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LARGE DEVIATIONS FOR THE EXCLUSION PROCESS
WITH A SLOW BOND

BY TERTULIANO FRANCO1 AND ADRIANA NEUMANN2

Universidade Federal da Bahia and Universidade Federal do Rio Grande do Sul

We consider the one-dimensional symmetric simple exclusion process
with a slow bond. In this model, whilst all the transition rates are equal to
one, a particular bond, the slow bond, has associated transition rate of value
N−1, where N is the scaling parameter. This model has been considered in
previous works on the subject of hydrodynamic limit and fluctuations. In this
paper, assuming uniqueness for weak solutions of hydrodynamic equation
associated to the perturbed process, we obtain dynamical large deviations
estimates in the diffusive scaling. The main challenge here is the fact that the
presence of the slow bond gives rise to Robin’s boundary conditions in the
continuum, substantially complicating the large deviations scenario.

1. Introduction. In this paper, we present dynamical large deviations esti-
mates for the Symmetric Simple Exclusion Process (SSEP) with a slow bond. The
SSEP is a largely studied process both in probability and statistical mechanics. It
consists of particles that perform independent random walks in a certain graph,
except for the exclusion rule that prevents two or more particles from occupying
the same site.

The SSEP with a slow bond is characterized by a defect at a fixed bond. The
graph here considered is TN = Z/NZ, the discrete one-dimensional torus with N

sites. Let us describe this process in terms of clocks. At each bond, we associate a
different Poisson clock, all of them independent. When a clock rings, the occupa-
tion at the sites connected by the corresponding bond are exchanged. Of course, if
both sites are empty or occupied, nothing happens. We call the parameters of those
Poisson clocks of exchange rates. All exchange rates are equal to one, except at
the slow bond which has exchange rate N−1, which slows down the passage of
particles there. Notice that the choice of the exchange rates characterizes the non-
homogeneity of the environment.

This model has origin in the models considered in [2, 7]. In [2], the exchange
rate at a bond of vertices x and x + 1 is taken as [N(W(x + 1/N)−W(x/N))]−1,
where W is a α-stable subordinator of a Lévy process. In the same line, [7] dealt
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with exchange rates driven by a general, nonrandom, strictly increasing func-
tion W . The SSEP with a slow bond is in fact a particular case of the model
considered in [7].

In order to understand the collective behavior of the microscopic system, a nat-
ural question is the limit for the time evolution of the spatial density of particles,
usually called hydrodynamic limit; see [9] and references therein. The limiting
density of a given system is usually characterized as the weak solution of some
partial differential equation, being the associated equation denominated hydrody-
namic equation.

By [4, 6, 7], the hydrodynamic limit of the SSEP with a slow bond is well
understood, being the hydrodynamic equation given by following heat equation
with Robin’s boundary conditions:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

∂tρ(t, u) = ∂2
uρ(t, u) t > 0, u ∈ T\{0},

∂uρ
(
t,0+) = ∂uρ

(
t,0−) = ρ

(
t,0+)− ρ

(
t,0−) t > 0,

ρ(0, u) = γ (u) u ∈ T,

where T denotes the continuous one-dimensional torus, 0+ and 0− denote the
side limits around 0 ∈ T and γ : T → [0,1] is a density profile. The boundary
condition above can be interpreted as Fick’s law: the rate in which mass is ex-
changed between two media is proportional to the difference of concentration in
each medium.

The natural questions that emerge in the sequence are fluctuations and large de-
viations with respect to the expected limit. Equilibrium fluctuations for the SSEP
with a slow bond has been studied in [5]. In this work, we analyze the correspond-
ing large deviations, consisting in the occurrence rate of events differing from the
expected limit in the scaling of the hydrodynamic limit. The large deviations of a
Markov process come from two origins. One part are deviations from the initial
measure, and the second are deviations from the dynamics. These are called stati-
cal and dynamical large deviations, respectively. Since the invariant measures for
the dynamics here considered are Bernoulli product measure, for which the large
deviations are well known, we will treat only the dynamical large deviations: the
system will start from deterministic initial configurations associated in some sense
(Definition 2.1) to a macroscopic profile.

The main difficulty for establishing large deviations for the SSEP with a slow
bond of parameter N−1 comes from the fact that the limiting occupations at the
vertices of the slow bond depend on time, as we can see in the Robin’s boundary
conditions above. In important previous papers [1] and [3], the authors have con-
sidered exclusion processes with fixed rate of incoming and outcoming particles
at the boundaries leading to Dirichlet’s boundary conditions, therefore, with time
independent values at the boundaries.

Here, it has been considered a single slow bond. An extension to a finite number
of slow bonds (in the setting of [4]) would be straightforward, with no additional
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obstacles. However, it would carry on the notation and probably lead to loss of
clarity. For this reason, we decided to focus in the single slow bond case. What
is still far from manageability are the large deviations for the model of [7], which
deals with much stronger spatial nonhomogeneity (a dense set of slow bonds is
allowed there). This is a very interesting and challenging problem.

An important ingredient in the large deviations proof consists in establishing
the law of large numbers for a suitable set of perturbations of the original systems.
The family of perturbations we have considered is the weakly asymmetric exclu-
sion process (WASEP) with a slow bond. Its hydrodynamic equation is a nonlin-
ear diffusive partial differential equation with nonlinear Robin’s boundary condi-
tions. Assuming uniqueness of weak solutions of this equation, which is a delicate
question due to the nonlinearity at the boundary, we prove the corresponding hy-
drodynamic limit. Existence of weak solutions is granted by the tightness of the
processes.

The Radon–Nikodym derivative of the perturbed process with respect to the
original process naturally leads to the expression of the large deviations rate func-
tional. A difficulty in the proof of the upper bound comes from fact the Radon–
Nikodym derivative obtained is not a function of the empirical measure. To over-
come this obstacle, we show that the Radon–Nikodym derivative is superexponen-
tially close to a function of the empirical measure. Moreover, following the steps
of [1, 3], we define an energy and then prove that trajectories with infinite energy
are not relevant in the large deviations regime. These results enable us to invoke
the Minimax lemma, which is an important device to obtain large deviations upper
bound for compact sets. Exponential tightness finally leads to the upper bound for
closed sets.

Since the upper bound is achieved via an optimization over perturbations, the
rate functional obtained turns out to be expressed by a variational expression. On
the other hand, for the large deviations lower bound, it is required to find the cheap-
est perturbation that leads the system to a given profile distinct from the expected
limit. In other words, it is necessary to solve the variational expression of the rate
function, at least for a sufficiently large class of density profiles. This is precisely
what we do in the large deviations lower bound, by means of a proof surprisingly
simple. In fact, the proof (of Proposition 6.1) consists essentially in checking that
the perturbation H that leads the system to a limit ρH is the cheapest one. Indeed,
a difficult part of the work was to find the correct class of perturbations for the
dynamics and fulfill the technical details.

Then, since the rate functional is convex in a specific sense, by a density argu-
ment we extend the lower bound for the class of smooth profiles. The extension
for general profiles is a hard problem of convex analysis and illustrates that there
is much to be developed in terms in of Orlicz spaces as devices in large deviations
schemes. This is subject of future work.

The paper is organized as follows. In Section 2, we introduce notation and state
the main results, namely Theorem 2.8 and Theorem 2.12. In Section 3, we es-
tablish the replacement lemma and the energy estimates. In Section 4, we prove
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FIG. 1. The bond of vertices {−1,0}, the slow bond, has particular rates associated to it.

Theorem 2.8. In Section 5, we prove the upper bound. Finally, the lower bound for
smooth profiles is presented in the Section 6.

2. Model and statements. Let TN = Z/NZ = {0,1,2, . . . ,N − 1} be the
one-dimensional discrete torus with N points. In each site of TN , we allow at most
one particle. In other words, we consider configurations of particles η ∈ {0,1}TN .
We say that η(x) = 0 if the site x ∈ TN is vacant, and η(x) = 1 if the site x ∈ TN is
occupied. Notice that x = 0 and x = N are the same site. Denote by �N = {0,1}TN

this state space.
The exclusion process with a slow bond at the bond of vertices −1,0, which has

been considered in [4, 6, 7], can be described as follows. To each bond of TN , we
associate a Poisson clock, and these are assumed to be independent. If the bond is
at the vertices −1,0, the parameter of the Poisson is taken as 1/N . All the other
Poisson clocks have parameter one. When a clock rings, the occupation values of
η at the vertices of the associated bond are exchanged. The smaller parameter at
the bond of vertices −1,0 slows the passage of particles crossing it, hence we get
the name slow bond (see Figure 1).

This Markov process can also be characterized in terms of its infinitesimal gen-
erator LN , which acts on functions f : �N →R as

(2.1) (LNf )(η) = 1

N

[
f
(
η−1,0)− f (η)

]+ ∑
x∈TN

x �=−1

[
f
(
ηx,x+1)− f (η)

]
,

where ηx,x+1 is the configuration obtained from η by exchanging the variables
η(x), η(x+1): ηx,x+1(x) = η(x+1), ηx,x+1(x+1) = η(x) and ηx,x+1(y) = η(y),
if y �= x, x + 1.

Denote by {ηt ; t ≥ 0} the Markov process on �N = {0,1}TN associated with the
generator LN , defined in (2.1), speeded up by N2. The dependency of ηt in N will
be omitted to keep notation as simple as possible.

Throughout the paper, we fix a time-horizon T > 0. Consider the trajectories
of the Markov process ηt with t ∈ [0, T ]. Let D([0, T ],�N) be the path space of
càdlàg time trajectories taking values on �N = {0,1}TN . For short, we will denote
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this space just by D�N
. Given a measure μN on �N , denote by PμN

the proba-
bility measure on D�N

induced by the initial state μN and the Markov process
{ηt ; t ≥ 0}. Expectation with respect to PμN

will be denoted by EμN
. Let νN

α be
the Bernoulli product measure on �N with marginals given by

νN
α

{
η;η(x) = 1

} = α ∀x ∈ TN.

These measures {νN
α ;0 ≤ α ≤ 1} are invariant, in fact reversible, for the dynam-

ics described above. Denote by T = [0,1] the one-dimensional continuous torus,
where we identify the points 0 and 1.

DEFINITION 2.1. A sequence of probability measures {μN ;N ≥ 1} is said to
be associated to a profile ρ0 : T → [0,1] if

(2.2) lim
N→∞μN

[
η;

∣∣∣∣ 1

N

∑
x∈TN

H

(
x

N

)
η(x) −

∫
H(u)ρ0(u) du

∣∣∣∣ > δ

]
= 0,

for every δ > 0 and every continuous functions H : T →R.

The quantity introduced in the definition above can be reformulated in terms of
empirical measures. We start by defining the set

(2.3) M = {
μ;μ is a positive measure on T with μ(T) ≤ 1

}
,

this space is endowed with the weak topology. Consider the measure πN ∈ M,
which is obtained by rescaling space by N and by assigning mass N−1 to each
particle:

πN(η, du) = 1

N

∑
x∈TN

η(x)δ x
N
(du),

where δu is the Dirac measure concentrated on u. The measure πN(η, du) is
called the empirical measure associated to the configuration η. With this nota-
tion, 1

N

∑
x∈TN

H( x
N

)η(x) is the integral of H with respect to the empirical mea-
sure πN , denoted by 〈πN,H 〉.

We consider the time evolution of the empirical measure πN
t associated to the

Markov process {ηt ; t ≥ 0} by

(2.4) πN
t (du) = πN(ηt , du) = 1

N

∑
x∈TN

ηt (x)δ x
N
(du).

Note that (2.2) is equivalent to saying that πN
0 converges in distribution to

ρ0(u) du. Let D([0, T ],M) be the space of M-valued càdlàg trajectories π :
[0, T ] → M endowed with the Skorohod topology. For short, we will use the no-
tation DM = D([0, T ],M). Denote by QN

μN
the measure on the path space DM

induced by the measure μN and the empirical process πN
t introduced in (2.4).
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2.1. Frequently used notation. Before stating results we present some impor-
tant notation to be used throughout paper.

• The indicator function of a set A will be written by 1A(u), which is one when
u ∈ A and zero otherwise.

• Given a function H : T → R, we will denote H(0−) and H(0+), respectively,
for the left and right side limits of H at the point 0 ∈ T.

• Given a function H : T → R, denote δH(0) = H(0+) − H(0−) its jump size at
zero. And denote δNHx = H(x+1

N
)−H( x

N
). Hence, provided H is right contin-

uous at zero, δNH−1 converges to δH(0).
• Given a function g : [0, T ] × T, we write gt (u) to denote g(t, u). It should not

be misunderstood with the notation for time derivative, namely ∂tg(t, u).
• Given a nonnegative integer k, denote by Ck(T) the set of real-valued functions

with domain T with continuous derivatives up to order k. As natural, C(T) de-
notes the set of continuous functions. For nonnegative integers j and k, denote
by Cj,k([0, T ]×T) the set of real valued functions with domain [0, T ]×T with
continuous derivatives up to order j in the first variable (time), and continuous
derivatives up to order k in the second variable (space).

• The notation Ck means compact support contained in [0, T ] × (0,1). For in-
stance, C

j,k
k ([0, T ] × (0,1)) denotes the subset of Cj,k([0, T ] × (0,1)) com-

posed of functions with compact support contained in [0, T ] × (0,1).
• The notation g(N) = O(f (N)) means g(N) is bounded from above by Cf (N),

where the constant C does not depend on N . The notation g(N) = o(f (N))

means limN→∞ g(N)/f (N) = 0.
• Despite we have denoted 〈πN

t ,H 〉 = 1
N

∑
x∈TN

H( x
N

)ηt (x), the bracket 〈·, ·〉
will also mean the inner product in L2(T) and in L2[0,1]. The double bracket
〈〈·, ·〉〉 will denote the inner product in L2([0, T ] ×T).

2.2. The hydrodynamic equation. The slow bond, as we will see, yields a dis-
continuity at the origin in the continuum limit. Therefore, discontinuous functions
at the origin are naturally required.

DEFINITION 2.2. Denote by C1,2([0, T ] × [0,1]) the space of functions H :
[0, T ] ×T → R such that:

1. H restricted to [0, T ] ×T\{0} belongs to C1,2([0, T ] ×T\{0}).
2. Identifying T\{0} with the open interval (0,1), H has a C1,2 extension to

[0, T ] × [0,1].
3. For any t ∈ [0, T ], H is right continuous at zero, that is, H(t,0) =

limx→0+ H(t, x).

This space of test functions should not be misunderstood with C1,2([0, T ]×T).
In words, a function H belongs to this space C1,2([0, T ]× [0,1]) if, “opening” the
torus at 0, the function has a C1,2 extension to the closed interval [0,1].
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DEFINITION 2.3 (Sobolev space). Let H1(0,1) be the set of all locally
summable functions ζ : (0,1) →R such that there exists a function ∂uζ ∈ L2(0,1)

satisfying 〈∂uG, ζ 〉 = −〈G,∂uζ 〉, for all G ∈ C∞
k ((0,1)). For ζ ∈ H1(0,1), we de-

fine the norm

‖ζ‖H1(0,1) := (‖ζ‖2
L2(0,1)

+ ‖∂uζ‖2
L2(0,1)

)1/2
.

Let L2(0, T ;H1(0,1)) be the space of all measurable functions ξ : [0, T ] →
H1(0,1) such that

‖ξ‖2
L2(0,T ;H1(0,1))

:=
∫ T

0
‖ξt‖2

H1(0,1)
dt < ∞.

REMARK 2.4. An equivalent and useful definition for the Sobolev space
L2(0, T ;H1(0,1)) is the set of bounded functions ξ : [0, T ] × T → R such that
there exists a function ∂ξ ∈ L2([0, T ] ×T) satisfying

〈〈∂uH, ξ〉〉 = −〈〈H,∂ξ〉〉,
for all functions H ∈ C

0,1
k ([0, T ] × (0,1)).

DEFINITION 2.5 (The hydrodynamic equation for the SSEP with a slow bond).
Consider a measurable density profile γ : T → [0,1]. A function ρ : [0, T ]×T→
[0,1] is said to be a weak solution of the parabolic differential equation with Robin
boundary conditions

(2.5)

⎧⎪⎪⎨
⎪⎪⎩

∂tρ = ρ,

ρ0(·) = γ (·),
∂uρt

(
0+) = ∂uρt

(
0−) = ρt

(
0+)− ρt

(
0−),

if the following two conditions are fulfilled:

(1) ρ ∈ L2(0, T ;H1(0,1)).
(2) For all functions G ∈ C1,2([0, T ] × [0,1]) and for all t ∈ [0, T ], ρ satisfies

the integral equation

〈ρt ,Gt 〉 − 〈γ,G0〉 =
∫ t

0

〈
ρs, (∂s + )Gs

〉
ds

+
∫ t

0

{
ρs

(
0+)∂uGs

(
0+)− ρs

(
0−)∂uGs

(
0−)}ds(2.6)

−
∫ t

0

(
ρs

(
0+)− ρs

(
0−))(Gs

(
0+)− Gs

(
0−))ds.

Assumption (1) guarantees that the boundary integrals are well-defined. The
Robin (mixed) boundary conditions in (2.5) can be interpreted as the Fick law
at the point x = 0. This is discussed in more detail in [4]. The uniqueness and
existence of weak solutions of (2.5) was proved in [6]. Moreover, it was proved in
[4, 6, 7] and we have the following.
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THEOREM 2.6. Fix a measurable density profile γ : T → [0,1] and consider
a sequence of probability measures μN on �N associated to γ in the sense of
(2.2). Then, for any t ∈ [0, T ],

(2.7) lim
N→∞PμN

[∣∣∣∣ 1

N

∑
x∈TN

G

(
x

N

)
ηt (x) −

∫
G(u)ρt (u) du

∣∣∣∣ > δ

]
= 0,

for every δ > 0 and every function G ∈ C(T). Here, ρ is the unique weak solution
of the linear partial differential equation (2.5) with ρ0 = γ .

2.3. The weakly asymmetric exclusion process with a slow bond. In order to
obtain the large deviations of a Markov process, a natural step is to prove the LLN
for a class of perturbations of the original Markov process. In our case, the correct
perturbations will be given by the class of weakly asymmetric exclusion processes
with a slow bond, to be defined ahead. For short, we will call it just WASEP with a
slow bond.

Recall Definition 2.2. Given a function H ∈ C1,2([0, T ] × [0,1]), consider the
time nonhomogeneous Markov process whose generator at time t acts on functions
f : �N →R as(

LH
N,tf

)
(η)

= ∑
x∈TN

ξN
x eHt (

x+1
N

)−Ht(
x
N

)η(x)
(
1 − η(x + 1)

)[
f
(
ηx,x+1)− f (η)

]
(2.8)

+ ∑
x∈TN

ξN
x e−Ht(

x+1
N

)+Ht(
x
N

)η(x + 1)
(
1 − η(x)

)[
f
(
ηx,x+1)− f (η)

]
,

where ηx,x+1 is the configuration obtained from η by exchanging the variables
η(x), η(x + 1), and

(2.9) ξN
x =

{
1 if x ∈ TN\{−1},
N−1 if x = −1.

In the particular case H is a constant function, the generator LH
N,t turns out to be

equal to the generator LN defined in (2.1). We emphasize that the asymmetry is
weak in all the bonds except at the bond of vertices −1,0. Since the function H

is possibly discontinuous at the origin, the asymmetry in that bond does not go to
zero in the limit, appearing indeed in the hydrodynamical equation.

Let {ηH
t ; t ≥ 0} be the nonhomogeneous Markov process with generator LH

N,t

defined in (2.8) speeded up by N2. Given a probability measure μN on �N , denote
by PH

μN
the probability measure on the space of trajectories D�N

induced by the
Markov process {ηH

t ; t ≥ 0} starting from the measure μN .
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DEFINITION 2.7 (Hydrodynamic equation for the WASEP with a slow bond).
Let γ : T → R be a bounded density profile and fix H ∈ C1,2([0, T ] × [0,1]).
A function ρ : [0, T ] × T → [0,1] is said to be a weak solution of the partial
differential equation

(2.10)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ = ρ − 2∂u

(
χ(ρ)∂uH

)
,

ρ0(·) = γ (·),
∂uρt

(
0+) = 2χ

(
ρt

(
0+))∂uHt

(
0+)− ϕt(ρ,H),

∂uρt

(
0−) = 2χ

(
ρt

(
0−))∂uHt

(
0−)− ϕt(ρ,H),

where χ(α) = α(1 − α) and

(2.11) ϕt(ρ,H) = ρt

(
0−)(1 − ρt

(
0+))eδHt (0) − ρt

(
0+)(1 − ρt

(
0−))e−δHt (0),

if the following two conditions are fulfilled:

(1) ρ ∈ L2(0, T ;H1(0,1)).
(2) For all functions G in C1,2([0, T ]× [0,1]), and all t ∈ [0, T ], ρ satisfies the

integral equation

〈ρt ,Gt 〉 − 〈γ,G0〉 =
∫ t

0

〈
ρs, (∂s + )Gs

〉
ds + 2

∫ t

0

〈
χ(ρs)∂uHs, ∂uGs

〉
ds

+
∫ t

0

{
ρs

(
0+)∂uGs

(
0+)− ρs

(
0−)∂uGs

(
0−)}ds(2.12)

+
∫ t

0
ϕs(ρ,H)δGs(0) ds.

The nonlinearity in mixed boundary conditions of (2.10) lead to a very com-
plicated problem of uniqueness. Existence of weak solutions of (2.10) is a conse-
quence of the tightness of the process, as we will see in Section 4. The assumption
on uniqueness of weak solutions of (2.10) is also needed in the proof of large devi-
ations, because its proof depends on the hydrodynamic limit for the WASEP with
a slow bond.

Our first result is the hydrodynamic limit for the WASEP with a slow bond.

THEOREM 2.8. Suppose uniqueness of weak solutions of PDE (2.10). Let H ∈
C1,2([0, T ] × [0,1]). Fix a continuous initial profile γ : T → [0,1] and consider
a sequence of probability measures μN on {0,1}TN associated to γ in the sense
(2.2). Then, for any t ∈ [0, T ],

lim
N→∞PH

μN

[∣∣∣∣ 1

N

∑
x∈TN

G

(
x

N

)
ηH

t (x) −
∫

G(u)ρt (u) du

∣∣∣∣ > δ

]
= 0,

for every δ > 0 and every function G ∈ C(T), where ρ is the unique weak solution
of (2.10) with ρ0 = γ .
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2.4. Large deviations principle. Denote by M0 the subset of M of all abso-
lutely continuous measures with density bounded by 1:

M0 = {
ω ∈ M;ω(du) = ρ(u)du and 0 ≤ ρ ≤ 1 almost surely

}
.

The set M0 is a closed subset of M endowed with the weak topology. This prop-
erty is inherited by D([0, T ],M0), which is a closed subset of DM for the Skoro-
hod topology. We will denote D([0, T ],M0) simply by DM0 .

DEFINITION 2.9. Given H ∈ C
0,1
k ([0, T ] × (0,1)) define EH : DM → R ∪

{∞} by

EH(π) =
{〈〈∂uH,ρ〉〉 − 2〈〈H,H 〉〉 if π ∈DM0 and π(du) = ρ(t, u) du,

∞ otherwise.

Furthermore, define the energy functional E : DM →R+ ∪ {∞} by

(2.13) E(π) = sup
H

EH (π),

where the supremum is taken over functions H ∈ C
0,1
k ([0, T ] × (0,1)).

In Section 3.5 we prove that if π ∈ DM and E(π) < ∞, then there exists ρ ∈
L2(0, T ;H1(0,1)) such that π(t, du) = ρt (u) du. Keeping this in mind, given H ∈
C1,2([0, T ] × [0,1]) and π ∈ DM, define

(2.14) ĴH (π) = �H (π) − �H(π),

where

�H (π) = 〈ρT ,HT 〉 − 〈ρ0,H0〉 −
∫ T

0

〈
ρt , (∂t + )Ht

〉
dt

−
∫ T

0

{
ρt

(
0+)∂uHt

(
0+)− ρt

(
0−)∂uHt

(
0−)}dt(2.15)

+
∫ T

0

(
ρt

(
0+)− ρt

(
0−))δHt(0) dt

and

�H(π) =
∫ T

0

〈
χ(ρt ), (∂uHt)

2〉dt +
∫ T

0
ρt

(
0−)(1 − ρt

(
0+))ψ(

δHt(0)
)
dt

(2.16)

+
∫ T

0
ρt

(
0+)(1 − ρt

(
0−))ψ(−δHt(0)

)
dt,

where ψ(x) = ex −x − 1 and δHt(0) = Ht(0+)−Ht(0−). It is worth highlighting
that, as functions of H , �H (π) is linear and �H(π) is convex.



LARGE DEVIATIONS FOR EXCLUSION WITH A SLOW BOND 11

DEFINITION 2.10. Given H ∈ C1,2([0, T ]×[0,1]), define the functional JH :
DM →R∪ {∞} by

JH (π) =
{
ĴH (π) if E(π) < ∞,

∞ otherwise.

DEFINITION 2.11. Let the rate functional I : DM →R+ ∪ {∞} be

I (π) = sup
H

JH (π),

being the supremum above over functions H ∈ C1,2([0, T ] × [0,1]).

The large deviations study is decomposed into the study of deviations from
the initial measure and that of deviations from the expected trajectory; see [9],
Chapter 10. Since the large deviations for Bernoulli product measures are well
known, we restrict ourselves to the deviations from the expected trajectory. We
start henceforth the process from a sequence of deterministic initial configurations.
This avoids the analysis of statical large deviations, since we interested here in
dynamical large deviations. Recall that QN

μN
is the measure on the path space DM

induced by the initial measure μN and the empirical process πN
t introduced in

(2.4). We are now in position to state the main result of the paper.

THEOREM 2.12. Let μN be a sequence of deterministic initial configurations
associated to a bounded density profile γ : T → R in the sense of the Defini-
tion 2.1. Then the sequence of measures {QN

μN
;N ≥ 1} satisfies the following large

deviation estimates:

(i) Upper bound: For any C closed subset of DM,

lim
N→∞

1

N
logQN

μN
[C] ≤ − inf

π∈C I (π).

(ii) Lower bound for smooth profiles: For any O open subset of DM,

lim
N→∞

1

N
logQN

μN
[O] ≥ − inf

π∈O∩DS
M0

I (π),

where DS
M0

denotes the set of paths π ∈ DM such that πt(du) = ρt (u) du with

ρ ∈ C1,2([0, T ] × [0,1]).

Item (i) of Theorem 2.12 is proved in Section 5. The proof of item (ii) is pre-
sented in Section 6.
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3. Super-exponential replacement lemmas and energy estimate. Both in
the proof of hydrodynamic limit for the WASEP with a slow bond and in the
proof of the large deviations principle for the SSEP with a slow bond, replacement
lemma and energy estimates play an important role. By a replacement lemma, we
mean a result that allows to replace the average time occupation in a site for the av-
erage time occupation in a box around that site. And by energy estimates we mean
a result assuring that time trajectories of the empirical measure are asymptotically
close to elements of a certain Sobolev space. In the proof of large deviations, we
will need such results in a super-exponential setting. In other words, the corre-
sponding probabilities must converge to one in a faster way than exponentially.

Proofs omitted in this section can be found in the extended version [8].

3.1. Definitions and estimates lemmas. Denote by H(μN |νN
α ) the entropy of

a probability measure μN with respect to the invariant measure νN
α . For a precise

definition and properties of the entropy, see [9]. It is well known the existence of a
constant K0 := K0(α) such that

(3.1) H
(
μN |νN

α

) ≤ K0N,

for any probability measure μN in �N . See, for instance, the Appendix of [4].
Denote by DN the Dirichlet form, which is defined by

DN(f ) = 〈−LN

√
f ,

√
f 〉νN

α
,

where f is a probability density with respect to νN
α . An elementary computation

shows that

DN(f ) = ∑
x∈TN

ξN
x

2

∫ (√
f
(
ηx,x+1

)−
√

f (η)
)2

dνN
α (η),

where ξN
x is defined in (2.9).

From this point on, abusing notation, we denote the greatest integer less than or
equal to εN simply by εN . Next, we define the local average of particles, which
corresponds to the mean occupation in a box around a given site. The idea is to
define a box around the site x in such a way it avoids the slow bond.

DEFINITION 3.1. If x ∈ TN is such that x
N

∈ T\(−ε,0), we define the local
average by

ηεN(x) = 1

εN

x+εN∑
y=x+1

η(y).

If x
N

∈ (−ε,0), define the local average by

ηεN(x) = 1

εN

−1∑
y=−εN

η(y).
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In accordance with to the previous definition of local density of particles, we
define an approximation of identity ιε in the continuous torus by

(3.2) ιε(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

1

ε
1(v,v+ε)(u) if v ∈ T\(−ε,0),

1

ε
1(−ε,0)(u) if v ∈ (−ε,0).

We also define the convolution (ψ ∗ιε)(v) = 〈ψ, ιε(·, v)〉, for a function ψ : T → R

or a measure ψ on the torus T. The following identity is relevant:

(3.3)
(
πN ∗ ιε

)( x

N

)
= ηεN(x) for all x ∈ TN.

To simplify notation, define the functions

(3.4) g1 : {0,1}T → R by g1(η) = η(0)
(
1 − η(1)

)
and

g̃1 : [0,1] × [0,1] → R by g̃1(α,β) = α(1 − β).

Also,

(3.5) g2 : {0,1}T → R by g2(η) = η(1)
(
1 − η(0)

)
and

g̃2 : [0,1] × [0,1] → R by g̃2(α,β) = β(1 − α).

LEMMA 3.2. Fix a function F : T → R and let f be a density with respect to
νN
α . Then, for any A > 0, the following inequalities hold:

1

N

∑
x �=−1

∫
F

(
x

N

){
τxgi(η) − g̃i

(
ηεN(x), ηεN(x + 1)

)}
f (η)dνN

α (η)

(3.6)

≤ 12Aε
∑

x �=−1

(
F

(
x

N

))2
+ 3

A
DN(f ),

1

N

∑
x∈TN

∫
F

(
x

N

){
η(x) − ηεN(x)

}
f (η)dνN

α (η)

(3.7)

≤ 4Aε
∑

x∈TN

(
F

(
x

N

))2
+ 1

A
DN(f ),

F

(−1

N

)∫ {
τ−1gi(η) − g̃i

(
ηεN(−1), ηεN(0)

)}
f (η)dνN

α (η)

(3.8)

≤ 6AεN

(
F

(−1

N

))2
+ 3

A
DN(f ),

∫ {
η(x) − ηεN(x)

}
f (η)dνN

α (η) ≤ 4NAε + 1

A
DN(f ), ∀x ∈ TN,(3.9)

with i = 1,2.
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LEMMA 3.3. Fix any function H : T →R and let f be a density with respect
to νN

α . Then∫ 1

εN

∑
x∈TN

H

(
x

N

){
η(x − εN) − η(x)

}
f (η)dνN

α (η)

(3.10)

≤ NDN(f ) + 2

N

∑
x∈TN

(
H

(
x

N

))2{
1 + 1

ε
1(−ε,0]

(
x

N

)}
.

Moreover, this inequality remains valid replacing {η(x − εN) − η(x)} by {η(x) −
η(x + εN)}.

3.2. Super-exponential replacement lemmas. In the large deviations proof, the
replacement lemma presented in Section 3.9 is not enough because we need to
prove that the difference between cylinder functions and functions of the density
field are super-exponentially small, that is, of order smaller that exp{−CN}, for
any C > 0. We begin by exhibiting a super-exponential replacement for the invari-
ant measure νN

α .

PROPOSITION 3.4. Let Fi : [0, T ] ×T →R, i = 1,2, such that

lim
N→∞

∫ T

0

((
F2

(
t,

−1

N

))2
+ 1

N

∑
x �=−1

(
F1

(
t,

x

N

))2)
dt < ∞.

For each ε > 0, consider

V
F1,F2
N,ε (t, η) := 1

N

∑
x �=−1

F1

(
t,

x

N

){
τxg1(η) − g̃1

(
ηεN(x), ηεN(x + 1)

)}

+ F2

(
t,

−1

N

){
τ−1g1(η) − g̃1

(
ηεN(−1), ηεN(0)

)}
,

where g1 and g̃1 have been defined in (3.4). Then, for any δ > 0,

(3.11) lim
ε↓0

lim
N→∞

1

N
logPνN

α

[∣∣∣∣
∫ T

0
V

F1,F2
N,ε (t, ηt ) dt

∣∣∣∣ > δ

]
= −∞.

Finally, it is true the same result with g2 and g̃2 in lieu of g1 and g̃1.

COROLLARY 3.5. Under the same hypothesis of the Proposition 3.4, for any
δ > 0,

(3.12) lim
ε↓0

lim
N→∞

1

N
logPμN

[∣∣∣∣
∫ T

0
V

F1,F2
N,ε (t, ηt ) dt

∣∣∣∣ > δ

]
= −∞.

Finally, the same result is still valid with g2 and g̃2 in lieu of g1 and g̃1.
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COROLLARY 3.6. Given a bounded function F : [0, T ] × T and x = −1 or
x = 0, let

V̂
F,x
N,ε (t, η) = F

(
t,

x

N

){
η(x) − ηεN(x)

}
.

Then, for any δ > 0,

(3.13) lim
ε↓0

lim
N→∞

1

N
logPμN

[∣∣∣∣
∫ T

0
V̂

F,x
N,ε (t, ηt ) dt

∣∣∣∣ > δ

]
= −∞.

3.3. Super-exponential energy estimate. Our goal here is to exclude trajecto-
ries with infinite energy in the large deviations regime. The next proposition is the
key in the energy estimates.

PROPOSITION 3.7. For any function H ∈ C
0,1
k ([0, T ] × (0,1)),and EH de-

fined in Definition 2.9, the following inequality holds:

lim
ε↓0

lim
N→∞

1

N
logPμN

[
EH

(
πN ∗ ιε

) ≥ l
] ≤ −l + K0, ∀l ∈ R.

COROLLARY 3.8. For any functions H1, . . . ,Hk ∈ C
0,1
k ([0, T ]× (0,1)) holds

(3.14) lim
ε↓0

lim
N→∞

1

N
logPμN

[
max

1≤j≤k
EHj

(
πN ∗ ιε

) ≥ l
]
≤ −l + K0.

3.4. Replacement lemma. The result of this subsection is a consequence of the
super-exponential replacement lemmas and it is used in the proof of hydrodynamic
limit.

PROPOSITION 3.9 (Replacement lemma). Let F : T→ R be a bounded func-
tion and (μN)N≥1 any sequence of measures. Then, for all i = 1,2 and t ∈ [0, T ],
we have

lim
ε↓0

lim
N→∞EμN

[∣∣∣∣
∫ t

0

1

N

∑
x �=−1

F

(
x

N

){
τxgi(ηs)

− g̃i

(
ηεN

s (x), ηεN
s (x + 1)

)}
ds

∣∣∣∣
]

= 0,

lim
ε↓0

lim
N→∞EμN

[∣∣∣∣
∫ t

0

1

N

∑
x∈TN

F

(
x

N

){
ηs(x) − ηεN

s (x)
}
ds

∣∣∣∣
]

= 0,(3.15)

lim
ε↓0

lim
N→∞EμN

[∣∣∣∣
∫ t

0

{
τ−1gi(ηs) − g̃i

(
ηεN

s (−1), ηεN
s (0)

)}
ds

∣∣∣∣
]

= 0,

lim
ε↓0

lim
N→∞EμN

[∣∣∣∣
∫ T

0

{
ηs(x) − ηεN

s (x)
}
ds

∣∣∣∣
]

= 0, for x = −1,0.
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3.5. Sobolev space. We prove in this section that any limit point Q∗ of the
sequence QN

μN
is concentrated on trajectories ρ(t, u) du, where ρ belongs to a

certain Sobolev space to be defined ahead. Let Q∗ be a limit point of the sequence
QN

μN
along some subsequence.

PROPOSITION 3.10. The measure Q∗ is concentrated on paths ρt (u) du such
that ρ ∈ L2(0, T ;H1(0,1)).

The proof is based on the Riesz representation theorem and follows from the
next lemma.

LEMMA 3.11.

EQ∗
[
sup
H

{∫ T

0

∫
T

∂uH(s,u)ρs(u) duds − 2
∫ T

0

∫
T

H(s,u)2 duds

}]
≤ K0,

where the supremum is carried over all functions H in C
0,1
k ([0, T ] × (0,1)).

4. Hydrodynamic limit of the WASEP with a slow bond. The empirical
measure πN

t corresponding to {ηH
t ; t ≥ 0} is defined in the same way of (2.4).

Denote by QH
μN

the probability measure on the space of trajectories DM induced
by the empirical measure πN

t .

PROPOSITION 4.1. Consider a bounded density profile ρ0 : T → R and H ∈
C1,2([0, T ] × [0,1]). The sequence of probabilities {QH

μN
;N ≥ 1} converges in

distribution to the probability measure concentrated on the absolutely continuous
path πt(du) = ρt (u) du, where density ρ is the unique weak solution of the partial
differential equation (2.10).

Observe that Theorem 2.8 is a corollary of the previous proposition. The proof
of above is divided in two parts. In Section 4.1, we show that the sequence
{QH

μN
;N ≥ 1} is tight. Section 4.4 is reserved to the characterization of limit points

of the sequence. Uniqueness of limit points is assumed, since we were not able to
prove uniqueness of weak solutions of the partial differential equation (2.10).

4.1. Tightness. In this subsection, we present the tightness of {QH
μN

}. The
proof of this result follows usual ideas and it will be omitted here.

PROPOSITION 4.2. For fixed H ∈ C1,2([0, T ] × [0,1]), the sequence of mea-
sures {QH

μN
;N ≥ 1} is tight in the Skorohod topology of DM.



LARGE DEVIATIONS FOR EXCLUSION WITH A SLOW BOND 17

4.2. Radon–Nikodym derivative. In this section, we deal with the Radon–
Nikodym derivative between the SSEP with a slow bond and the WASEP with
a slow bond. Its formula will be useful both in the proof of the hydrodynamic limit
for the WASEP with a slow bond and in the proof of the large deviations for the
SSEP with a slow bond.

By (dPH
μN

/dPμN
)(t), we denote the Radon–Nikodym derivative of PH

μN
with

respect to PμN
restricted to the σ -algebra generated by {ηs,0 ≤ s ≤ t}. It is a

general fact of stochastic processes that (dPH
μN

/dPμN
)(t) is a mean-one positive

martingale. The explicit formula of the Radon–Nikodym derivative between two
Markov process on a countable space state3 shows that (dPH

μN
/dPμN

)(T ) is equal
to

exp
{
N

[〈
πN

T ,HT

〉− 〈
πN

0 ,H0
〉

(4.1)

− 1

N

∫ T

0
e−N〈πN

t ,Ht 〉(∂t + N2LN

)
eN〈πN

t ,Ht 〉 dt

]}
.

We are going to write just dPH
μN

/dPμN
for dPH

μN
/dPμN

(T ), since the time horizon
T > 0 is fixed. Performing elementary calculations, we can rewrite (4.1) as

exp
{
N
〈
πN

T ,HT

〉− N
〈
πN

0 ,H0
〉− N

∫ T

0

〈
πN

t , ∂tHt

〉
dt

− N2
∫ T

0

∑
x∈TN

ξN
x ηt (x)

(
1 − ηt (x + 1)

)(
eδNHx − 1

)
dt(4.2)

− N2
∫ T

0

∑
x∈TN

ξN
x ηt (x + 1)

(
1 − ηt (x)

)(
e−δNHx − 1

)
dt

}
.

Since H ∈ C1,2([0, T ] × [0,1]), by Taylor’s expansion and the inequality |eu −
1 − u − (1/2)u2| ≤ (1/6)|u|3e|u|, we observe that all the expressions

• 1
N

∑
x �=−1,0 ηt (x)N2(δNHx − δNHx−1) − 1

N

∑
x∈TN

ηt (x)∂2
uHt(

x
N

),

• N2(e±δNHx ∓ δNHx − 1) − 1
2(∂uHt)

2( x
N

),
• NδNH0 − ∂uHt(

0
N

) and NδNH−2 − ∂uHt(
−1
N

)

are, in modulus, of order 1
N

. By these facts, we can rewrite (4.2) as

exp
{
N

[〈
πN

T ,HT

〉− 〈
πN

0 ,H0
〉− ∫ T

0

〈
πN

t , (∂t + )Ht

〉
dt

−
∫ T

0

{
ηt (0)∂uHt

(
0

N

)
− ηt (−1)∂uHt

(−1

N

)}
dt + OH,T

(
1

N

)

3See Appendix of [9].
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−
∫ T

0

1

N

∑
x �=−1

[
ηt (x)

(
1 − ηt (x + 1)

)
(4.3)

+ ηt (x + 1)(1 − ηt (x)
]1

2
(∂uHt)

2
(

x

N

)
dt

−
∫ T

0
ηt (−1)

(
1 − ηt (0)

)(
eδNH−1 − 1

)
dt

−
∫ T

0
ηt (0)

(
1 − ηt (−1)

)(
e−δNH−1 − 1

)
dt

]}
.

As we shall see, the expression above is enough in order to prove the hydrody-
namical limit of the WASEP with a slow bond. Further estimates on the Radon–
Nikodym derivative will be presented at Section 5.

4.3. Sobolev space. In this section, we prove that any limit point QH∗ of the se-
quence QH

μN
is concentrated on trajectories ρt(u) du belonging the Sobolev space

of Definition 2.3. By expression (4.3), there exists a constant C(H,T ) > 0 not
depending on N such that

(4.4)
∥∥∥∥dPH

μN

dPμN

∥∥∥∥∞
≤ exp

{
C(H,T )N

}
.

It together with Proposition 3.10 implies the next result.

PROPOSITION 4.3. The measure QH∗ is concentrated on paths ρt (u) du such
that ρ ∈ L2(0, T ;H1(0,1)).

4.4. Characterization of limit points. Let QH∗ be a limit point of the sequence
{QH

μN
: N ≥ 1} and assume, without loss of generality, that {QH

μN
: N ≥ 1} con-

verges to QH∗ . The existence of QH∗ is guaranteed by Proposition 4.2.

PROPOSITION 4.4. Fix a measurable profile ρ0 : T → [0,1] and consider a
sequence {μN : N ≥ 1} of probability measures on {0,1}TN associated to ρ0 in
the sense of (2.2). Then any limit point of QH

μN
will be concentrated on absolutely

continuous paths πt(du) = ρ(t, u) du, with positive density ρt bounded by 1, such
that ρ is a weak solution of (2.10) with initial condition ρ0.

By Proposition 4.3, we obtain ρ ∈ L2(0, T ;H1(0,1)). Then, in order to prove
the proposition above, it is enough to assure that QH∗ is concentrated in trajecto-
ries which satisfy the integral equation (2.12), which is a consequence of Proposi-
tion 3.9 together with bound (4.4). This follows the same lines of [4].
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5. Large deviations upper bound. The proof of the large deviations upper
bound is constructed by an optimization over a class of mean-one positive martin-
gales, which must be functions of the process, or, as in our case, close to functions
of the process. In the Section 4.2, we have obtained a good candidate to be the
mean-one positive martingale, the Radon–Nikodym derivative of the measure PH

μN

with respect to PμN
. Since dPH

μN
/dPμN

is not a function of the empirical measure,
the first step is to show that it is super-exponentially close to a function of the
empirical measure.

5.1. Radon–Nikodym derivative (continuation). To write (4.3) in a simpler
form, let us introduce some notation. Given H ∈ C1,2([0, T ] × [0,1]), consider
the linear functional �int

H : DM →R

(5.1) �int
H (π) = 〈πT ,HT 〉 − 〈π0,H0〉 −

∫ T

0

〈
πt , (∂t + )Ht

〉
dt.

With this notation and recalling (3.4) and (3.5), we can rewrite dPH
μN

/dPμN
as

exp
{
N

[
�int
H

(
πN )−

∫ T

0

1

2N

∑
x �=−1

{
τxg1(ηt ) + τxg2(ηt )

}
(∂uHt)

2
(

x

N

)
dt

−
∫ T

0

{
ηt (0)∂uHt

(
0

N

)
− ηt (−1)∂uHt

(−1

N

)}
dt

(5.2)

−
∫ T

0

{
τ−1g1(ηt )

(
eδNH−1 − 1

)+ τ0g2(ηt )
(
e−δNH−1 − 1

)}
dt

]

+ NOH,T

(
1

N

)}
.

We begin by defining a set where the Radon–Nikodym derivative dPH
μN

/dPμN
is

close to a function of the empirical measure. Consider

W 1
N,ε(t, η) := V

F1,F2
N,ε (t, η), W 2

N,ε(t, η) := V
G1,G2
N,ε (t, η),

W 3
N,ε(t, η) := V̂

∂uH,−1
N,ε (t, η), W 4

N,ε(t, η) := V̂
∂uH,0
N,ε (t, η),

where V and V̂ have been defined in Proposition 3.4 and Corollary 3.6 consider-
ing F1(t, u) = 1

2(∂uHt)
2(u), F2(t,

−1
N

) = eδNH−1 − 1, G1(t, u) = 1
2(∂uHt)

2(u) and
G2(t,

−1
N

) = e−δNH−1 − 1. Define the set

(5.3) BH
δ,ε =

{
η ∈ D�N

;
∣∣∣∣
∫ T

0
Wi

N,ε(t, ηt ) dt

∣∣∣∣ ≤ δ, i = 1,2,3,4
}
.

From Proposition 3.4 and Corollary 3.6, this set BH
δ,ε has probability superexpo-

nentially close to one, that is, for each δ > 0,

(5.4) lim
ε↓0

lim
N→∞

1

N
logPμN

[(
BH

δ,ε

)�] = −∞.
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In view of identity (3.3) and expression (5.2), restricted to the set BH
δ,ε the Radon–

Nikodym derivative dPH
μN

/dPμN
is equal to

exp
{
N

[
�int
H (A) + OH,T

(
1

N

)
+ O(δ)

−
∫ T

0

1

2N

∑
x �=−1

{
g̃1

(
A
(

x

N

)
,A

(
x + 1

N

))

+ g̃2

(
A
(

x

N

)
,A

(
x + 1

N

))}
(∂uHt)

2
(

x

N

)
dt

(5.5)

−
∫ T

0

[
A
(

0

N

)
∂uHt

(
0

N

)
−A

(−1

N

)
∂uHt

(−1

N

)]
dt

−
∫ T

0
g̃1

(
A
(−1

N

)
,A

(
0

N

))(
eδNH−1 − 1

)
dt

−
∫ T

0
g̃2

(
A
(−1

N

)
,A

(
0

N

))(
e−δNH−1 − 1

)
dt

]}
,

where A = πN
t ∗ ιε . At this point, we have a function of the empirical measure

modulo some small errors. Unfortunately, this is not enough to handle with limits
on boundary terms. The reason is simple, the convolution πN ∗ ιε is a function
(not a measure anymore) but not a smooth function, therefore, not necessarily pos-
sessing well-behaved side limits. Hence, the next step is to replace πN ∗ ιε by
(πN ∗ ιsγ ) ∗ ιε , where ιsγ is a smooth approximation of identity to be defined next.
Notice that ιsγ shall not be misunderstood with ιε defined in (3.2).

Fix f : T → R+ a continuous function with support contained in [−1
4 , 1

4 ], 0 ≤
f ≤ 4, f (0) > 0,

∫
f = 1 and symmetric around zero, in other words, satisfying

f (u) = f (1 − u) for all u ∈ T. Define the continuous approximation of identity ιsγ

by ιsγ (u) = 1
γ
f ( u

γ
).

At this point, we need some approximation estimates to be presented in three
next lemmas. Its proofs can be found in the extended version [8]. Recall that �int

H

is the linear functional defined in (5.1).

LEMMA 5.1. |(πN
t ∗ ιε)(v) − ((πN

t ∗ ιsγ ) ∗ ιε)(v)| ≤ γ
ε

, uniformly in v ∈ T,
N ∈N, and t ∈ [0, T ].

LEMMA 5.2. �int
H (πN) = �int

H ((πN ∗ ιsγ )∗ ιε)+OH(ε)+OH(
γ
ε
), uniformly in

N ∈N.

LEMMA 5.3. The function |g̃i((π
N
t ∗ ιε)(

x
N

), (πN
t ∗ ιε)(

x+1
N

)) − g̃i(((π
N
t ∗

ιsγ ) ∗ ιε)(
x
N

), ((πN
t ∗ ιsγ ) ∗ ιε)(

x+1
N

))| is O(
γ
ε
) for i = 1,2.
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Lemmas 5.1, 5.2 and 5.3 allow to replace πN
t by (πN

t ∗ ιsγ ) in the expression
of Radon–Nikodym derivative (5.5) modulus small errors. Hence, restricted to the
set BH

δ,ε , the Radon–Nikodym derivative dPH
μN

/dPμN
becomes

exp
{
N

[
�int
H (B) + OH,T

(
1

N

)
+ O(δ) + OH(ε) + OH

(
γ

ε

)

−
∫ T

0

1

2N

∑
x �=−1

{
g̃1

(
B
(

x

N

)
,B

(
x + 1

N

))

+ g̃2

(
B
(

x

N

)
,B

(
x + 1

N

))}
(∂uHt)

2
(

x

N

)
dt

(5.6)

−
∫ T

0

[
B
(

0

N

)
∂uHt

(
0

N

)
−B

(−1

N

)
∂uHt

(−1

N

)]
dt

−
∫ T

0
g̃1

(
B
(−1

N

)
,B

(
0

N

))(
eδNH−1 − 1

)
dt

−
∫ T

0
g̃2

(
B
(−1

N

)
,B

(
0

N

))(
e−δNH−1 − 1

)
dt

]}
,

where B = (πN
t ∗ιsγ )∗ιε . The next three lemmas allow to replace the sum involving

g̃i by an integral in χ and to make a little adjustment at the boundaries. Its proofs
will be omitted as well.

LEMMA 5.4. The difference∣∣∣∣ 1

N

∑
x �=−1

g̃i

(((
πN

t ∗ ιsγ
) ∗ ιε

)( x

N

)
,
((

πN
t ∗ ιsγ

) ∗ ιε
)(x + 1

N

))
(∂uHt)

2
(

x

N

)

−
∫
T

χ
(((

πN
t ∗ ιsγ

) ∗ ιε
)
(v)

)
(∂uHt)

2(v) dv

∣∣∣∣,
can be denoted by some function R1

N(H, t, ε, γ ), which goes to zero, when N →
∞, uniformly in t ∈ [0, T ], with i = 1,2.

LEMMA 5.5. Denote by R2
N(H, t, ε, γ ) the following expression:∣∣∣∣((πN

t ∗ ιsγ
) ∗ ιε

)( 0

N

)
∂uHt

(
0

N

)
− ((

πN
t ∗ ιsγ

) ∗ ιε
)(−1

N

)
∂uHt

(−1

N

)

− ((
πN

t ∗ ιsγ
) ∗ ιε

)(
0+)∂uHt

(
0+)− ((

πN
t ∗ ιsγ

) ∗ ιε
)(

0−)∂uHt

(
0−)∣∣∣∣.

Then R2
N(H, t, ε, γ ) goes to zero, when N increases to ∞, uniformly in t ∈ [0, T ].
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LEMMA 5.6. The expression below∣∣∣∣g̃1
(((

πN
t ∗ ιsγ

) ∗ ιε
)(

0−), ((πN
t ∗ ιsγ

) ∗ ιε
)(

0+))(eδHt (0) − 1
)

− g̃1

(((
πN

t ∗ ιsγ
) ∗ ιε

)(−1

N

)
,
((

πN
t ∗ ιsγ

) ∗ ιε
)( 0

N

))(
eδNH−1 − 1

)∣∣∣∣
is a function R3

N(H, t, ε, γ ), which goes to zero, when N increases to ∞, uniformly
in t ∈ [0, T ]. Analogous statement for g̃2.

Denote RN(H,T , ε, γ ) the errors from the Lemmas 5.4, 5.5 and 5.6. Notice that

(5.7) lim
N→∞RN(H,T , ε, γ ) = 0.

By means of these lemmas, we can rewrite the expression (5.6) of the Radon–
Nikodyn derivative dPH

μN
/dPμN

on the set BH
δ,ε as

exp
{
N

[
�int
H (B) −

∫ T

0

∫
T

χ
(
B(v)

)
(∂uHt)

2(v) dv dt

−
∫ T

0

[
B
(
0+)∂uHt

(
0+)−B

(
0−)∂uHt

(
0−)]dt

−
∫ T

0
g̃1
(
B
(
0−),B(0+))(eδHt (0) − 1

)
dt(5.8)

−
∫ T

0
g̃2
(
B
(
0−),B(0+))(e−δHt (0) − 1

)
dt

+ RN(H,T , ε, γ ) + O(δ) + OH(ε) + OH

(
γ

ε

)]}
,

where B = (πN
t ∗ ιsγ ) ∗ ιε as before.

Now we observe that the functional �H defined in (2.15) and the functional �int
H

given in Definition (5.1) are related by

�H (π) = �int
H (π) −

∫ T

0

{
ρt

(
0+)∂uHt

(
0+)− ρt

(
0−)∂uHt

(
0−)}dt

+
∫ T

0

(
ρt

(
0+)− ρt

(
0−))(Ht

(
0+)− Ht

(
0−))dt.

Moreover, because of its smoothness, (πN ∗ ιsγ ) ∗ ιε has finite energy; see Defini-
tion 2.9. Recalling Definition 2.10 of the functional JH , and expression (5.8), we
conclude that dPH

μN
/dPμN

restricted to BH
δ,ε is

exp
{
N

[
JH

((
πN ∗ ιsγ

) ∗ ιε
)+ RN(H,T , ε, γ )

(5.9)

+ O(δ) + OH(ε) + OH

(
γ

ε

)]}
.
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Let us proceed to the next step. It is not difficult to see that the set {π ∈
DM;E(π) < ∞} is not closed in the concerning topology (the Skorohod topology
on DM). This is an obstacle to apply the minimax lemma; see [9], Lemma 3.3,
page 364, which is an important device in the proof of the large deviations upper
bound. To invoke the minimax lemma, the functional JH should be lower semi-
continuous,4 what is not true precisely because the set {π ∈ DM;E(π) < ∞} is
not closed.

To overcome this obstacle, we begin by introducing the next sets.

DEFINITION 5.7. Let Ak,l , Aε
k,l , and A

ε,γ
k,l be the subsets of trajectories given

by

Ak,l =
{
π ∈DM; max

1≤j≤k
EHj

(π) ≤ l
}
,

Aε
k,l = {π ∈DM;π ∗ ιε ∈ Ak,l},

A
ε,γ
k,l = {

π ∈ DM; (π ∗ ιsγ
) ∗ ιε ∈ Ak,l

}
.

PROPOSITION 5.8. For fixed ε, γ, k, l, the set A
ε,γ
k,l is closed.

PROOF. It is sufficient to show that the function ψ : DM → R given by
ψ(π) = EHj

((πN ∗ ιsγ ) ∗ ιε) is continuous. Let {πn
t ; t ∈ [0, T ]}n converging to

{πt ; t ∈ [0, T ]} on DM. Therefore, πn
t

ω∗→ πt , almost surely in time. For such t ,
πt ∗ ιsγ = limn→∞ πn

t ∗ ιsγ , since ιsγ is a continuous function. By the dominated
convergence theorem,

((
πt ∗ ιsγ

) ∗ ιε
)
(v) =

∫
T

lim
n→∞

(
πn

t ∗ ιsγ
)
(u)ιε(u, v) du

(5.10)
= lim

n→∞
((

πn
t ∗ ιsγ

) ∗ ιε
)
(v).

Again by the dominated convergence theorem,

〈〈
∂uHj ,

(
πt ∗ ιsγ

) ∗ ιε
〉〉 = ∫ T

0

∫
T

∂uHj (t, v)
((

πt ∗ ιsγ
) ∗ ιε

)
(v) dv dt

= lim
n→∞

∫ T

0

∫
T

∂uHj (t, v)
((

πn
t ∗ ιsγ

) ∗ ιε
)
(v) dv dt

= lim
n→∞

〈〈
∂uHj ,

(
πn ∗ ιsγ

) ∗ ιε
〉〉
. �

4About signs and conventions: in [9], Lemma 3.3, page 364, the statement is about an upper con-
tinuous functional, but the functional Jβ appearing there corresponds to minus our functional JH

here.
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PROPOSITION 5.9. For fixed k and l,

lim
ε↓0

lim
γ↓0

lim
N→∞

1

N
logPμN

[
πN ∈ (

A
ε,γ
k,l

)�] ≤ −l + K0T .

PROOF. For all r > 0,

PμN

[
max

1≤j≤k
EHj

((
πN ∗ ιsγ

) ∗ ιε
) ≥ l

]

≤ PμN

[
max

1≤j≤k
EHj

(
πN ∗ ιε

) ≥ l − r
]

+ PμN

[
max

1≤j≤k
EHj

((
πN ∗ ιsγ

) ∗ ιε − πN ∗ ιε
) ≥ r

]
.

By Lemma 5.1, we have that

max
1≤j≤k

EHj

((
πN ∗ ιsγ

)∗ ιε −πN ∗ ιε
) ≤ max

1≤j≤k

〈〈
∂uHj ,

(
πN ∗ ιsγ

)∗ ιε −πN ∗ ιε
〉〉 ≤ Cγ

ε
,

where C = C({H }1≤j≤k). Therefore,

PμN

[
max

1≤j≤k
EHj

((
πN ∗ ιsγ − πN ) ∗ ιε

) ≥ r
]
≤ PμN

[
Cγ

ε
≥ r

]
,

which is zero for γ small enough. Hence,

lim
γ↓0

lim
N→∞

1

N
logPμN

[
max

1≤j≤k
EHj

((
πN ∗ ιsγ

) ∗ ιε
) ≥ l

]

≤ lim
N→∞

1

N
logPμN

[
max

1≤j≤k
EHj

(
πN ∗ ιε

) ≥ l − r
]
.

By Corollary 3.8, we get

lim
ε↓0

lim
γ↓0

lim
N→∞

1

N
logPμN

[
max

1≤j≤k
EHj

((
πN ∗ ιsγ

) ∗ ιε
) ≥ l

]
≤ −l + K0T + r.

Since r is arbitrary, the proof is complete. �

In (5.9) we use the term (πN ∗ ιsγ )∗ ιε and we would like to take γ ↓ 0 and ε ↓ 0.
To avoid technical problems that would come into scene from the fact πN

t does not
have density with respect to the Lebesgue measure, we define below another family
of sets.

Fix a sequence {Fi}i≥1 of smooth nonnegative functions dense in the subset of
nonnegative functions C(T) with respect to the uniform topology. For i ≥ 1 and
j ≥ 1, we define the set

(5.11) D
j
i =

{
π ∈ DM;0 ≤ 〈πt ,Fi〉 ≤

∫
T

Fi(u) du + 1

j

∥∥F ′
i

∥∥∞,0 ≤ t ≤ T

}
,

and for m ≥ 1 and j ≥ 1, let E
j
m = ⋂m

i=1 D
j
i .
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PROPOSITION 5.10. It holds that:

(i) Given i ≥ 1 and j ≥ 1, the set D
j
i is a closed subset of DM.

(ii) DM0 = ⋂
j≥1

⋂
m≥1 E

j
m.

(iii) Given m ≥ 1 and j ≥ 1, limN→∞ 1
N

logPμN
[πN ∈ (E

j
m)�] = −∞.

The proof of proposition above, which is similar to that one of [3], Section 6.3,
can be found in [8].

Keeping in mind that E((π ∗ ιsγ ) ∗ ιε) < ∞, for all π ∈ DM, define

(5.12) J
k,l,m,j
H,γ,ε,ζ (π) =

{
ĴH

((
π ∗ ιsγ

) ∗ ιε
)

if π ∈ A
ζ,γ
k,l ∩ Ej

m,

+∞ otherwise.

Finally, dPH
μN

/dPμN
restricted to the set {πN ∈ A

ζ,γ
k,l ∩ E

j
m} ∩ BH

δ,ε is

exp
{
N

[
J

k,l,m,j
H,γ,ε,ζ

(
πN )+ RN(H,T , ε, γ )

(5.13)

+ O(δ) + OH(ε) + OH

(
γ

ε

)]}
.

This is the appropriate form for the Radon–Nikodym derivative to be used in the
next section.

5.2. Upper bound for compact sets. We start by studying the upper bound for
open sets. Let O ⊆ DM be an open set and fix a function H ∈ C1,2([0, T ]×[0,1]).
Then

lim
N→∞

1

N
logQμN

[O] = lim
N→∞

1

N
logPμN

[
πN ∈ O

]

≤ max
{

lim
N→∞

1

N
logPμN

[{
πN ∈ O ∩ A

ζ,γ
k,l ∩ Ej

m

}∩ BH
δ,ε

]
,

Rl
k(ζ, γ ),Rj

m,Rδ
H (ε)

}
,

where we have denoted

Rl
k(ζ, γ ) = lim

N→∞
1

N
logPμN

[{
πN ∈ (

A
ζ,γ
k,l

)�}]
,

Rj
m = lim

N→∞
1

N
logPμN

[{
πN ∈ (

Ej
m

)�}]
,

Rδ
H (ε) = lim

N→∞
1

N
logPμN

[(
BH

δ,ε

)�]
.

By Propositions 5.9 and 5.10 and the limit (5.4), the expressions above satisfy

lim
ζ↓0

lim
γ↓0

Rl
k(ζ, γ ) ≤ −l + K0T , Rj

m = −∞, and lim
ε↓0

Rδ
H (ε) = −∞.
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Transforming the measure by the Radon–Nikodym derivative and recalling its ex-
pression (5.13),

PμN

[{
πN ∈ O ∩ A

ζ,γ
k,l ∩ Ej

m

}∩ BH
δ,ε

]

= EH
μN

[(dPH
μN

dPμN

)−1
1{πN∈O∩A

ζ,γ
k,l ∩E

j
m}∩BH

δ,ε

]

= EH
μN

[
exp

{
N

[
−J

k,l,m,j
H,γ,ε,ζ

(
πN )+ RN(H,T , ε, γ )

+ O(δ) + OH(ε) + OH

(
γ

ε

)]}
1D

]
,

with D := {πN ∈ O ∩ A
ζ,γ
k,l ∩ E

j
m} ∩ BH

δ,ε . Therefore,

1

N
logPμN

[{
πN ∈ O ∩ A

ζ,γ
k,l ∩ Ej

m

}∩ BH
δ,ε

]

≤ sup
π∈O

{−J
k,l,m,j
H,γ,ε,ζ (π)

}+ RN(H,T , ε, γ ) + O(δ) + OH(ε) + OH

(
γ

ε

)
.

By (5.7), for all γ, ε, ζ, δ > 0, for all k, l,m, j ∈ N and H ∈ C1,2([0, T ] × [0,1]),
we have

lim
N→∞

1

N
logQμN

[O]

≤ max
{

sup
π∈O

{−J
k,l,m,j
H,γ,ε,ζ (π)

}+ O(δ)

+ OH(ε) + OH

(
γ

ε

)
,Rl

k(ζ, γ ),Rj
m,Rδ

H (ε)

}

= max
{

sup
π∈O

{−J
k,l,m,j
H,γ,ε,ζ (π)

}+ O(δ) + OH(ε)

+ OH

(
γ

ε

)
,Rl

k(ζ, γ ),Rδ
H (ε)

}
.

Since we do not have any restrictions on the parameters, we can optimize over
γ, ε, ζ, δ, k, l,m, j,H , which yields

lim
N→∞

1

N
logQμN

[O]

≤ inf
γ,ε,ζ,δ,

k,l,m,j,H

max
{

sup
π∈O

{−J
k,l,m,j
H,γ,ε,ζ (π)

}

+ O(δ) + OH(ε) + OH

(
γ

ε

)
,Rl

k(ζ, γ ),Rδ
H (ε)

}
(5.14)
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= inf
γ,ε,ζ,δ,

k,l,m,j,H

sup
π∈O

max
{
−J

k,l,m,j
H,γ,ε,ζ (π)

+ O(δ) + OH(ε) + OH

(
γ

ε

)
,Rl

k(ζ, γ ),Rδ
H (ε)

}
.

PROPOSITION 5.11. For fixed γ, ε, ζ, δ, k, l,m, j,H , the functional

max
{
−J

k,l,m,j
H,γ,ε,ζ (π) + O(δ) + OH(ε) + OH

(
γ

ε

)
,Rl

k(ζ, γ ),Rδ
H (ε)

}

is upper semicontinuous in DM.

PROOF. In the maximum above, the only term that depends on π is
J

k,l,m,j
H,γ,ε,ζ (π). By the Propositions 5.8 and 5.10, it is enough to prove the continuity

of Ĵ ((π ∗ ιsγ ) ∗ ιε) in DM.
Let πn → π in the topology of DM. In particular, πn

t converges weakly∗ to πt

in M, for almost all t ∈ [0, T ]. According to (5.10) and iterated applications of the
dominated convergence theorem, we can assure the continuity of Ĵ ((π ∗ ιsγ ) ∗ ιε).

�

Provided by the proposition above, we may apply the minimax lemma [9],
Lemma A2.3.3, interchanging supremum with infimum in (5.14), and passing to
compacts sets. Then, for all K ⊂ DM compact,

lim
N→∞

1

N
logQμN

[K]

≤ sup
π∈K

inf
γ,ε,ζ,δ,

k,l,m,j,H

max
{
−J

k,l,m,j
H,γ,ε,ζ (π) + O(δ) + OH(ε)(5.15)

+ OH

(
γ

ε

)
,Rl

k(ζ, γ ),Rδ
H (ε)

}
.

The next result connects JH (π) and J
k,l,m,j
H,γ,ε,ζ (π).

PROPOSITION 5.12. For all π ∈ DM,

lim
ε↓0

lim
l→∞ lim

k→∞ lim
ζ↓0

lim
γ↓0

lim
j→∞ lim

m→∞J
k,l,m,j
H,γ,ε,ζ (π) ≥ JH (π).

PROOF. Recall (5.12) and fix π ∈ DM. We claim that

(5.16) lim
j→∞ lim

m→∞J
k,l,m,j
H,γ,ε,ζ (π) =

{
ĴH

((
π ∗ ιsγ

) ∗ ιε
)

if π ∈ A
ζ,γ
k,l ∩DM0,

+∞ otherwise.
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The equality above derives from the fact that if π /∈DM0 , there exist m and j such

that π /∈ E
j
m. To check this, apply the definition of an absolute continuity with

respect to the Lebesgue measure. This proves (5.16).
Let us step to the limit in γ . We claim that

lim
γ↓0

{
ĴH

((
π ∗ ιsγ

) ∗ ιε
)

if π ∈ A
ζ,γ
k,l ∩DM0

+∞ otherwise
(5.17)

≥
{
ĴH (π ∗ ιε) if π ∈ A

ζ
k,l+1 ∩DM0,

+∞ otherwise.

If π /∈ A
ζ,γ
k,l ∩DM0 for all γ , the inequality (5.17) is obvious. From Definition 5.7,

if π ∈ A
ζ,γ
k,l ∩DM0 , it is immediate that

max
1≤j≤k

EHj
(π ∗ ιζ ) ≤ l + max

1≤j≤k

〈〈
∂uHj ,π ∗ ιζ − (

π ∗ ιsγ
) ∗ ιζ

〉〉
.

For fixed ζ and k, we can find γ small enough in such a way

max
1≤j≤k

EHj
(π ∗ ιζ ) ≤ l + 1,

implying π ∈ A
ζ
k,l+1 ∩DM0 . Besides, for fixed ε > 0, the double convolution (π ∗

ιsγ ) ∗ ιε converges uniformly to π ∗ ιε , leading to

lim
γ↓0

ĴH

((
π ∗ ιsγ

) ∗ ιε
) = ĴH (π ∗ ιε)

and hence proves (5.17). The ensuing step is to take the limit in ζ ↓ 0. We claim
that

lim
ζ↓0

{
ĴH (π ∗ ιε) if π ∈ A

ζ
k,l+1 ∩DM0

+∞ otherwise
(5.18)

≥
{
ĴH (π ∗ ιε) if π ∈ Ak,l+2 ∩DM0,

+∞ otherwise.

In fact, if π ∈ A
ζ
k,l+1 ∩DM0 , then

max
1≤j≤k

EHj
(π) = max

1≤j≤k
EHj

(π ∗ ιζ ) + max
1≤j≤k

〈〈
∂uHj ,π − π ∗ ιζ

〉〉

≤ l + 1 + max
1≤j≤k

∫ T

0

∫
T

∂uHj (t, u)
(
ρt(u) − (πt ∗ ιζ )(u)

)
dudt.

By the Lebesgue differentiation theorem, it is possible to choose small ζ such that
the integral term in the right-hand side of above is smaller than 1. This proves
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(5.18). Taking the limit in k → ∞ in the right-hand side of (5.18), we obtain

lim
k→∞

{
ĴH (π ∗ ιε) if π ∈ Ak,l+2 ∩DM0

+∞ otherwise
(5.19)

=
{
ĴH (π ∗ ιε) if E(π) ≤ l + 2,

+∞ otherwise,

because {π;E(π) ≤ l + 2} ⊂ DM0 . Next, taking the limit in l → ∞ in the right
hand side of (5.19), we get

lim
l→∞

{
ĴH (π ∗ ιε) if E(π) ≤ l + 2

+∞ otherwise
≥
{
ĴH (π ∗ ιε) if E(π) < ∞,

+∞ otherwise.

Finally, taking the limit when ε ↓ 0 in the right-hand side of above, it yields

lim
ε↓0

{
ĴH (π ∗ ιε) if E(π) < ∞
+∞ otherwise

= JH (π),

where we have used that, for π ∈ {π;E(π) < ∞} it holds that πt(du) = ρt(u) du,
where ρ has well-defined left and right side limits around zero. �

PROPOSITION 5.13 (Upper bound for compact sets). For every K compact
subset of DM,

lim
N→∞

1

N
logQμN

[K] ≤ − inf
π∈K I (π).

PROOF. Proposition 5.12 can be restated in the form

lim
ε↓0

lim
l→∞

lim
k→∞

lim
ζ↓0

lim
γ↓0

lim
j→∞

lim
m→∞

−J
k,l,m,j
H,γ,ε,ζ (π) ≤ −JH (π),

for all π ∈DM. Plugging this into (5.15) leads to

lim
N→∞

1

N
logQμN

[K] ≤ sup
π∈K

inf
H

{−JH (π)
} = − inf

π∈K sup
H

JH (π) = − inf
π∈K I (π).

�

5.3. Upper bound for closed sets.

PROPOSITION 5.14 (Upper bound for closed sets). For every C closed subset
of DM,

lim
N→∞

1

N
logQμN

[C] ≤ − inf
π∈C I (π).
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By exponential tightness, we mean that there exists compact sets Kn ⊂ DM
such that

lim
N→∞

1

N
logQμN

[
K�

n

] ≤ −n, ∀n ∈ N.

It is well known that the upper bound for closed sets is an immediate consequence
of upper bound for compact sets plus exponential tightness. The rest of this section
is concerned which exponential tightness, which we affirm it is a consequence of
next lemma.

LEMMA 5.15. For ε > 0, δ > 0 and H ∈ C2(T), denote

CH,δ,ε :=
{
π ∈ DM; sup

s≤t≤s+δ

∣∣〈πt ,H 〉 − 〈πs,H 〉∣∣ ≤ ε,∀s ∈ [0, T ]
}
.

Then, for every ε > 0 and every function H ∈ C2(T), the following limit holds:

lim
δ↓0

lim
N→∞

1

N
logQμN

[π /∈ CH,δ,ε] = −∞.

Indeed, suppose the statement above. Let {H�}�∈N ⊂ C2(T) be a dense set of
functions in C(T) for the uniform topology. For each δ > 0 and �,m ∈ N, denote
by C

�,δ, 1
m

the set CH�,δ,ε with ε = 1
m

. Assuming Lemma 5.15, in particular we have
that

(5.20) lim
δ↓0

lim
N→∞

1

N
logQμN

[π /∈ C
�,δ, 1

m
] = −∞, ∀�,m ≥ 1.

Fix positive integers �,m. In view of (5.20), for any n ∈ N we can find δ0 =
δ0(�,m,n) > 0 such that

lim
N→∞

1

N
logQμN

[π /∈ C
�,δ, 1

m
] ≤ −nm�, ∀δ ∈ (0, δ0].

Hence, for each δ ∈ (0, δ0] there exists Nδ = Nδ(δ, �,m,n) ∈N such that

QμN
[π /∈ C

�,δ, 1
m
] ≤ e−Nnm�, ∀N ≥ Nδ.

At this point, some efforts are necessary in order to remove the restriction above
on N (by suitably re-defining δ). This is the content of the claim:

Claim: For all positive integers �,m,n, there exists δ̃ = δ̃(�,m,n) > 0 such that

QμN
[π /∈ C

�,δ̃, 1
m
] ≤ e−Nnm�, ∀N ∈ N.

To prove this claim, we start by observing that, if 0 < δ1 < δ2, then C
�,δ2,

1
m

⊆
C

�,δ1,
1
m

. Hence,

(5.21) [π /∈ C
�,δ1,

1
m
] ⊆ [π /∈ C

�,δ2,
1
m
], for 0 < δ1 < δ2.
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Now, denoting N0 = Nδ0(�,m,n) (which depends only on �,m,n, because δ0 is a
function of �,m,n), we have that

(5.22) QμN
[π /∈ C

�,δ, 1
m
] ≤QμN

[π /∈ C
�,δ0,

1
m
] ≤ e−Nnm�,

∀δ ∈ (0, δ0] and ∀N ≥ N0.
Observe that, for fixed �,m ∈ N, we have that C

�,δ, 1
m

↗ DM as δ ↘ 0, which

is true because the set DM is composed of càdlàg trajectories. Since the sets [π /∈
C

�,δ, 1
m
] decrease to the empty set as δ ↘ 0, then for each fixed N , the probability

QμN
[π /∈ C

�,δ, 1
m
] decreases to zero as δ ↘ 0. Therefore, for each fixed N ∈N, we

can choose

(5.23) δ̃N = δ̃N (�,m,n) ≤ δ0(�,m,n) = δ0

such that

(5.24) QμN
[π /∈ C

�,δ̃N , 1
m
] ≤ e−Nnm�.

Denote now

δ̃ := min
N<N0

δ̃N ≤ δ0.

Let N ∈ N. If N < N0, then, by δ̃ ≤ δ̃N , (5.21) and (5.24), we have that

QμN
[π /∈ C

�,δ̃, 1
m
] ≤QμN

[π /∈ C
�,δ̃N , 1

m
] ≤ e−Nnm�.

Furthermore, if N ≥ N0, the construction δ̃ ≤ δ0 [see (5.22) and (5.23)] assures
that

QμN
[π /∈ C

�,δ̃, 1
m
] ≤ e−Nnm�,

completing the proof of the claim.
Keeping in mind that our goal is to prove that the sequence QμN

is exponentially
tight, we define

Kn = ⋂
�≥1,m≥1

C
�,δ̃, 1

m
,

which is a intersection of closed sets, hence closed as well. In order to prove that
Kn is a compact set for each n ≥ 1, we use a version of Arzelà–Ascoli theorem,
which states that a set of functions Kn ⊂ DM is relatively compact if it is uni-
formly bounded, and

(5.25) lim
δ→0

sup
π∈Kn

inf{ti}
max

i
sup

s,t∈[ti−1,ti )

d(πs,πt ) = 0,

where the infimum is taken over all partitions 0 = t0 < t1 < · · · < tr with ti −
ti−1 > δ and d is the metric on M. We start by observing that Kn is uniformly
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bounded, because Kn ⊂ DM [cf. the Definition of M in (2.3)]. The limit (5.25) is
a consequence of

(5.26) lim
δ→0

sup
π∈Kn

sup
|t−s|≤δ

d(πs,πt ) = 0.

To prove the limit above, we start by observing that if π ∈ Kn and |t − s| ≤ δ̃ (we
can suppose without loss of generality that s ≤ t , thus s ≤ t ≤ s + δ̃), then

∣∣〈πt ,H�〉 − 〈πs,H�〉
∣∣ ≤ 1

m
, ∀�,m ∈ N.

Now, recalling that the metric d on M is

d(πs,πt ) = ∑
�∈N

1

2�

|〈πt ,H�〉 − 〈πs,H�〉|
1 + |〈πt ,H�〉 − 〈πs,H�〉| ≤ ∑

�∈N

1

2�

∣∣〈πt ,H�〉 − 〈πs,H�〉
∣∣,

we have, for π ∈ Kn and |t − s| ≤ δ̃, that d(πs,πt ) ≤ 1
m

, for all m ∈ N, leading to

(5.27) sup
π∈Kn

sup
|t−s|≤δ̃

d(πs,πt ) ≤ 1

m
for all m ∈ N.

Since δ �→ sup|t−s|≤δ d(πs,πt ) is decreasing on δ (for π fixed), the inequality

(5.27) holds for δ ≤ δ̃ in place of δ̃. Therefore, the limit (5.26) follows.
Since Kn is relatively compact and closed, we conclude that Kn is a compact

set. Furthermore, by construction of the set Kn and the last claim, we have that

QμN
[π /∈ Kn] ≤ ∑

�≥1
m≥1

e−Nnm� ≤ Ce−Nn,

where C is a constant not depending in the parameters. In particular,

lim
N→∞

1

N
logQμN

[π /∈ Kn] ≤ −n,

which is the exponential tightness. Therefore, it only remains to prove the
Lemma 5.15.

PROOF OF LEMMA 5.15. Fix ε > 0 and H ∈ C2(T). Recalling the definition
of the set CH,δ,ε , we can rewrite the set [π /∈ CH,δ,ε] as{

π ∈ DM; sup
s≤t≤s+δ

∣∣〈πt ,H 〉 − 〈πs,H 〉∣∣ > ε, for some s ∈ [0, T ]
}
.

Consider the partition of the interval [0, T ] with mesh size equal to δ. For each
s ∈ [0, T ], there exists k ∈ {0, . . . , �T δ−1�} such that kδ ≤ s < (k + 1)δ. Thus,

sup
s≤t≤s+δ

∣∣〈πt ,H 〉 − 〈πs,H 〉∣∣
≤ sup

s≤t≤(k+1)δ

∣∣〈πt ,H 〉 − 〈πs,H 〉∣∣+ sup
(k+1)δ≤t≤s+δ

∣∣〈πt ,H 〉 − 〈πs,H 〉∣∣.
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Adding and subtracting 〈πkδ,H 〉 in both terms above, and adding and subtracting
〈π(k+1)δ,H 〉 in the second term, we bound the last expression by

4 sup
kδ≤t≤(k+1)δ

∣∣〈πt ,H 〉 − 〈πkδ,H 〉∣∣
+ sup

(k+1)δ≤t≤(k+2)δ

∣∣〈πt ,H 〉 − 〈π(k+1)δ,H 〉∣∣.
Then

{
π; sup

s≤t≤s+δ

∣∣〈πt ,H 〉 − 〈πs,H 〉∣∣ > ε, for some s ∈ [0, T ]
}

⊆
�T δ−1�⋃

k=0

A
H,N
k,δ,ε,

where

A
H,N
k,δ,ε =

{
sup

kδ≤t≤(k+1)δ

∣∣〈πt ,H 〉 − 〈πkδ,H 〉∣∣ > ε/5
}
.

Thus, for all δ > 0,

(5.28) lim
N→∞

1

N
logQμN

[π /∈ C
�,δ, 1

m
] ≤ lim

N→∞
1

N
log

�T δ−1�∑
k=0

QμN

[
A

H,N
k,δ,ε

]
.

Since

(5.29) lim
N

N−1 log{aN + bN } = max
{
lim
N

N−1 logaN, lim
N

N−1 logbN

}
,

the limit in the right-hand side of (5.28) is bounded from above by

max
k∈{0,...,�T δ−1�}

lim
N→∞

1

N
logQμN

[
A

H,N
k,δ,ε

]
.

Then, in order to prove the Lemma 5.15, it is enough to show that

(5.30) lim
δ↓0

max
k∈{0,...,�T δ−1�}

lim
N→∞

1

N
logQμN

[
A

H,N
k,δ,ε

] = −∞.

We begin by observing that A
H,N
k,δ,ε = B

H,N
k,δ,ε ∪ B

−H,N
k,δ,ε , where

B
H,N
k,δ,ε =

{
sup

kδ≤t≤(k+1)δ

〈πt ,H 〉 − 〈πkδ,H 〉 > ε/10
}
.

Hence, recalling (5.29), to obtain (5.30) it is sufficient to assure that

(5.31) lim
δ↓0

max
k∈{0,...,�T δ−1�}

lim
N→∞

1

N
logQμN

[
B

H,N
k,δ,ε

] = −∞,

for any H ∈ C2(T) and ε > 0. To obtain the claim above, we analyze the limit
limN→∞ 1

N
logQμN

[BH,N
k,δ,ε] for fixed k, δ, ε and H . Let a > 0. Denote

M
a,H
t = exp

{
aN

[〈
πN

t ,H
〉− 〈

πN
0 ,H

〉− ∫ t

0
Ua

N(H, s, ηs) ds

]}
,



34 T. FRANCO AND A. NEUMANN

where

Ua
N(H, s, ηs) = 1

aN
e−aN〈πN

s ,H 〉(∂s + N2LN

)
eaN〈πN

s ,H 〉.

Note that M
a,H
t is a positive mean one martingale with respect to the natural filtra-

tion. And {Ma,H
t /M

a,H
kδ }t≥kδ is also a positive mean one martingale. Adding and

subtracting the integral part, we get

QμN

[
B

H,N
k,δ,ε

] ≤QμN

[
C

a,H,N
k,δ,ε

]+QμN

[
D

a,H,N
k,δ,ε

]
,

where

C
a,H,N
k,δ,ε =

{
sup

kδ≤t≤(k+1)δ

1

aN
log

(
M

a,H
t

M
a,H
kδ

)
> ε/20

}

and

D
a,H,N
k,δ,ε =

{
sup

kδ≤t≤(k+1)δ

∫ t

kδ
Ua

N(H, s, ηs) ds > ε/20
}
.

By the considerations above and again (5.29), we have that

lim
N→∞

1

N
logQμN

[
B

H,N
k,δ,ε

]
(5.32)

≤ max
{

lim
N→∞

1

N
logQμN

[
C

a,H,N
k,δ,ε

]
, lim
N→∞

1

N
logQμN

[
D

a,H,N
k,δ,ε

]}
,

for all δ > 0 and k ∈ {0,1, . . . , �T δ−1�}. Since H ∈ C2(T), by Taylor expansion
it is easy5 to verify that | ∫ t

kδ Ua
N(H, s, ηs) ds| is bounded by C(a,H)δ, for all

t ∈ [kδ, (k + 1)δ]. Thus, if we take δ ∈ (0, C̃) with C̃ := ε/(20C(a,H)), then
QμN

[Da,H,N
k,δ,ε ] = 0 for all k ∈ {0,1, . . . , �T δ−1�} and, therefore, the inequality

(5.32) becomes

lim
N→∞

1

N
logQμN

[
B

H,N
k,δ,ε

] ≤ lim
N→∞

1

N
logQμN

[
C

a,H,N
k,δ,ε

]
,

provided δ < C̃. We handle now the set C
a,H,N
k,δ,ε in the following way:

QμN

[
C

a,H,N
k,δ,ε

] = QμN

[
sup

kδ≤t≤(k+1)δ

M
a,H
t

M
a,H
kδ

> eaNε/20
]

≤ 1

eaNε/20 ,

where in last inequality we have used Doob’s inequality since {Ma,H
t /M

a,H
kδ }t≥kδ

is a mean one positive martingale. Thus,

lim
N→∞

1

N
logQμN

[
B

H,N
k,δ,ε

] ≤ −aε/20,

5One can do similar computations of those in the Section 4.2.
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for all a > 0, ε > 0, H ∈ C2(T), δ ∈ (0, C̃) and k = 0,1, . . . , �T δ−1�. Fix a > 0.
Taking the limit δ ↘ 0 in the inequality above gives us

lim
δ↓0

max
k∈{0,...,�T δ−1�}

lim
N→∞

1

N
logQμN

[
B

H,N
k,δ,ε

] ≤ −aε

20
.

Now, taking the limit when a → +∞ leads to (5.31), completing the proof. �

6. Large deviations lower bound for smooth profiles. Next, we obtain a
nonvariational formulation of the rate functional I for profiles ρ whose are so-
lutions of the hydrodynamical equation for some perturbation H ∈ C1,2([0, T ] ×
[0,1]).

PROPOSITION 6.1. Given H ∈ C1,2([0, T ] × [0,1]), let ρH be the unique
weak solution of (2.10). Then

I
(
ρH ) := sup

G

ĴG

(
ρH ) = ĴH

(
ρH )

=
∫ T

0

〈
χ
(
ρH

t

)
, (∂uHt)

2〉dt +
∫ T

0
ρH

t

(
0−)(1 − ρH

t

(
0+))�(δHt(0)

)
dt(6.1)

+
∫ T

0
ρH

t

(
0+)(1 − ρH

t

(
0−))�(−δHt(0)

)
dt,

where �(y) = 1 − ey + yey , ∀y ∈ R.

Although of quite simple proof, this result has a deep interpretation. The func-
tional −ĴG(ρ) has the meaning of being the price to observe the profile ρ when
we perturb the system by G. The equality supG ĴG(ρH ) = ĴH (ρH ) says that the
minimum cost to observe the profile ρ is reached by picking up the perturbation
G = H , where H is such that ρ = ρH , that is, such that ρ is a solution of (2.10).

PROOF OF PROPOSITION 6.1. Replacing the integral equation (2.12) in the
definition of Ĵ given in (2.14), we get

ĴG

(
ρH ) =

∫ T

0

〈
χ
(
ρH

t

)
, (∂uHt)

2〉dt −
∫ T

0

〈
χ
(
ρH

t

)
, (∂uHt − ∂uGt)

2〉dt

+
∫ T

0
ρH

t

(
0−)(1 − ρH

t

(
0+))�̄(δGt(0), δHt(0)

)
dt

+
∫ T

0
ρH

t

(
0+)(1 − ρH

t

(
0−))�̄(−δGt(0),−δHt(0)

)
dt,

where �̄(x, y) = 1 − ex + xey , ∀x, y ∈ R. Let y ∈ R fixed. The function x �→
�̄(x, y) assumes its maximum at x = y. Therefore, I (ρH ) = supG ĴG(ρH ) =
ĴH (ρH ). Noticing that �(y) = �̄(y, y) we arrive at (6.1). �
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REMARK 6.2. As natural, if λ is the unique weak solution of (2.5), then the
rate functional vanishes at λ. In fact, given G ∈ C1,2([0, T ] × [0,1]), we have
�G(λ) = 0 because λ satisfies the integral equation (2.6). Since ψ(u) = eu − u −
1 ≥ 0, it yields ĴG(λ) ≤ 0. And ĴG(λ) = 0 if G is constant.

By Proposition 6.1, profiles that are solution of (2.10) for some H provides a
special representation for the rate functional. This motivates the next definition.

DEFINITION 6.3. Denote by Deq
M0

the subset of DM0 consisting of all paths

πt(du) = ρt (u) du for which there exists some H ∈ C1,2([0, T ]× [0,1]) such that
ρ = ρH is the unique weak solution of (2.10).

We begin by proving the lower bound for trajectories in Deq
M0

. In the following,
we present the lower bound in the set of smooth trajectories, DS

M0
.

PROPOSITION 6.4. Let O be an open set of DM. Then

lim
N→∞

1

N
logQμN

[O] ≥ − inf
π∈O∩Deq

M0

I (π).

PROOF. This proof is essentially the same as that found in [9]. Fix the open
set O. Given π ∈ O ∩ Deq

M0
, by definition there exists H ∈ C1,2([0, T ] × [0,1])

such that πt(du) = ρH
t (u) du, where ρH is the weak solution of (2.10). Denote by

PH,O
μN

the probability on the space D�N
defined by

PH,O
μN

[A] = PH
μN

[A,πN ∈ O]
PH

μN
[πN ∈ O] ,

for any A measurable subset of D�N
. Within this definition,

1

N
logQμN

[O] = 1

N
logEH,O

μN

[
dPμN

dPH
μN

]
+ 1

N
logQH

μN
[O].

Since O is a open set that contains ρH , by the Proposition 4.1 the second term
in the right-hand side of above converges to zero as N increases to infinity. Since
the logarithm is a concave function, by Jensen’s inequality the first term in the
right-hand side of above is bounded from below by

EH,O
μN

[
1

N
log

dPμN

dPH
μN

]
.

Adding and subtracting the indicator function of the set {πN ∈ O�}, the last ex-
pectation becomes

(6.2)
1

QH
μN

[O]
{
− 1

N
H
(
PH

μN
|PμN

)−EH
μN

[
1

N
log

dPμN

dPH
μN

1{πN∈O�}
]}

,
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where

(6.3) H
(
PH

μN
|PμN

) := EH
μN

[
log

dPH
μN

dPμN

]
= −EH

μN

[
log

dPμN

dPH
μN

]

is the so-called relative entropy of PH
μN

with respect to PμN
. Again by Proposi-

tion 4.1, we have that QH
μN

[O] converges to one as N increases to infinity. By

(4.4), the expression 1
N

log
dPμN

dPH
μN

is bounded, hence the second term inside braces

in (6.2) vanishes as N increases to ∞. Thus,

lim
N→∞

1

N
logQμN

[O] ≥ lim
N→∞− 1

N
H
(
PH

μN
|PμN

) = −I
(
ρH )

,

where the last equality has an importance for itself and for this reason it is post-
poned to the Lemma 6.5 proved next. �

LEMMA 6.5. Let H ∈ C1,2([0, T ] × [0,1]). Then

lim
N→∞

1

N
H
(
PH

μN
|PμN

) = I
(
ρH )

,

where ρH is the unique weak solution of (2.10).

PROOF. Using formula (6.3) for the relative entropy, we get

(6.4)
1

N
H
(
PH

μN
|PμN

) = 1

N
EH

μN

[
log

dPH
μN

dPμN

1BH
δ,ε

]
+ 1

N
EH

μN

[
log

dPH
μN

dPμN

1
(BH

δ,ε)
�

]
,

where the set BH
δ,ε was defined in (5.3). We claim that the event (BH

δ,ε)
� is super-

exponentially small with respect to PH
μN

. Indeed, by (4.4) we have

PH
μN

[(
BH

δ,ε

)�] = EμN

[dPH
μN

dPμN

1
(BH

δ,ε)
�

]
≤ eC(H,T )NPνN

α

[(
BH

δ,ε

)�]
and then by (5.4) we get

lim
ε↓0

lim
N→∞

1

N
logPH

μN

[(
BH

δ,ε

)�] = −∞.

Provided by the limit above and the fact that 1
N

log
dPH

μN

dPμN
is bounded, the right-hand

side of (6.4) is

(6.5)
1

N
EH

μN

[
log

dPH
μN

dPμN

1BH
δ,ε

]
+ oN(1),
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for all δ > 0 and each small enough ε = ε(δ). Applying the expression (5.9) for

the Radon–Nikodym derivative, 1
N

log
dPH

μN

dPμN
on the set BH

δ,ε is equal to

ĴH

((
πN ∗ ιsγ

) ∗ ιε
)+ OH,T,ε,γ

(
1

N

)
+ O(δ) + OH(ε) + OH

(
γ

ε

)
,

for all δ > 0 and all ε and γ small enough. Since this expression is bounded and
the probability of (BH

δ,ε)
� with respect to PH

νN
α

vanishes as N increases to infinity,

the expression (6.5) becomes

EH
μN

[
ĴH

((
πN ∗ ιsγ

) ∗ ιε
)]+ OH,T,ε,γ

(
1

N

)
+ O(δ) + OH(ε) + OH

(
γ

ε

)
+ oN(1),

for all δ > 0 and all ε and γ small enough. For fixed ε and γ , the map ρ �→
ĴH ((ρ ∗ ιsγ ) ∗ ιε) is continuous with respect to the Skorohod topology; see the
Proposition 5.11. Moreover, by Proposition 4.1 the sequence QH

μN
converges

weakly to the probability concentrated on the weak solution of (2.10). In particular,
as N increases to infinity, the previous expectation converges to

ĴH

((
ρH ∗ ιsγ

) ∗ ιε
)+ O(δ) + OH(ε) + OH

(
γ

ε

)
.

Letting γ ↓ 0, then taking ε ↓ 0, finally δ ↓ 0 and then invoking Lemma 6.1 con-
cludes the proof. �

Since weak solutions of (2.10) for some H implies the special representation
(6.1) for the rate functional, it is natural to study in what conditions a profile ρ can
be written as a solution of (2.10). This is the content of the next proposition. Notice
that the first equation in (6.6) ahead is nothing else than the partial differential
equation (2.10) rearranged.

PROPOSITION 6.6. Let ρ ∈ C1,2([0, T ]× [0,1]) such that 0 < ε ≤ ρ ≤ 1 − ε,
for some ε > 0. Then there exists a unique (strong) solution H ∈ C1,2([0, T ] ×
[0,1]) of the elliptic equation

(6.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
uHt(u) + ∂u(χ(ρt (u)))

χ(ρt (u))
∂uHt(u) = ρt(u) − ∂tρt (u)

2χ(ρt (u))
∀u ∈ (0,1),

∂uHt(0) = 1

2χ(ρt (0))

[
BeδHt (0) − Ce−δHt (0) + ∂uρt (0)

]
,

∂uHt(1) = 1

2χ(ρt (1))

[
BeδHt (0) − Ce−δHt (0) + ∂uρt (1)

]
,

Ht (0) = 0,

where B = B(ρt ) = ρt(1)(1 − ρt (0)) and C = C(ρt ) = ρt (0)(1 − ρt (1)), for all
t ∈ [0, T ]. Above we are denoting 0 = 0+ and 1 = 0−.
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PROOF. For fixed time, the first equation in (6.6) is a linear second-order or-
dinary differential equation in H . The only work is to adjust the solution to satisfy
the boundary conditions. Let z0 ∈ R be the unique solution of the transcendental
equation z = (Be−z − Cez)α + A, where

α = α(ρt ) :=
∫ 1

0

1

2χ(ρt (v))
dv,

A = A(ρt ) :=
∫ 1

0

∂uρt (v) − ∂t

∫ v
0 ρt (w)dw

2χ(ρt (v))
dv,

and B > 0 and C > 0 are those ones in the statement of the proposition. Let

Ht(u) := (
Be−z0 − Cez0

) ∫ u

0

1

2χ(ρt (v))
dv +

∫ u

0

∂uρt (v) − ∂t

∫ v
0 ρt(w)dw

2χ(ρt (v))
dv,

for all t ∈ [0, T ]. It can be directly checked that H is the solution of (6.6). �

Recalling the definition of DS
M0

given in the Theorem 2.12 and the definition of

Deq
M0

, Proposition 6.6 can be resumed as the following.

COROLLARY 6.7. The set

DS
M0

∩ {
π ∈ DM;πt(du) = ρt (u) du, with ε ≤ ρ ≤ 1 − ε for some ε > 0

}
is contained in Deq

M0
.

The next proposition shows that the rate functional I obtained in our model is
convex under certain conditions.

PROPOSITION 6.8. Let ρ,λ ∈ DM with I (ρ) and I (λ) finite such that
(ρt (0+) − λt (0+))(ρt (0−) − λt (0−)) ≥ 0, almost surely in t ∈ [0, T ]. Then, for
θ ∈ [0,1],
(6.7) I

(
θρ + (1 − θ)λ

) ≤ θI (ρ) + (1 − θ)I (λ).

PROOF. Let θ ∈ [0,1]. We claim that

(6.8) ĴH

(
θρ + (1 − θ)λ

) ≤ θĴH (ρ) + (1 − θ)ĴH (λ),

for any H ∈ C1,2([0, T ] × [0,1]). Recall that ĴH (ρ) is the sum of linear part in ρ,
namely

�H (ρ) −
∫ T

0

{
ρt

(
0−)ψ(

δHt(0)
)+ ρt

(
0+)ψ(−δHt(0)

)}
dt,

plus a convex part in ρ, namely − ∫ T
0 〈χ(ρt ), (∂uHt)

2〉dt , and

(6.9)
∫ T

0
ρt

(
0−)ρt

(
0+){ψ(

δHt(0)
)+ ψ

(−δHt(0)
)}

dt,
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wherefore we only need to care about this last term. Since ψ(x) = ex − x − 1 ≥
0, we have that ψ(δHt(0)) + ψ(−δHt(0)) ≥ 0. Let f : R2 → R be the function
defined by f (x, y) = xy. If (x1, y1) and (x2, y2) are two points of R2 such that
(x2 − x1)(y2 − y1) ≥ 0, then

(6.10) f
(
θ(x1, y1) + (1 − θ)(x2, y2)

) ≤ θf (x1, y1) + (1 − θ)f (x2, y2).

To see this, just note that f is convex along lines of the form y = ax + b, provided
a > 0. Inequality (6.10) applied to (6.9) permits us to conclude inequality (6.8),
which leads to (6.7). �

PROPOSITION 6.9. Let π ∈ DM with I (π) < ∞. There exists a sequence
{πε}ε>0 in DM0 such that πε converges to π in DM and πε

t (du) = ρε
t (u) du with

ε ≤ ρε
t (u) ≤ 1 − ε. Moreover, limε↓0 I (πε) ≤ I (π).

PROOF. Let π ∈ DM with I (π) < ∞, then πt(du) = ρt (u) du and 0 ≤ ρ ≤ 1.
Consider 1̃(t, u) = 1 and 0̃(t, u) = 0, for all t ∈ [0, T ] and u ∈ T. Define ρε =
ε1̃ + (1 − 2ε)ρ + ε0̃ and πε

t (du) = ρε
t (u) du. By Lemma 6.8, I (πε) ≤ εI (1̃) +

(1 − 2ε)I (ρ) + εI (0̃). Hence, limε↓0 I (πε) ≤ I (π). �

We are in position to prove the lower bound for smooth profiles.

PROOF OF THEOREM 2.12(ii). Fix π ∈ DS
M0

∩O and consider the sequence
πε

t (du) = ρε
t (u) du, where ρε

t (u) = ε+(1−2ε)ρt (u), as in the proof of the Propo-
sition 6.9. That is, such that ε < ρε < 1 − ε with ρε ∈ C1,2([0, T ] × [0,1]). By
Corollary 6.7 and since O is open, we have that πε ∈ Deq

M0
∩O for small enough

ε > 0.
By Proposition 6.4,

lim
N→∞

1

N
logQμN

[O] ≥ − inf
λ∈O∩Deq

M0

I (λ) ≥ −I
(
πε).

Taking the limit infimum in the right-hand side of inequality above and using the
Lemma 6.9, we get

lim
N→∞

1

N
logQμN

[O] ≥ − lim
ε→0

I
(
πε) ≥ −I (π).

Since π is an arbitrary trajectory on the set O ∩ DS
M0

, we can optimize over all
elements in this set, obtaining therefore

lim
N→∞

1

N
logQμN

[O] ≥ sup
π∈O∩DS

M0

−I (π) = − inf
π∈O∩DS

M0

I (π),

which completes the proof. �



LARGE DEVIATIONS FOR EXCLUSION WITH A SLOW BOND 41

REFERENCES

[1] BERTINI, L., LANDIM, C. and MOURRAGUI, M. (2009). Dynamical large deviations for the
boundary driven weakly asymmetric exclusion process. Ann. Probab. 37 2357–2403.
MR2573561

[2] FAGGIONATO, A., JARA, M. and LANDIM, C. (2009). Hydrodynamic behavior of 1D subdiffu-
sive exclusion processes with random conductances. Probab. Theory Related Fields 144
633–667. MR2496445

[3] FARFAN, J., LANDIM, C. and MOURRAGUI, M. (2011). Hydrostatics and dynamical large de-
viations of boundary driven gradient symmetric exclusion processes. Stochastic Process.
Appl. 121 725–758. MR2770905

[4] FRANCO, T., GONÇALVES, P. and NEUMANN, A. (2013). Hydrodynamical behavior of sym-
metric exclusion with slow bonds. Ann. Inst. Henri Poincaré Probab. Stat. 49 402–427.
MR3088375

[5] FRANCO, T., GONÇALVES, P. and NEUMANN, A. (2013). Phase transition in equilibrium
fluctuations of symmetric slowed exclusion. Stochastic Process. Appl. 123 4156–4185.
MR3096351

[6] FRANCO, T., GONÇALVES, P. and NEUMANN, A. (2015). Phase transition of a heat equation
with Robin’s boundary conditions and exclusion process. Trans. Amer. Math. Soc. 367
6131–6158. MR3356932

[7] FRANCO, T. and LANDIM, C. (2010). Hydrodynamic limit of gradient exclusion processes with
conductances. Arch. Ration. Mech. Anal. 195 409–439. MR2592282

[8] FRANCO, T. and NEUMANN, A. (2015). Large deviations for the exclusion process with a slow
bond. Available at arXiv:1501.00225v1.

[9] KIPNIS, C. and LANDIM, C. (1999). Scaling Limits of Interacting Particle Systems.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences] 320. Springer, Berlin. MR1707314

INSTITUTO DE MATEMÁTICA

CAMPUS DE ONDINA

UNIVERSIDADE FEDERAL DA BAHIA

AV. ADHEMAR DE BARROS, S/N.
CEP 40170-110, SALVADOR

BRASIL

E-MAIL: tertu@ufba.br

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

CAMPUS DO VALE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

AV. BENTO GONÇALVES, 9500
CEP 91509-900, PORTO ALEGRE

BRASIL

E-MAIL: aneumann@mat.ufrgs.br

http://www.ams.org/mathscinet-getitem?mr=2573561
http://www.ams.org/mathscinet-getitem?mr=2496445
http://www.ams.org/mathscinet-getitem?mr=2770905
http://www.ams.org/mathscinet-getitem?mr=3088375
http://www.ams.org/mathscinet-getitem?mr=3096351
http://www.ams.org/mathscinet-getitem?mr=3356932
http://www.ams.org/mathscinet-getitem?mr=2592282
http://arxiv.org/abs/arXiv:1501.00225v1
http://www.ams.org/mathscinet-getitem?mr=1707314
mailto:tertu@ufba.br
mailto:aneumann@mat.ufrgs.br

	Introduction
	Model and statements
	Frequently used notation
	The hydrodynamic equation
	The weakly asymmetric exclusion process with a slow bond
	Large deviations principle

	Super-exponential replacement lemmas and energy estimate
	Deﬁnitions and estimates lemmas
	Super-exponential replacement lemmas
	Super-exponential energy estimate
	Replacement lemma
	Sobolev space

	Hydrodynamic limit of the WASEP with a slow bond
	Tightness
	Radon-Nikodym derivative
	Sobolev space
	Characterization of limit points

	Large deviations upper bound
	Radon-Nikodym derivative (continuation)
	Upper bound for compact sets
	Upper bound for closed sets

	Large deviations lower bound for smooth proﬁles
	References
	Author's Addresses

