

Lista 1 - MATA42 2017.2 Matemática Discreta I Prof. Tertuliano Franco

Lógica

- (1) Livro Judith Gersting. Páginas 16 a 25. Exercícios 3, 4, 12, 17, 18, 26, 27, 30, 54, 61-64.
- (2) Livro Judith Gersting. Páginas 35 a 37. Exercícios 9-12, 13-42 e 43-50.
- (3) Livro Judith Gersting. Páginas 50 a 52. Exercícios 1 a 20.

Tipos de Prova

Conjuntos, relações, relações de equivalência e funções

- (1) Livro Haggard página 166, Seção 3.3.
- (2) Livro Haggard página 188, Seção 3.7.
- (3) Prove as Leis de Morgan para conjuntos.
- (4) Mostre que $f^{-1}(\cup_{\lambda}A_{\lambda}) = \cup_{\lambda}f^{-1}(A_{\lambda})$ e $f^{-1}(\cap_{\lambda}A_{\lambda}) = \cap_{\lambda}f^{-1}(A_{\lambda})$.
- (5) Defina a diferença simétrica $A\Delta B$. Mostre que a diferença simétrica é comutativa e associativa, e que a interseção é distributiva com respeito à diferença simétrica: $A \cap (B\Delta C) = (A \cap B)\Delta (A \cap C)$.
- (6) Seja $A = \{a, b, c\}$. Construa uma relação em $A \times A$ que seja simétrica, mas não transitiva.
- (7) Seja $A = \{a, b, c\}$. Construa uma relação em $A \times A$ que seja transitiva, mas não reflexiva.
- (8) Seja $A = \{a, b, c\}$. Construa uma relação em $A \times A$ que seja reflexiva, mas não simétrica.
- (9) Seja $A = \{a, b, c\}$. Construa uma relação em $A \times A$ que não seja uma função.
- (10) Uma relação de equivalência em *A* pode ser uma função?

Números Naturais

- (1) Prove o Princípio de Indução como consequência do Princípio da Boa Ordenação.
- (2) A partir dos Axiomas de Peano, prove que n+1=1+n para qualquer $n \in \mathbb{N}$.

Enumerabilidade

- (1) Mostre que o conjunto dos polinômios $p : \mathbb{R} \to \mathbb{R}$ cujos coeficientes são números racionais é um conjunto enumerável.
- (2) Mostre que o conjunto dos números complexos é não-enumerável.
- (3) Dê exemplo de uma sequência decrescente $X_1\supset X_2\supset \cdots\supset X_n\supset \cdots$ de conjuntos infinitos cuja interseção $\bigcap_{n=1}^{\infty}X_n$ é vazia.
- (4) Defina $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ pondo f(1,n) = 2n-1 e $f(m+1,n) = 2^m(2n-1)$. Mostre que f é uma bijeção.
- (5) Prove que existe $g: \mathbb{N} \to \mathbb{N}$ sobrejetiva tal que $g^{-1}(n)$ é infinito para cada $n \in \mathbb{N}$.
- **(6)** Exprima $\mathbb{N} = A_1 \cup A_2 \cup A_3 \cup \cdots$, onde os conjuntos A_i são disjuntos e infinitos.
- (7) Mostre que o conjunto dos subconjuntos finitos de \mathbb{N} é enumerável.
- (8) Sejam Y enumerável e $fX \to Y$ tal que, para cada $y \in Y$, $f^{-1}(y)$ é enumerável. Mostre que X é enumerável.
- (9) Um número $x \in \mathbb{R}$ é dito *algébrico* se é raiz de algum polinômio com coeficientes inteiros. Mostre que o conjunto dos números algébricos é enumerável. Um número $x \in \mathbb{R}$ é dito *transcendente* se não é algébrico. Mostre que existem números transcendentes.
- (10) Mostre que o conjunto de todos os subconjuntos de \mathbb{N} é não enumerável.