technical difficulty. As
a guide book on the subject we cite [9] and references therein.

Since the seventies, the hydrodynamic limit has been developed and suc-
cessfully proved for many interacting particle systems, for instance the sym-
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metric (and the asymmetric) simple exclusion process, the zero range pro-
cess, independent random walks, and many others. In particular, the hy-
drodynamic limit of independent copies of a stochastic process is quite well
understood, as one can see for instance in [3, 4].

We devote this paper to the study of a particular case of the hydrodynamic
limit of independent copies of a stochastic process. The stochastic process we
are concerned with is the Quantum Random Walk (QRW), as proposed in
[1]. Such paper gave origin to a vast literature, inspiring several connections
with quantum optics and quantum computation, see for instance the excellent
survey [8] on quantum random walks.

In the recent paper [5], it was proved a law of large numbers for the
QRW. Differently from the classical random walk (see [6] for a definition),
the limit for the QRW, in the ballistic scale, is not a deterministic number,
but a probability distribution. This is in some sense a consequence of the fact
that the quantum random walk evolves faster than its classical version. In
average, after the same number of steps the distance from the starting point
of a quantum walk is larger than its classical counterpart.

Here, we present a proof of the hydrodynamic limit for a system of inde-
pendent copies of the QRW. The hydrodynamic limit of independent copies
of a stochastic process is not at all a novelty in the literature, see [4]. Never-
theless, we present these notes with the aim of introducing the QRW subject
in a simple way and to make some observations on the peculiar hydrodynamic
behavior for independent QRWs.

It is supposed that each QRW starts from a localized state, and the num-
ber of independent copies of the QRW starting at each state is determined by
independent Poisson random variables. The parameter of each Poisson ran-
dom variable is a function of space and is called the slowly varying parameter
driven by a smooth profile γ of compact support. Under these assumptions,
we prove that the limiting profile is driven by a convolution of the initial
profile γ with the probability density obtained in [5] from the law of large
numbers for a single quantum random walk.

It is worth to mention that, if the initial profile has compact support,
then the limiting profile at any positive time will also have compact support.
This contrasts with the hydrodynamic limit for classical symmetric random
walks, where the limiting profile evolves according to the heat equation. For
the heat equation, it is well known that the diffusion has infinite speed of
propagation. That is, even for initial profiles with compact support, for any
positive time, the solution will be non-zero everywhere. Hence, we roughly
deduce that: while the QRW is faster than its classical counterpart (in the
scaling aspect), a system of independent QRW’s is slower than a system of
independent classical random walks (in the macroscopic diffusion aspect).

The outline of the paper is the following: in Section 2, we define the state
space of a single QRW. In Section 3, we explain the dynamics of a QRW. In
Section 4 we state the hydrodynamic limit. In Section 5 we state and prove
the local equilibrium, which in its hand implies the hydrodynamic limit.
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2 The state space of the QRW

We define in this section the state space of a single QRW, which, in agreement
with the postulates of the Quantum Mechanics, is a Hilbert space. Its meaning
is discussed below in detail.

Definition 1. If f1 : H1 → C and f2 : H2 → C are two linear functionals
over some vector spaces H1 and H2, the tensor product of f1 and f2 is the
bilinear functional f1 ⊗ f2 : H1 ×H2 → C defined by

(f1 ⊗ f2)(y1, y2) := f1(y1) · f2(y2) .

Notice that the tensor product is bilinear, whilst its Cartesian product is
linear. By the Riesz Representation Theorem, a Hilbert space can be under-
stood as a space of linear functionals. Then, it makes sense to speak on the
tensor product of two Hilbert spaces.

Definition 2. We denote the QRW state space by Ω, which is defined as the
tensor product of the Hilbert spaces HP and HC :

Ω := HP ⊗HC ,

where HP is taken as the Hilbert space of square summable complex double-
sided sequences:

HP = `2(Z) :=
{

(. . . , x−2, x−1, x0, x1, x2 . . .) ;
∑
k∈Z
|xk|2 <∞

}
,

being, ∀k ∈ Z, xk ∈ C, and HC = C2.

The nomenclature HP and HC , somewhat common in the literature, comes
from the idea that HP is the Hilbert space associated with the position of
the quantum object and HC is the Hilbert space associated with the state of
a certain coin. In the case presented here, the simplest one, HP is `2(Z) and
HC is C2.

From now on, elements of `2(Z) will be denoted by |x〉. To facilitate cal-
culations, let {|ek〉}k∈Z be the canonical basis of `2(Z). Thus, if x ∈ `2(Z),
then

|x〉 =
∑
k∈Z

xk |ek〉.

According to the common notation in Quantum Mechanics, the canonical
basis of C2 is denoted by {|+1〉, |−1〉}. Any element of the Hilbert space C2

is usually called a qubit. The qubit can be interpreted as the state of a coin
(or spin).

Now, let us discuss the physical interpretation of the state space Ω. Sup-
pose that the state of the quantum object at some time is
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ψ :=
∑
k∈Z

xk |ek〉 ⊗ |+1〉 +
∑
k∈Z

yk |ek〉 ⊗ |−1〉.

It is a common sense in Quantum Mechanics that the particle is not at any
particular place before an observation. Only after the observation, and thus
after the consequently random result, one can say that the particle is at
some place (more sophisticate physical interpretations are available but here
we state only this pragmatic point of view).

If we perform a measurement to observe position/coin’s value of the object,
the outcome will be random, moreover localized, i.e. of the form |ek〉 ⊗ | ±
1〉, with probability proportional to the modulus’ square of the respective
component.

For instance, considering the state ψ above, the probability of observing
the state |ek〉⊗|+1〉 as outcome (respectively |ek〉⊗|−1〉) will have probability
proportional to |xk|2 (respectively |yk|2). If we perform an experiment to
observe only the position, with probability proportional to |xk|2 + |yk|2, the
outcome will be |ek〉 .

Analogously, if we perform a measurement to observe only the coin’s value,
the outcome will be |+1〉 with probability proportional to

∑
k∈Z |xk|2 and

the outcome will be |−1〉 with probability proportional to
∑
k∈Z |yk|2.

3 The dynamics of a single QRW

The dynamics of the QRW is a function U : Ω → Ω which will be defined
ahead, composed of two parts. Informally, the first part consists on an unitary
operator1 that acts on the coin. The second part is a translation to the right
or to the left on the element of `2(Z), depending if the respective coin qubit
is |+1〉 or |−1〉.

We recall the notation U2(C) for the set of unitary operators, that is, the
set of linear operators on C2 preserving the canonical L2-norm. In this work,
we treat only the particular operator H ∈ U2(C), the Hadamard operator,
whose matrix is given in the canonical basis by

H :=
1√
2

[
1 1
1 −1

]
, (1)

whose effect emulates the evolution of an unbiased coin. For example, if the
initial coin state is |−1〉, after the action of H we get 1√

2
(|+1〉− |−1〉). In this

final state we have one half of probability for finding one of the two possible
coin states after a measurement.

We define now the part of the dynamics acting on the space. Let τm :
`2(Z) → `2(Z) be the shift to the right of size m ∈ Z, i.e., if |x〉 =

1 Unitary matrix: its columns (or lines) compound an orthonormal basis for the space.
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k∈Z xk|ek〉, then

τm|x〉 :=
∑
k∈Z

xk|ek+m〉 .

The linear operator S : `2(Z)⊗ C2 → `2(Z)⊗ C2 is defined by

S
(
|x〉 ⊗ |+1〉

)
:= τ1|x〉 ⊗ |+1〉 , ∀x ∈ `2(Z) ,

and
S
(
|x〉 ⊗ |−1〉

)
:= τ−1|x〉 ⊗ |−1〉 , ∀x ∈ `2(Z) .

Finally, denote by Id the identity operator over `2(Z) and define U : `2(Z)⊗
C2 → `2(Z)⊗ C2 by the composition

U := S ◦ ( Id ⊗H) .

The dynamics is defined as follows: if at time zero the state is some ψ ∈
`2(Z)⊗C2, then the state at time n = 1 is given by Uψ, and at an arbitrary
time n ∈ N is given by Unψ. As an example, if ψ = |x〉 ⊗ |+1〉 + |y〉 ⊗ |−1〉,
then

Uψ = S
(
|x〉 ⊗H(|+1〉) + |y〉 ⊗H(|−1〉)

)
= S

(
|x〉 ⊗

(
|+1〉+|−1〉√

2

)
+ |y〉 ⊗

(
|+1〉−|−1〉√

2

))
=

1√
2

[(
τ1|x〉+ τ1|y〉

)
⊗ |+1〉+

(
τ−1|x〉 − τ−1|y〉

)
⊗ |−1〉

)]
.

(2)

In general, for given ψ ∈ Ω = `2(Z)⊗ C2 we will denote

Unψ =
(∑
k∈Z

xnk |ek〉
)
⊗ |+1〉+

(∑
k∈Z

ynk |ek〉
)
⊗ |−1〉 , (3)

always keeping in mind that the complex numbers xnk, ynk depend on ψ.
Notice that the dynamics (ψ,Uψ,U2ψ,U3ψ, . . .) is deterministic.

Definition 3. Given ψ ∈ Ω with unitary norm, denote by Xψ
n a random vari-

able (on some probability space) assuming integers values with distribution
given by

P
(
Xψ
n = k

)
= |xnk|2 + |ynk|2 , ∀ k ∈ Z ,

where xnk, ynk ∈ C are defined in (3).

Given an initial state ψ ∈ Ω, the state Unψ obtained after n iterations
of U gives all the information about the distribution of the position/coin
of the particle at time n. Moreover, after an observation at time n of the
position of the particle, the outcome of position is a random variable with
the distribution presented in Definition 3.
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Fig. 1 Illustration of the density f obtained in the central limit theorem for the QRW, as

stated in the Theorem 1.

Now we point out two remarks. First, although the Hilbert spaces are
complex, if we multiply the initial state by a complex number, there is no
change in the particle space distribution at final time. That is, for any ζ ∈ C
of unitary modulus, the distributions of position at time n ∈ N, obtained
from Unψ and from Un(ζψ) are the same. The role of complex numbers is
noted in Quantum Mechanics when considering sums of states (giving rise to
the phenomena known as interference). Second, the signs appearing in (2)
generate cancellations and a very peculiar behavior2 of the QRW, as one can
see in the result below extracted from [5]:

Theorem 1 (Grimmett/Janson/Scudo’03). For any ψ ∈ Ω which is a
finite sum of localized states,

Xψ
n

n

n→∞−→ Y, in distribution,

where Y is a real random variable of density

f(y) =


1

π(1− y2)
√

1− 2y2
, if y ∈ [−

√
2
2 ,
√
2
2 ] ,

0 , otherwise.

(4)

2 In comparison with the classical random walk.
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4 Hydrodynamic limit for a system of independent
quantum random walks

We turn now our attention to a system of independent QRW’s. Fix once and
for all a continuous non-negative function γ : R→ R+ with compact support.

Definition 4. Let µn be a product measure on NZ whose marginal at site
k ∈ Z is a Poisson(γ( kn )), i.e.

µn{η ∈ NZ ; η(k) = j} =
e−λλj

j!
, (5)

being λ = γ( kn ).

In hydrodynamic limit, this is usually called a product measure with
slowly varying parameter, see [9]. Let Xk

n(1), Xk
n(2), Xk

n(3), . . . be indepen-
dent copies of the random variable Xψ

n given in Definition 3 choosing

ψ = |ek〉 ⊗ |+ 1〉. (6)

Remark 1. We consider initial states of the form (6) only for sake of clar-
ity. For finite sums of localized states, all results remains in force (properly
redefining the Poisson product measures above).

Denote by P and E the probability and the expectation, respectively, induced
by µn and the random variables defined above. When considering a single
random variableXk

n(j), we will write only P and E. Let 1A(ω) be the function
which is to one if ω ∈ A and zero otherwise.

Definition 5. For each x ∈ Z, define the random variable

ξn(`) =
∑
k∈Z

η(k)∑
j=1

1[Xk
n(j)=`]

. (7)

where η ∈ NZ is chosen according to µn, independently of all the random
variables Xk

n(j).

Intuitively, ξn(x) is obtained by the following procedure: first we choose
how many QRW’s start at each localized state |ek〉 ⊗ |+ 1〉 via the measure
µn. Then we evolve each QRW n steps. After that, we observe where each
QRW is. As explained before, the outcome is random, given by some Xk

n(j).
Looking at (7) we notice that the random variable ξn(`) counts how many of
those random variables gave as result the site ` ∈ Z.

Now, we are in position to the state our main result. We denote by Cc(R)
the set of continuous functions H : R → R with compact support. To not
overload the notation, we will write btnc, the integer part of tn, only by tn.



8 Alexandre Baraviera, Tertuliano Franco and Adriana Neumann

Theorem 2 (Hydrodynamic limit of QWR’s). For all t > 0 and for all
H ∈ Cc(R),

lim
n→∞

1

n

∑
`∈Z

H( `n ) ξtn(`) =

∫
R
H(x)ρ(t, x)dx

in probability, where the function ρ : R+ × R→ R+ is given by

ρ(t, x) = (γ ∗ ft)(x) :=

∫
R
γ(y) 1

t f(x−yt ) dy , (8)

where f is the function defined in (4) and ft(x) := 1
t f(xt ).

We notice that the time tn = btnc appearing in the previous statement corre-
sponds to the so-called ballistic scaling. For models where the time scaling is
btn2c, it is called the diffusive scaling. The limit for a system of independent
quantum random walks occurs in the ballistic scaling, while for unbiased
classical random walks it occurs in the diffusive scale. This is an intrinsic
characteristic of quantum random walks: because of the aforementioned can-
cellations, they move faster than the classical random walks.

On the other hand, the time evolution of the initial profile γ according
to γ ∗ ft is somewhat slower than the equivalent time evolution obtained in
the case of classical independent random walks, where the initial profile γ
evolves through the heat equation’s semigroup. For any positive time, the
solution of heat equation starting from γ is positive everywhere3, but this
does not happen with γ ∗ ft. Since f and γ have compact support, for any
time t > 0, the function γ ∗ ft has compact support as well, hence it is not
positive everywhere. This means that the diffusion of mass through γ ∗ft has
finite speed of propagation4, differently from the diffusion given by the heat
equation.

5 Local equilibrium

In this section, we prove a result usually called in the literature as the conser-
vation of local equilibrium, which is its hand implies the hydrodynamic limit
as stated in Theorem 2.

We begin with some topological considerations. In the space NZ endowed
with the distance

d(η1, η2) =
∑
k∈Z

1

2|k|
|η1(k)− η2(k)|

1 + |η1(k)− η2(k)|
,

3 The so-called infinite propagation speed in PDE’s, see [7, Page 49].
4 Physically, to speak about finite propagation speed for QRW’s it is necessary to go further

into the Lieb-Robinson bound, see [10]. We did not investigate such subject in this paper.
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denote by {τk ; k ∈ Z} the group of translations. In other words, τkη is the
configuration given by

(τkη)(j) = η(j + k) .

The action of the translation group is naturally extended to the space of
probability measures on NZ. For k ∈ Z and a probability measure µ on NZ,
we denote by τkµ the unique probability measure such that∫

f(η)(τkµ)(dη) =

∫
f(τkη)µ(dη)

for all integrable continuous functions f in the topology induced by the afore-
mentioned distance.

For c > 0, define νc as the product probability measure on NZ whose
marginals are Poisson probability measures with the same parameter c > 0,
i.e,

νc{η ; η(k) = `} = e−c
c`

`!
,

for any k ∈ Z. Informally, the conservation of local equilibrium says that
under suitable hypothesis on the initial distribution of particles, the distribu-
tion of the observed particles at time btnc is, in an asymptotic sense, locally
a Poisson product measure whose parameter is a function of time and space.
Its precise statement is

Theorem 3 (Conservation of local equilibrium). Let αtn be the proba-
bility measure on NZ induced by the random element

ξtn := (. . . , ξtn(−2), ξtn(−1), ξtn(0), ξtn(1), . . .),

see the Definition 5. For x ∈ R and n ∈ N, denote xn := bxnc. Then, for
any x ∈ R and any t > 0,

lim
n→∞

τxnαtn = νρ(t,x)

in the sense of weak convergence of probability measures5, where ρ(t, x) is the
function defined in (8).

Proof. In order to not overload notation, we start by considering the case
t = 1. The general statement is postponed to the end of the proof.

The weak convergence of probability measures on NZ is equivalent to the
convergence of its finite dimensional distributions, see [2]. Moreover, the con-
vergence of the finite dimensional distributions is characterized by the con-
vergence of their Laplace transforms. Hence, we concern our attention to the
convergence of the Laplace transform

5 See reference [2].
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E
[

exp
{
−
∑
`∈Z

λ(`) ξn(`)
}]

,

where λ : Z→ R+ is a function that is non zero only on a finite subset of Z.
By (7),

∑
`∈Z

λ(`)ξn(`) =
∑
`∈Z

λ(`)
∑
k∈Z

η(k)∑
j=1

1[Xk
n(j)=`]

=
∑
k∈Z

η(k)∑
j=1

λ(Xk
n(j)) .

Recalling the independence of the random variables and the equality above,
we obtain

E
[

exp
{
−
∑
`∈Z

λ(`) ξn(`)
}]

=
∏
k∈Z

E
[

exp
{ η(k)∑
j=1

λ(Xk
n(j))

}]
=
∏
k∈Z

∫
E
[

exp
{
− λ(Xk

n(1))
}]η(k)

dµn ,

(9)

where E is the expectation over a single random variable Xk
n(1). Let

βk := E
[

exp
{
− λ(Xk

n(1))
}]

.

Under µn, the random variable η(k) has Poisson distribution given by (5).
Thus, ∫

β
η(k)
k dµn = exp

{
γ( kn )(βk − 1)

}
.

Applying this to (9) we are lead to

E
[

exp
{
−
∑
`∈Z

λ(`) ξn(`)
}]

=
∏
k∈Z

exp
{
γ( kn )(βk − 1)

}
= exp

{∑
k∈Z

γ( kn )(βk − 1)
}
.

(10)

Denote by pn(k, `) the probability of the quantum random walk, starting at
ψ = ek⊗|+1〉, after a time n, have been observed at the position ` ∈ Z. That
is,

pn(k, `) := P
[
Xk
n(1) = `

]
.

Therefore,

βk := E
[

exp
{
− λ(Xk

n(1))
}]

=
∑
`∈Z

e−λ(`)pn(k, `) .

Replacing previous the formula in (10) and interchanging summations, we
get to
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E
[

exp
{
−
∑
`∈Z

λ(`) ξn(`)
}]

= exp
{∑
`∈Z

(e−λ(`) − 1)
∑
k∈Z

γ( kn )pn(k, `)
}
.

The formula above characterizes the measure αn on NZ (induced by the
random element ξn) as a product measure whose marginal at the site ` ∈ Z
is a Poisson probability measure of parameter

B(`, n) :=
∑
k∈Z

γ( kn ) pn(k, `) .

As a consequence of symmetry of the Hadamard operator, it is easy to verify
that pn(k, `) = pn(`, k). This implies

B(`, n) =
∑
k∈Z

γ( kn ) pn(`, k) = E
[
γ
(
X`

n(1)
n

)]
.

Given x ∈ R and n ∈ N, recall the notation xn = bxnc. By Theorem 1, since
γ is smooth, and since f is an even function,

lim
n→∞

B(xn, n) = lim
n→∞

E
[
γ
(
Xxn

n

n

)]
= lim

n→∞
E
[
γ
(
X0

n+xn
n

)]
=

∫
R
γ(y + x) f(y) dy

=

∫
R
γ(y) f(x− y) dy .

Since αn is a product measure, the limit above implies that

lim
n→∞

τxnαn = νρ(1,x) ,

proving the statement for t = 1. For general t > 0, one has to replace Xk
n(j)

by Xk
tn(j), keeping µn unchanged. Denote by αtn the measure on NZ induced

by ξtn. In this situation, it is straightforward to check that αtn is also a
product measure whose marginal has Poisson distribution and the limit for
its parameter is given by

lim
n→∞

B(xn, tn) = lim
n→∞

E
[
γ
(
Xxn

tn

n

)]
= lim

n→∞
E
[
γ
(
tX0

tn

tn + xn
n

)]
=

∫
R
γ(ty + x) f(y) dy

=

∫
R
γ(y) 1

t f(x−yt ) dy .
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Since αtn is a product measure, the limit above implies that

lim
n→∞

τxnαtn = νρ(t,x) ,

concluding the proof.

We shall prove Theorem 2 now.

Proof (Proof of Theorem 2). It is a known result that the conservation of local
equilibrium, proved in Theorem 3, implies the hydrodynamic limit stated in
Theorem 2, see for instance [9, chapter 3].
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