

Prova 2 - Gabarito

MAT508 - Análise no \mathbb{R}^n Semestre 2023.2 Prof. Tertuliano Prova 2 - 25/10/2023

- 1) Prove ou dê contra-exemplo:
 - (a) Se $A \subset \mathbb{R}^n$ tem conteúdo nulo, então tem medida nula. Verdadeiro, basta aplicar as definições.
 - (b) Se $A \subset \mathbb{R}^n$ tem medida nula, então tem conteúdo nulo. Falso, tome \mathbb{N} por exemplo.
 - (c) Se $A \subset \mathbb{R}^n$ é aberto não-vazio, então A não tem medida nula. Verdadeiro. Se A é aberto não-vazio, então contém um retângulo fechado R, que provamos não ter conteúdo nulo. Como todo compacto de conteúdo nulo tem medida nula, R não pode ter medida nula, logo A não tem medida nula.
 - (d) Se $A \subset \mathbb{R}^n$ tem interior vazio, então tem medida nula. Falso. Tome $A = (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]$. Como os racionais são densos, A tem interior vazio. Mas não tem medida nula: como $\mathbb{Q} \cap [0,1]$ é enumerável, tem medida nula. Se A tivesse medida nula, como união de conjuntos com medida nula tem medida nula, concluiríamos que [0,1] tem medida nula, o que não é verdade.
- 2) Para $A, B \subset \mathbb{R}^3$ mensuráveis à Jordan, defina

$$A_z = \{(x, y) : (x, y, z) \in A\},\$$

 $B_z = \{(x, y) : (x, y, z) \in B\}.$

Suponha que, para todo $z \in \mathbb{R}$, valha que A_z e B_z são mensuráveis à Jordan (em \mathbb{R}^2) e que tenham mesma área. Mostre que A e B têm mesmo volume.

Solução: Seja R retângulo de \mathbb{R}^n , com $A, B \subset R$ e $R = \tilde{R} \times [a, b]$. Para simplicar, chame (x, y) = w. Então

$$\begin{aligned} vol(A) &= \int_A 1 = \int_R \chi_A \overset{\text{Fubini}}{=} \int_{[a,b]} \int_{\tilde{R}} \chi_A(w,z) \, dw \, dz = \int_{[a,b]} \operatorname{area}(A_z) \, dz \\ &= \int_{[a,b]} \operatorname{area}(B_z) \, dz = \int_{[a,b]} \int_{\tilde{R}} \chi_B(w,z) \, dw \, dz \\ \overset{\text{Fubini}}{=} \int_R \chi_B = vol(B). \end{aligned}$$

3) Sejam $A \subset \mathbb{R}^n$ retângulo fechado e $f:A \to \mathbb{R}$ função limitada. Mostre que se $f:A \to \mathbb{R}$ é integrável, então

$$\left| \int_A f \right| \le \int_A |f| \, .$$

 $Soluç\~ao$: Se f é limitada, ent\~ao |f| é limitada. Como o conjunto dos pontos de descontinuidade de f contém o conjunto dos pontos de descontinuidade de |f|, concluímos que |f| é integrável.

Daí.

$$U(|f|, P) = \sum_{S \in P} M_S(|f|) \operatorname{vol}(S) \ge \sum_{S \in P} M_S(f) \operatorname{vol}(S) = U(f, P)$$

e

$$U(|f|,P) = \sum_{S \in P} M_S(|f|)\operatorname{vol}(S) \geq \sum_{S \in P} M_S(-f)\operatorname{vol}(S) = -\sum_{S \in P} m_S(f)\operatorname{vol}(S) = -L(f,P).$$

Passando o ínfimo sobre todas as partições, temos que

$$\inf_{P} U(|f|, P) \ge \inf_{P} U(f, P) = \int_{A} f$$

e

$$\inf_{P} U(|f|, P) \ge \inf_{P} -L(f, P) = -\sup_{P} L(f, P) = -\int_{A} f,$$

que implicam que $\int_A |f| \ge |\int_A f|$.

4) Defina Partição da Unidade. Defina integral (generalizada) de uma função $f:A\to\mathbb{R}$, onde $A\subset\mathbb{R}^n$ é um conjunto aberto (não se esqueça de colocar as hipóteses na função f). Solução: Seja $A\subset\mathbb{R}^n$. Temos que uma partição da unidade Φ é um conjunto de funções C^∞ que estão entre 0 e 1, somam um em cada ponto e são localmente finitas, ou seja, para cada ponto $x\in A$ existe um aberto $x\in A_x$ tal que para apenas um subconjunto finito de Φ os suportes das funções desse subconjunto intersectam A_x .

Dada $f:A\to\mathbb{R}$ localmente finita, f é dita integrável se, para alguma partição da unidade de A vale

$$\sum_{\phi \in \Phi} \int |f| \phi < \infty$$

e, nesse caso, definimos a integral como

$$\int_{A} f = \sum_{\phi \in \Phi} \int f \phi$$

5) Enuncie a Fórmula de Mudança de Variáveis. Mostre que se a Fórmula de Mudança de Variáveis vale para $g: A \subset \mathbb{R}^n \to \mathbb{R}^n$ e para $h: B \subset \mathbb{R}^n \to \mathbb{R}^n$, com $g(A) \subset B$ sendo $g, h \in C^1$, então vale também para $h \circ g: A \to \mathbb{R}^n$.

Solução: Dada $f: g(A) \subset \mathbb{R}^n \to \mathbb{R}$, f integrável com A aberto e $g: A \subset \mathbb{R}^n \to \mathbb{R}^n$, $g \in C^1$ injetiva tal que det $g'(x) \neq 0$ para todo $x \in A$,

$$\int_{g(A)} f = \int_A f \circ g |\det g'|.$$

Suponha que o teorema valha para g e h. Daí,

$$\begin{split} \int_{h(g(A))} f &= \int_{g(A)} f \circ h |\det h'| = \int_{A} \Big(\big(f \circ h |\det h'| \big) \circ g \Big) |\det g'| \\ &= \int_{A} f \circ h \circ g \left(|\det h' \circ g \cdot \det g'| \right) \quad \overset{\text{Regra da Cadeia}}{=} \quad \int_{A} f \circ h \circ g |\det (h \circ g)'| \,. \end{split}$$